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Charge fluctuations and the large-scale potential in the ground state of a disordered Coulomb 
system are studied. A universal law for the growth of charge fluctuations with the dimension is 
found for 2 0  systems: q,  - R "*. The relationship between the charge fluctuations, on the one 
hand, and the behavior of the density of states in the Coulomb gap and the screening depth for the 
weak field, on the other, is discussed. 

1. INTRODUCTION 

Much is unclear about the properties of the ground state 
of a disordered system of localized electrons. Wigner crystal- 
lization is disrupted if there is a large spread in the values of 
the random potential energy, but a correlation remains in 
the arrangement of the charges. The correlation is a conse- 
quence of the long-range nature of the interaction. One fa- 
miliar manifestation of this correlation is the Coulomb gap 
in the electron energy distribution.' In this paper we exam- 
ine the effect of an interaction on the bulk charge fluctu- 
ations and thus3 on the large-scale fluctuations of the poten- 
tial energy. These fluctuations play a fundamental role in 
problems involving the screening of a weak field, the carrier 
m~bi l i ty ,~  a nonohmic conductivity, etc. 

We restrict the discussion to 2 0  systems in the simple 
model proposed in Refs. 2 and 4. We study charge fluctu- 
ations as a function of size R by numerical simulation. We 
find the result 

which is of universal applicability for various spreads in the 
values of the random potential. We discuss the effect of fluc- 
tuations on the screening of a weak external field, and we 
examine the behavior of the density of states of low-energy 
excitations. 

2. NUMERICAL SIMULATION 

We consider a simple square lattice with a lattice con- 
stant a. The occupation numbers ni take on the values 0 and 
1. We say that there is an electron with a charge of + 1/2 at a 
site if ni = 1, while there is a hole with a charge of - 1/2 
there if ni = 0. The values of the random potential a,, which 
creates the disorder in the system, are uncorrelated at the 
various sites. They are distributed uniformly between 
- B /2 and + B /2. The chemical potential is set equal to 

zero; this choice corresponds to a half filling in the macro- 
scopic limit. The Hamiltonian of the system is 

The summation is over all lattice sites; f;, is the energy 
of the Coulomb interaction between sites i and k. To avoid 
effects due to a lowering of the dimensionality at the boun- 
daries of the system, we require that the lattice sites at these 
boundaries be equivalent to those at the center of the sample. 

We impose this equivalence by means of periodic boundary 
 condition^.^ The energy of the Coulomb interaction is then 
given by f;, = l/ri,, where 

a 

The energy of an individual site is given by 

We study the charge fluctuations in two steps. First we 
use a standard algorithm (discussed below) to determine the 
ground state of the system. We then make a direct study of 
the charge fluctuations for a given realization of the random 
potential. The final result is found by taking an average over 
a large number of realizations. For 2 0  systems of size L X L 
(L = 20, 30, 40) described by Hamiltonian (2),  we use the 
procedure proposed in Ref. 5 to seek the ground state. This 
procedure can be outlined as follows. A random-number 
generator (with a return period of 1.6.10') is used to deter- 
mine the random field cPi. The initial distribution of elec- 
trons (or holes) is specified to be either a checkerboard pat- 
tern or the pattern 

fi'O'=L/z(l- sign QI). ( 5  

We then descend to the ground state at a fixed chemical 
potential, taking all the single and double interchanges into 
a c ~ o u n t . ~  In certain cases we also consider the interchange 
of three and four sites in the most compact arrangement 
(neighboring sites). In this manner we construct a ground 
state which is stable under the following interchanges: 

I. the single interchanges (exchange with the reservoir) 

ni=O, AH=ei-p>O. 
11. the double interchanges (a  hop within the system) 

111. the triple interchanges (a  hop and exchange with 
the reservoir) 

n i = l ,  nj=nh-0 (if k), 
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TABLE I. Numerical-simulation data for systems with various values of L, B, and K. 

I I Interchanges 
considered 

0,50*0,02 0,53*0,03 I-IV 
0,50*0,01 0.54*0,03 

1.0 0.50*0.01 0.529*0.012 .~~ 

f;0 500 0;50*0;01 0;532*0:609 I-IV 
230 0.5 40 150 0,50*0,01 0.88*0,06 I-IV 

40 

3,O 03 40 150 0,50*0,02 1,12*0,08 I-IV 
4.0 0.5 40 150 0.50*0,01 1.30*0,16 I-IV 
8.0 0,s 40 150 0.50*0,01 1,63*0,20 I-IV 

Note. Interchanges I-IV, used in constructing the ground state, are described in Sec. 2 of this 
paper. The quantity N,  is the number of systems over which the average was calculated. 

IV. the quadruple interchanges (two hops) 

After the ground state has been constructed, the system 
is partitioned into nonintersecting squares of size R<L, and 
the mean square charge fluctuation q, is calculated for each 
square. This procedure was carried out for various values of 
B and L and for various initial charge distributions. As a 
result we found the following expression for the mean charge 
fluctuation as a function of the size of the square: 

This expression is equivalent to a linear dependence of 
ln(q, 2,  on 1nR. Table I shows values of Cand a for various 
values of B, K, and L. We see from Fig. 1 that a linear law 
holds well in the interval 2<R<L/2, while the periodic 
boundary conditions come into play at R > L /2. The value of 
the charge in the total volume, i.e., that for R = L, is close to 
zero in all cases, apparently because of the periodic bound- 
ary conditions. We should also point out that the first term 
of Hamiltonian (2)  plays an important role when B is large 
and the sizes R are small. As was shown for the case B = 8.0, 
the result is a deviation from the law q, cc R 0.5 at small val- 
ues of R. The deviation is toward larger values of a. For the 
case B = 0.5 we studied the effect of the more complicated 

FIG. 1 .  Charge fluctuations versus the size R in 2 0  systems with L = 40 
and K = 0.5, for various maximum values of the random potential, B. 0- 
B = 1.0; 0-4.0; - 8.0 

interchanges (of types I11 and IV) on the values of C and a. 
We see from Table I that the incorporation of these inter- 
changes has no noticeable effect. 

Using the data in Table I, we plotted InCversus 1nB. As 
Fig. 2 shows, this plot is linear and can be described by 
Ca BB, wherePz0.63. 

We studied the behavior of the density of states in the 
case B = 0.5, L = 40. We found g ( ~ )  a in the energy in- 
terval 0.025 < E < 0.16, and g(&) a &'.' in the interval 
0.16 < E < 0.6 (Fig. 3 ) .  This result supports the data found in 
Ref. 7. The typical value of the energy at which the behavior 
of the density of states, g ( ~ ) ,  changes is 

3. EFFECT OF CHARGE FLUCTUATIONS ON THE 
PROPERTIES OF THE SYSTEM 

A. Density of States. A numerical analysis of the behav- 
ior of the density of states in a Coulomb gap, which we car- 
ried out for systems of dimensionality d = 2, reveals sub- 
stantial deviations from the ShklovskiT-Efros law g ( ~ )  a (& (  

as E+O. Corresponding deviations were observed in Refs. 4 
and 5. Summarizing the results of a recent study7 of 2 0  sys- 
tems with a size of 200 x 200 and our own results for systems 
with a size of 40 X 40, we conclude that the density of states 
behaves in the following way. At lei > E ~  we have 

FIG. 2. Relationship between the coefficient C [see ( 6 )  1 and the maxi- 
mum value of the random potential, B, for systems with L = 40, with a 
ground state constructed through the use of interchanges of types I-IV. 
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FIG. 3. Density of states versus the energy for system with L = 40, 
B = 1.0, and K = 0.5, with a ground state constructed through the use of 
interchanges of types I-IV. The dashed and solid lines are least-squares 
fits of the points in the energy intervals 0.05 < E < 0.16 and 0.16 < E < 0.6, 
respectively. 

g ( ~ )  a I E ~  while at I E I  < E, we have g ( ~ )  a I E I  
A point of fundamental importance is that the values 

found for E, in Ref. 7 (E, = 0.08) and in the present study 
(E, = 0.16) are quite different. We think that the difference 
stems from a dependence of E, on the dimensions of the sys- 
tem. The existence of a typical value of the charge fluctu- 
ation, q, , mandates a new energy scale, AE - q, /R. A trivial 
estimate shows that the energies E, for systems with L = 200 
and with L = 40 are the same as the typical minimum energy 
of large-scale fluctuations, A&, - q, /L - L - We would 
thus expect a relationship between the charge fluctuations 
and the behavior of the density of states at low energies. We 
can present some rather crude arguments which reveal the 
nature of this relationship. 

We assume that the density of states has a power-law 
behavior near the Coulomb gap: 

From our standpoint (see also Ref. 3), this behavior 
stems from large-scale fluctuations of the charge density, 
whose structure is in turn determined by g ( ~ ) .  What is the 
nature of this interrelationship? We assume that a charge 
fluctuation q > 0 is created in a d-dimensional sphere of radi- 
us R. This fluctuation creates a field q/r outside the sphere. 
If the energy of a site is in the interval ( - q/r,O), then the 
energy becomes positive as a result, and the electron leaves 
this site and goes off to infinity. The probability for such an 
event is 

Summing this quantity over all sites outside the sphere, we 
find the total screening charge: 

m 

We assume 

An integration in ( 10) then yields 

We see that a small charge is screened almost not at all, 
while a very large charge, on the contrary, induces an even 
larger charge. It is thus clear that for a given radius there 
exists a characteristic charge 

which screens itself completely. From ( 12) we then find 

This derivation is obviously valid only if the sphere is 
small in comparison with the dimensions of the system, L. 
The behavior of the density of states should thus change 
when we pass through the energy q,/L, and this is what is 
seen in the numerical simulation. 

The basic assumption used in deriving (13) is that the 
screening can be described satisfactorily by introducing in- 
duced charges in the one-particle approximation, (9).  The 
effective of spatial correlations of the density of states is ig- 
nored in this approach. A spatial variation of the distribu- 
tion of charges with energies close to zero was observed in 
Ref. 4. The corresponding variations found in our own cal- 
culations are shown in Fig. 4. These factors apparently ex- 
plain why the estimate of the exponent v = 2 from ( 14) and 
from the value a = 0.5 found above is high in comparison 
with the result of the numerical simulation, Y = 1.5. 

B. Screening of a weakfield. We assume that the system 
is in an electric field such that the potential difference across 
the boundaries is small in comparison with the Coulomb 
gap. In this case the screening of the field U should occur 
over that length scale I over which the fluctuation in the 
potential energy, q, /R, is comparable to the scale of the field 
U, i.e., over which the system begins to "feel" the field. We 
thus find an estimate of the penetration depth: 

We have been unable to test ( 15) numerically because 

FIG. 4. Spatial distribution of states whose one-particle energies lie in the 
interval - 0.4 < E <0.4 in the case of a 2 0  system with L = 40, B = 1.0, 
and K = 0.5. The ground state of the system was constructed through the 
use of interchanges I-IV. Filled symbols-cases in which there is an elec- 
tron at the site; open symbols-cases in where there is a hole at the site. 
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of the very large dimensions which the system must have in 
the case of weak fields. Nevertheless, relation ( 15) can be 
tested experimentally. The capacitance of a capacitor filled 
with a highly disordered semiconductor is described by 

where E is the dielectric constant, S is the area of the plates, 
and Zis the field penetration depth. If the potential difference 
between the plates is small in comparison with the Coulomb 
gap (which is usually on the order of l o p 2  eV), while it is 
large in comparison with the temperature, then we would 
expect that the capacitance would have a field dependence 
Ca U 2  for the value a = 0.5. 

CONCLUSION 

We have shown that bulk charge fluctuations can play 
an important role in a disordered Coulomb system. In 2 0  
systems, such fluctuations grow with the dimension in ac- 
cordance with the universal law q, = R ", where a = 1/2. 
The value of a does not change when more-complex excita- 
tions are taken into account; it is furthermore independent of 

the value of B. The charge fluctuations mandate a new ener- 
gy scale E, - L - ' I 2 ,  which is manifested in the behavior of 
the density of states. At E<E,  the density of states has a 
behavior g ( ~ )  a / E I  while at E > E, it has a behavior 
g ( ~ )  a I E ~  ' 5 .  Working from the behavior of the charge fluc- 
tuations, we have described the screening of a weak field, and 
we have estimated the screening depth. 
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