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The superconducting state is studied in systems with strong electron-phonon interaction. The 
Eliashberg integral equations are reduced to a form which makes their analysis and numerical 
solution simpler. It is shown that in the limit of large coupling constants, R > 1, and for T = 0 the 
energy gap A, has an asymptotic form cc GG. It is also shown that for finite temperatures the 
density of electronic states is nonzero for all w and the superconducting spectrum has excitations 
with energies "inside the gap," which, in the case of strong coupling, results in a substantial 
redistribution of the number of normal and superconducting electrons, the properties of such 
superconductors being markedly different from those given by the BCS model. 

1. INTRODUCTION 

The ~ l i a s h b e r ~  equations'.2 have been studied for a 
long time. As is known, in the Eliashberg theory a supercon- 
ductor is fully characterized by the spectral function of the 
electron-phonon coupling a2(w)F(w) (see, e.g., Refs. 3 and 
4) and the mean interaction value by a dimensionless cou- 
pling constant A = 2~,"dw [a2(w)F(o)/w 1. Elia~hberg'.~ 
and other authors (see the review in Ref. 3) have shown that 
for small coupling constants these equations lead to practi- 
cally the same results for excitation spectra and thermody- 
namic and kinetic characteristics of superconductors as the 
Bardeen-Cooper-Schrieffer (BCS) theory. 

Important distinctions arise only for fairly large values 
of the coupling constant A. The effect of strong coupling, 
A S  1, has been studied at length for the superconducting 
transition critical temperature T, . In particular, Allen and 
Dynes5 have shown that in the limit A % 1 T, obeys a power 
law 

A h 

where G ;  (a) and 2, (w) are respectively the matrix retard- 
ed electronic Green's function and self-energy, a2(p,p') is 
the squared modulus of the electron-phonon scattering ma- 
trix element, F(p  - p ' , ~ )  is the spectral density of the 
phonon Green's function, and Pi are Pauli matrices. The in- 
tegral ~ l i a s h b e r ~  equations ( 1 ) are highly complicated for 
analysis and numerical solution, owing to the singular ener- 
gy dependence of the electron-phonon coupling. Therefore 
they are used relatively rarely. 

Let us represent the electron-phonon coupling in ( 1 ) as 
the sum of a regular and a singular part. To do this, we add 
and subtract tanh(w - z ) /2T  in the numerator in (1) and 
integrate the singular part of the electron-phonon coupling 
over do', using the dispersion relation for the retarded elec- 
tron Green's function: 

1 do' 
~ ~ ~ ( o ) = - -  1 Im ~ ~ ' ( o ' )  

R, o-of+ii3 

T,och'". 
As a result, Eqs. ( 1 ) will have the form 

Thermodynamic properties of superconductors with large 
coupling constants A have also been !tudied in detail. In ,,z 

dp' thesestudies it was possible to solve the Eliashberg equations j&(,)=- _ j dwlfa lm ~ ~ n ( ~ ~ ) i ~  !? az(p, pr) 
only at discrete points of the imaginary axis (the Matsubara ( 2 ~ )  -_ - - 2n 
frequencies), using a simple and convenient te~hnique.~ 

Less attention has been paid to the excitation spectra XF(p-pi. z )  tll (o'/2T) -th[ (a-z)/2T] 
and dynamic properties of the superconductors with strong a-Z-Q' 
coupling, since in this case it is necessary to find the solutions 

, 

of the Eliashberg equations on the real axis of the variable w. - j  .-!Ci- J 
These problems are studied in the present paper. (2n) _ _  2n 

Q-z a 
2. GENERAL ANALYSIS OF THE ELIASHBERG EQUATIONS + th ---I ;.G~'(W-Z) zS. 

FOR SYSTEMS WITH STRONG ELECTRON-PHONON 
2T 

COUPLING ( 2 )  

Analytic continuations of the ~ l i a s h b e r ~  temperature A 

We expand next the self-energy 2, (w) in terms of Pauli ma- equations from the upper half-plane of the variable w to the 
real axis have the form334 trices: 

dp' dz tp(o)= -.I -.I - a 2 ( ~ , ~ f ) F ( ~ - ~ 1 ,  z)  
(2n) -_ 2n 

(Z denotes the anomalous self-energy part). Using the ex- 
plicit form of the electronic Green's function 

th (01/2T)+cth (z/2T) 
do1;$ lm G ~ ~ ( W ' )  ;3 - , (1)  oZp(o) t,+xp (o);,+&,?3 

bpR (o)  = 0-z-o'-cis 
-ffi oZZpZ (0 )  -zp2 ( 0 )  - ~ p 2  ' 
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we average (2 )  over the momenta in the usual manner (see 
Refs. 3 and 4).  As a result we get 

th(of/2T) -th [ (a-z)/2T] n 
Xb - -1 dzu2(z) F (z) 

0-z-0' 2- rn 

z x [cth-+ th- 
2T 2T 

where we have introduced the spectral function a2(w)F(w) 
of the electron-phonon coupling, the averaged electronic 
Green's function 

o&+A (o)?,, 
gR(o)=i  sign o 

[02-A2(o)]"' 

and the superconducting gap A(w) = Z(w)/Z(w). Using 
the symmetry properties A (  - w) = A*(w), Z (  - w) 
= Z*(W) ,  and a2( - w)F( - w) = - a2(w)F(w), we re- 

write the equations in the form 

Z(w)-Z(o)A ( a ) =  5 d m r  ~e A ' . K .  (o, a ')  
o [~"--A"(o') 1'" 

1 
K.(o, a ' )= - -5 dzu2(z)F(z) [k(or ,  o ,  Z )  

200 
+k (or ,  -o, -z) -k (o', -a, z) -k (o', a ,  -z) 1, 

th (o'/ZT) +th[ (o+z)/ZT] 
k(ofl  o ,  z)=. 

of+o+z 

where f(w) and n(w) are the Fermi and Bose distributions 
respectively. The kernels K ,  (w,wl) and K ,  (w,wf) in Eqs. 
(4)  and (5)  are regular short-range Fredholm functions. In 
fact, writing k(wf,w,z) in the form 

we make sure that this function has no singularities for real 
variables. In the complex plane of the variable o' the func- 
tion k(wf,w,z) has poles at the points w; = 2i?rT(n + 1/2). 
Therefore the terms in Eqs. ( 3 )-( 5 ) determined by the regu- 
lar part K may be written in a somewhat different way. Pass- 
ing to the contour integration in the complex w' plane in the 
regular terms in (3)  and taking into account the Green's 
function analytic properties, we find for Eq. (4): 

where 

Equation (5) may be rewritten in a similar manner. Equa- 
tions of this very type have been found by Marsiglio et al.,' 
who have suggested to use them for the analytic continu- 
ation of the functions A(iw, ) and Z(io, ) obtained as a re- 
sult of the solution of the ~ l i a s h b e r ~  equations at the Matsu- 
bara frequencies iw, . The analytic continuation is achieved 
in Ref. 7 by solving twice the ~ l i a s h b e r ~  equations. First, 
they are solved on the imaginary axis, then the found solu- 
tions are used to calculate the regular terms (inhomogene- 
ities) in (4a), which, in their turn, are used to find the ana- 
lytic continuation in question. According to the authors of 
Ref. 7, this method of analytic continuation is especially 
convenient for the determination of the energy gap, as T-0, 
in the very-strong-coupling case. In the case of Eqs. (4)  and 
(5)  obtained above it is not necessary to solve the equations 
on the imaginary axis, since the regular terms with the Fred- 
holm kernels K do not lead to additional complications in 
the solution of these equations. To make sure of this, we 
consider the case T = 0, when Eqs. (4)  and (5)  can be writ- 
ten as 
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1 
- - dza' ( z )  F (z) (, 1 - 

O O  
I -  ol+z+o 0'-z+o 

( 6 )  

It is seen that the regular parts of the interaction, K, and K, , 
are localized in the phonon energy range where the interac- 
tion K, corresponds to attraction and is of order 
Ks (0,O) =A. Outside the phonon spectrum the K, and K,, 
moduli decrease rapidly, and K, corresponds to repulsion. 
Thus, the attraction range of the interaction Ks is bounded 
by a characteristic phonon frequency Z .  

The second term in ( 6 ) ,  of the resonant type, connected 
with the singular part of the electron-phonon coupling, is 
completely different. This term, in contrast to the regular 
one, strongly depends on the specific form of the spectral 
function. The resonant contribution is small in the low ener- 
gy range w  < Z ,  owing to the smallness of the spectral func- 
tion a 2 ( w ) F ( w ) ,  and reaches a maximum only at o of order - w  + A,, where A, is the energy gap defined for T =  0  as 
A, = A ( A , ) .  

In the weak-coupling case, when the energy gap is much 
smaller than Z,  it is the regular term that gives the main 
contribution to A,. In this case we arrive at the usual expo- 
nential dependence of the gap on the BCS coupling constant 
A: A, a exp( - A /1 + A). Evidently, if we consider only 
this interaction, which reverses its sign near the phonon 
spectrum boundary, we find that the energy gap is smaller 
than Z  for arbitrarily large coupling constants A. On the 
contrary, if we allow for the singular part of the interaction, 
the attraction range becomes dependent on the coupling 
constant and increases to -5 + A,, which corresponds to 
the usual notions about the attraction potential in a super- 
conductor, with quasiparticle dispersion law taken into ac- 
count. In the strong-coupling case, it is most difficult to 
study the second term in ( 6 )  analytically. Therefore we will 
use the results of numerical analysis with the model spectral 
function a: (w)F,,, ( w )  of the electron-phonon coupling 
shown in Fig. 1." Thesolution A ( w )  ofEq. ( 6 )  forA = 20 is 
plotted in Fig. 2. The regular-term contribution [the first 
term in ( 6 )  ] is shown in the same figure. As seen from Fig. 2, 
the regular contribution [the inhomogeneity in (4a) ] is lo- 
calized in an energy range of order Z (  - 1 ) and is small, in 
comparison with the resonant contribution, outside this 
range, particularly at w  - A,. 

Let us consider briefly the problem, highly popular in 
the literature, of superconducting properties in the limit 
A $  1. The limiting behavior of the superconducting transi- 
tion critical temperature was first studied by Allen and 
Dynes,' who showed that T, a n .  As far as the energy gap 
behavior in the limit A $ 1  is concerned, there are substantial 
differences. Some argue that A, -n,  other^'^.'' 
that A, ai l .  In the limit A 1 the energy gap is mainly deter- 

FIG. 1. The model spectral function a; (o)F,  ( 0 ) .  

mined by the resonant term in ( 6 ) ,  while the regular-term 
contribution is, at least numerically, small. Using the sim- 
plest model for the function a 2 ( w ) F ( w )  in the form of one 
Einstein maximum centered at w  = Z ,  i.e., a 2 ( w ) F ( o )  
= ( A Z / 2 )  S(w - Z ) ,  we can rewrite the equation for A  (o )  

in the form 

Further, we introduce the function p ( w  ) = A  ( w ) / w  and 
change over to the variable y = w  - Z .  Expanding the func- 
tion p ( y  + Z )  in terms of Z / A ,  and using only the lowest 
term, we get 

nh75'rp' (y)  
cp(y)= 

~ Y [ ~ ~ ( Y ) - I I ' "  ' 

The solution of this differential equation has the form 

Setting p ( A , )  = 1, we find that A, = r Z f l / f i .  
Thus, for largeA the energy gap has the same asymptote 

as T,. The specific value of the constant in this asymptote 
should, certainly, be obtained from the exact solution of Eq. 
( 6 ) .  It can be shown that the asymptote A, a @is reached 
under when the condition dA(w) /dwl ,=  A. = 1 ,  which is 

FIG. 2. ReA(w) ( I ) ,  ImA(o) (2) and regular part of A(w) (3) for 
/1=20and T=O. 
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satisfied by the solution ( 7 ) .  As seen from the numerical 
analysis carried out by Marsiglio and C a r b ~ t t e , ~  this condi- 
tion does not hold even for A = 200, therefore A, for smaller 
values of /I (as in Refs. 10 and 11, where A < 40) can be 
approximated to equal accuracy by a power law: A, =A Z, 
where + S p  5 1. 

Consider now the properties of the equations and their 
solutions obtained above at finite temperatures. As already 
noted, the regular kernels K, (w,wl) and K ,  (w,wf ) are local- 
ized near the energy Z. At finite temperatures K, and K, are 
smeared. In particular, for small w' K, (w,wl) vanishes as 
tanhwr/2T. The function K,s (w,wl) at T = 0.1 is shown in 
Fig. 3. Both for T = 0 and finite temperatures it is quite close 
toA tanh(w1/2T)0(Z - wl)O(Z - w), i.e., to theBCSmod- 
el interaction. As seen from (3) ,  at T < Z  the resonant contri- 
butions to Z ( o )  are important only for w -Z. In the weak- 
coupling case, the absolute values of Z(w) in the range of 
characteristic phonon frequencies are small in comparison 
with w, therefore, the resonant terms have a small effect on 
the thermodynamic properties as well. In particular, the ra- 
tio 2A,/Tc has its BCS value 3.52. Thus, the power depen- 
dences on the coupling constant and considerable deviations 
from the BCS value of the ratio 2A,/Tc, taking place in the 
strong-electron-phonon-coupling case, are connected with 
the resonant terms and characterize their relative magni- 
tude. 

For finite temperatures the allowance for the resonant 
interaction is, in principle, important also for small w, since 
it leads to an ImZ(o)  divergence and to gapless supercon- 
d u ~ t i v i t ~ . ~ , ' ~  We are going to study this problem at length in 
the next section. 

3. ENERGY GAP AND DENSITY OF ELECTRONIC STATES IN 
SUPERCONDUCTORS WITH STRONG ELECTRON-PHONON 
COUPLING 

In the BCS theory the density of electronic states in 
superconductors has the form 

0 
N (o) =Re 

[w~-A~(T)] ' "  ' 

where A( T) is the temperature-dependent energy gap. As 
seen from Eq. ( 8),  N (  w ) = 0 for energies lower than the gap. 
Consider now what happens in systems with electron- 
phonon coupling. To this end, we write the renormalized 
function Z(w) and the superconducting gap A(w) in the 
form 

r ( o ,  T) Z (o, T) = ~ e  Z (o, T) +i - 
0 

A(o,T)=.  
2 (a ,  T) 

= 0 .  
E(o, T) 

Re Z (o, T) +ir  (o, T) /a @+if (a ,  T) 

Here 

The function T(u,T) is the renormalized inverse electron 
relaxation time. The density N(w) of the electronic states 
could also be rewritten with the help of the introduced func- 
tions Z ( ~ , T )  and T ( ~ , T ) :  

o+ir ( a  ,T) 
N (o )  =Re 

{[o+if (o, T) 1'-E2(o, T)}lb 

Equation similar to Eq. ( lo),  

o+if  (T) 
N (o)  =Re 

{[o+if(T) ]2-XZ(T))'h 

is used in fitting experimental data to describe the density of 
states in superconductors with allowance for pair breaking. 
The function T ( T) is regarded as a parameter indicative of 
pair-breaking processes, and z( T) has the meaning of the 
order parameter. The processes leading to pair breaking are 
scattering by magnetic impurities, proximity to the normal 
metal, and some others. As seen from ( lo) ,  similar pair- 
breaking processes exist also in systems with electron- 
phonon coupling. At T = 0, as follows from the solution of 
the Eliashberg equations, the function T (w, T) vanishes for 
w < A,, where A, is the energy gap defined by the equation 
ReA(A, ) = A, or by the similar equation 
Rex( A, ,0) = A,. At finite temperatures the function 
T ( ~ , T )  is nonzero for any w,  including w = 0. This means, 
as already noted in Refs. 2 and 12, that in the superconduc- 
tor excitation spectrum the energy gap is absent at T #O and, 

2,5 

2,5 FIG. 3. The regular part of the electron-phonon cou- 
pling K, (w ,w l )  for the temperature T f i  = 0.1. 
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consequently, there are normal quasiparticles of infinitesi- 
mal energy, since even as w-0 the density of states 
N(w) = r / d m  is nonzero. The question is whether 
this fact is important quantitatively. 

The possible behavior of the density of states is given 
already by the simplest formula (10a). It is easy to make 
sure that the maximum of the density of states ( 10a) is shift- 
ed with respect to the order parameter %(T)  by a value of 
order - F( T), therefore two types of temperature depend- 
ence of the maximum position are possible. In the case when 
the damping f ( T )  grows slowly with temperature in com- 
parison with the decrease of the order parameter %( T), the 
maximum of the density of states follows the function %( T). 
Such a dependence corresponds to the gap behavior in the 
BCS theory. If, however, T ( T )  grows more quickly than 
5 ( T) decreases, the maximum is shifted towards higher en- 
ergies with temperature, and its smearing becomes the main 
effect. In the immediate vicinity of T, the position of the 
maximum of the density of states is not connected with the 
order parameter. Near the critical temperature the expres- 
sion for the density of states can be expanded in the small 
parameter Z/T and represented in the form 

In this case the position of the density-of-states maximum 
does not depend on % (and temperature) and it tends to 
~ T ( T , )  as T-T,. 

In the weak-coupling case, in the most important fre- 
quency range w 4.Z the functions 5 (w, T) and T (w,T) can 
be replaced by their amplitudes at the point w = 0. As seen 
from ( 9 ) ,  in this case the inverse electron relaxation time 
T(o,T) is small [T-AT( T / z ) ~  at low temperatures T<Z 
even in the normal state], therefore the density of states ( 10) 
differs little from the BCS density of states (8 ) ,  and thermal 
excitations "across the gap" dominate in the spectrum. 
Their energies lie in the region of the N(w ) maximum, whose 
position is governed by the order parameter 2 (0, T) . Thus, a 
superconductor with a weak electron-phonon coupling devi- 

ates from the BCS theory only in a narrow T, vicinity. 
Therefore, for such superconductors the energy gap, to good 
accuracy, could be understood to be the position of the den- 
sity-of-states maximum, and the temperature dependence of 
the latter could be regarded as the energy-gap temperature 
dependence. In fact, this is usually done in the tunnel experi- 
ments, for example. 

Let us try now, with the help of a numerical solution of 
the ~ l i a s h b e r ~  equations with a model function a2(w)F(w ), 
to find how the BCS model differs from the systems with a 
strong electron-phonon coupling. Figure 4 shows the den- 
sity of states for different temperatures ( t  = T/T, > 0.35) 
and coupling constants. As seen from Fig. 4, at finite tem- 
peratures the density of states is a continuous function with a 
maximum and with distinct regions of low [N(w) < 1 "in- 
side the gap"] and high ("the gap region") densities of 
states. The quasiparticle state occupation versus the energy 
w is shown in Fig. 5 together with the ratio of quasiparticles 
with energies smaller than w to the total number of quasipar- 
ticles 

The dashed line shows the region "inside the gap." The form 
of N(w,T) and the quasiparticle state occupation for the 
coupling constant il = 2 are shown in Figs. 4a and 5a. Figure 
6 shows the temperature dependences %(o,T) and T(o,T) 
approximately representing the amplitudes of the functions 
%(w,T) and T(u,T), together with the position of the den- 
sity-of-states maximum as a function of temperature, 
A, ( T). As seen from Figs. 4-6, in spite of a strong smearing 
of the peak, there is an energy range ("the gap region") 
which contains a large number of thermal excitations and 
whose position in the whole temperature range (excluding 
the T, vicinity) correlates with the behavior of %(O,T). In 
this sense, the average amplitude of the function %(w,T) 
could be roughly considered as an order parameter. This 
corresponds on the whole to the superconducting-gap no- 
tions, as is also confirmed by the presence of a residual co- 

FIG. 4. The density of electronic states for 
T / T ,  > 0.35 and coupling constants /Z = 2 (a)  and 
/Z = 5 (b). 
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FIG. 5. The relative number of quasiparticles with en- 
ergies smaller than o at temperatures T / T ,  > 0.35 for 
the coupling constants A =  2 (a) and A =  5 (b) .  

herent maximum in the temperature dependence of the nu- cupation other than the BCS one leads to a change in the 
clear-spin relaxation rate (see Fig. 7) .  ratio of the numbers of normal, (n, ), and superconducting, 

As the coupling constant increases, the smearing of the (n, = 1 - n, ), electrons, which can be estimated from the 
peak and the occupation of the low-frequency states also temperature dependence of the London penetration depth 
increase. Thus, the function N(w,T) in Fig. 4b ( A  = 5) re- - 
fers to another behavior of the density of states, character- 
ized by strong damping. In this case the structure of the 
density of states does not correlate with the amplitude of the 
function % (w, T) . In spite of the fact that the N(w, T) maxi- 
mum has a large amplitude for some temperatures, the rela- 
tive number of quasiparticles in "the gap region," as shown 
in Fig. Sb, is small and the region itself is unimportant for the 
quasiparticle thermodynamics. A large number of quasipar- 
ticles is "inside the gap," where the density of states has a 
weak energy dependence. Such states could be regarded as 
gapless and treated in the framework of the two-liquid mod- 
el. As a parameter characterizing the gapless state, it is natu- 
ral to use a quantity proportional to the mean density of 
states "inside the gap" (a  similar situation takes place also 
for A = 3.5). 

The existence of a mechanism of quasiparticle state oc- 

shown in Fig. 7. As is seen, the number of normal electrons 
at a given temperature t grows with the coupling constant. 
The temperature dependence of the nuclear spin relaxation 
rate, 

+ [Re 
A ( o )  

[ o"A2 (a) 1'" 1') 

FIG. 7. Relative-temperature dependences of the functions 
FIG. 6. Relative-temperature dependences of the normalized functions /Z i (O)/A i (t)  (solid lines) and K (  t )  (dashed lines) for the coupling con- 
A, (t)  ( I ) ,  Z(O,t) ( 2 ) ,  and T(0,t) (3) for1 = 2; the BCS A(t) (4) is also stants2 (1 , l  '), 3.5 (2,2') and5 (3,3')  (from thetop tothebottomrespec- 
shown. tively ). 
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shown in Fig. 7 does not have a coherent maximum in the 
gapless state and can be approximated by a power function 
with an exponent increasing with the coupling constant. 

The strong coupling effects considered above are en- 
countered in real high-T, s u p e r c o n d ~ c t o r s . ~ ~ ~ ~ ~  In particu- 
lar, the state of BiSrCaCuO at t > 0.7 can be regarded as 
gapless,I5 and its conductivity described by the two-liquid 
model with the parameter n ,  = 1 - t 4  (Refs. 16 and 17), 
which formally coincides with n, in the Gorter-Casimir 
model. The temperature functions n,(t) and K(t)  for 
BiSrCaCuO, whose coupling constant is 2.04, but whose 
spectral function a2(w)F(w) is more smeared than in our 
case (and, consequently, the damping is stronger), occupy 
intermediate position in Fig. 7 between the curves corre- 
sponding to R = 2 and R = 3.5. As follows from Fig. 7, the 
equality of n,  ( t )  and K(t)  =. t dependences observed in 
BiSrCaCuO and other high-T, supercond~ctors '~- '~ is, 
probably, characteristic of BiSrCaCuO and other supercon- 
ductors with close parameters, but is not universal in the 
strong-coupling limit. 

4. CONCLUSION 

Let us list briefly the results of pur studies. The elec- 
tron-phonon coupling in the integral Eliashberg equations is 
represented as the sum of a singular and a regular part close 
to the model BCS coupling. Such a representation is conve- 
nient for the analysis and numerical solution on the real axis 
of the variable energy w. The analytic study of the singular- 
part contribution, dominant in the large-coupling-constant 
limit, yields for the energy gap at T =  0 the asymptote 
A, - PZ. 

A consistent analysis of the density of electronic states 
for superconductors with strong electron-phonon coupling 
has been carried out. It is shown that at finite temperatures 
the density of states is nonzero for all w, giving rise to excita- 
tions with "inside-the-gap" energies in the superconductor 
spectrum. Such a mechanism of quasiparticle state occupa- 
tion causes the number of normal electrons at a given tem- 
perature t = T/T, to increase with the constant A of elec- 

tron-phonon coupling. In the case of a sufficiently strong 
coupling (A > 2) a gapless state sets in near T, in a tempera- 
ture range, growing with A. A number of experimental stud- 
ies indicate such a possibility. 

In conclusion the authors wish to express their grati- 
tude to 0. V. Dolgov, D. A. Kirzhnits, A. L. Lesnikov, and 
S. V. Shulga for fruitful discussions and invaluable help. 

"The function a i (w)F , (o )  is normalized by the condition 
2f;do [a: (w)F, ( o ) / o ]  = 1, so that the spectral function of a super- 
conductor with a coupling constant /Z has the form la; (w)F, (0) .  In 
what follows we use the energy units normalized to the characteristic 
phonon frequency 75. 
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