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We report a numerical analysis of a streamer discharge in a uniform field. The analysis confirms
the results of a previously proposed*® qualitative theory. The calculations yielded

the numerical coefficients in several of the relations derived in Refs. 4 and 5. Equations for

the calculation of the streamer velocity in the electric fields in the front and in the rear of the

discharge are proposed for the first time.

1.INTRODUCTION

The dynamics of the evolution of thin highly conduct-
ing filaments (streamers) in a discharge gap has been the
subject of many studies. The growth of the streamer filament
is due to intense impact ionization of the medium in the
strong field present in the streamer header. Maxwellian re-
laxation in the highly conducting streamer channel causes
the charge to spread over the filament and thus to maintain a
strong field at the header.

The streamer velocity is extremely high (~10%-10°
cm/s) and exceeds as a rule the drift velocity of the carriers
contained in the multiplication region at the streamer head-
er. In view of this circumstance, it has been postulated al-
ready in the early studies by Leeb, Meek, and Roether (for a
survey of these studies see Refs. 1-3) that the streamer is an
ionization wave whose propagation velocity is proportional
to the dimension of the region of intense multiplication (and
not of the carrier drift velocity in the strong field at the
head), and can be high enough if the streamer head is large.
For this premise to be true it is necessary that the streamer be
preceded by free or weakly bound carriers capable of being
multiplied by impact ionization. If the streamer propagates
in a medium without prior ionization, such carriers can be
produced by the streamer radiation through photoioniza-
tion. The presence of a free-carrier streamer ahead of the
front is experimentally confirmed by the fact that the propa-
gation velocities of the anode and cathode streamers in a gas
not previously ionized are of the same order of magnitude (a
positively charged streamer could not propagate at all with-
out electrons ahead of its front).

There is at present no rigorous quanitative streamer-
discharge theory leading to expressions for the streamer pa-
rameters in terms of the discharge-gap voltage and of the
characteristics of the medium. The main reason is the com-
plexity of the system of nonlinear non-one-dimensional par-
tial differential equations that describe the streamer dis-
charge. Analytic solution of these equations is impossible
even in the simplest case in which it is assumed that free
carriers with uniform specified density n, are present ahead
of the front (n, depends in general on the intensity of the
photoionization by the streamer radiation and must be de-
termined self-consistently).

In this situation one of the possible ways of developing a
theory is to obtain for the streamer parameters a number of
qualitative relations that are valid to within numerical coef-
ficients, and then determine these coefficients by computer
simulation. Equations obtained in this manner cannot be
used for a quantitative description of the streamer discharge.
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A qualitative streamer theory was proposed by M. L.
D’yakonov and one of us.*’ Straightforward arguments
yielded in these papers, for most streamer parameters, order-
of-magnitude expressions based on equations in which ac-
count was taken of only the most significant processes (im-
pact ionization ahead of the front and Maxwell relaxation
behind the front). References 4 and 5 served as a basis for
suggesting a method of theoretically determining the
streamer velocity and the streamer-surface shape,® a theo-
retical study of a streamer discharge in an electronegative
gas,” and an investigation of the evolution dynamics of a
streamer discharged by a metallic needle point whose poten-
tial increases linearly with time.®

As to computer simulation, notwithstanding the nu-
merous numerical analyses of a streamer discharge, the set of
equations used in most of these studies included many sec-
ondary processes that do not play a substantial role in the
streamer propagation, and was even quite complicated for
numerical computations. They employed simplifying as-
sumptions (one-dimensional analysis, the disk method, and
others) and were not justified even qualitatively. A more
correct approach, from our point of view, was chosen by
Dhali and Williams,® based on simple equations that take
into account only the main processes that lead to streamer
development, but are on the other hand obtained with suffi-
cient rigor without unfounded simplifications. The results of
Ref. 9 provide a clear enough picture of the streamer-dis-
charge evolution and agree qualitatively with the theory.*>
The calculations in Ref. 9, however, were made for specific
conditions of discharge excitation and their results do not
yield the numerical coefficients of the relations obtained in
Refs. 4 and 5.

Our aim in this study was a computer simulation of a
streamer discharge by analogy with Ref. 9, but for a specific
purpose—to check the validity of the qualitative relations
obtained in Refs. 4 and 5 and to calculate the unknown nu-
merical coefficients in these relations. We consider here the
simplest model of a streamer discharge (only impact ioniza-
tion and Maxwellian relaxation are taken into account) and
eschew the complicated question of the role of photoioniza-
tion, assuming that the streamer front is preceded by free
carriers having a specified uniform density n,. A similar ap-
proach was used in Ref. 9 where, as in our calculation, the
streamer parameters depended quite weakly on n,,.

2. FORMULATION OF PROBLEM

We investigated the evolution of a streamer between the
electrodes of a gas-filled parallel-plate capacitor (uniform
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field). A low density n, of the free electrons in the gap was
assumed, and hence a low initial gas conductivity o, = eun,,
where u is the electron mobility. The discharge was initiated
by a high-conductivity primer located near one of the capaci-
tor electrodes. We used the simplest set of equations to de-
scribe the streamer discharge (see Ref. 5):

do/at=B(E)a, (D)
dplat+div (cE) =0, (2)
Ap=—4np. (3)

where o = eun is the gas conductivity, »n the electron den-
sity, E= — Vg the electric field, ¢ the electrostatic poten-
tial, p the charge density, and S the impact-ionization fre-
quency. We assume for simplicity that the impact-ionization
intensity depends only on the local value of the electric field
and assume for S the expression®®

ﬁ(E)':ﬁo(E/Eo)exp(_Eo/E)v (4)

where 8, and E, depend only on the sort of the gas and on the
pressure, but not on the discharge-excitation conditions.

We neglect in Egs. (1)-(3) a number of secondary slow
processes that have little effect on the streamer development.
We neglect the ion mobility and diffusion (i.e., we assume in
fact immobile ions), as well as the electron diffusion. (The
possible influence of electron diffusion on the streamer evo-
lution is discussed in Ref. 4). In addition, we have discarded
in the right-hand side of (1) the term div(uEo) describing
the conductivity change due to electron drift. It is correct to
neglect this term® if the streamer velocity is much higher
than the electron-drift velocity in the strong field at the dis-
charge head. Note that in this model the propagations of the
anode and cathode streamers are perfectly identical.’

A qualitative theory based on Egs. (1)—-(3) was pro-
posed in Refs. 4 and 5." We present below some of the nu-
merically verified results of these references.

1) The electric field E,, at the streamer head is of the
order of E:

E,,,NEOA (5)

The numerical coefficient in this equation is unknown and
must be determined either from an exact solution of Egs.
(1)=(3) or by computer simulation. Our symbol for this
coefficient is C,, (the coefficients C, and C, introduced below
have a similar meaning) and rewrite (5) in the form

E.=C,E,. (6)

2) The conductivity o,, directly behind the streamer
front is given by

=_1..j _ﬂ(i)dg (7

m

Note that Eq. (7) contains no unknown numerical coeffi-
cients and is exact.

3) The streamer velocity ¥ is directly proportional to
the radius r, of its head

v—c, B (8)
1
where
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Om
A,=ln[——-]. 9
T
The argument of the logarithm in (9) is the ratio of the
conductivities behind and ahead of the front, and amount to
several orders of magnitude. Therefore A, is much larger
than unity.
4) The electric field E, directly behind the front of the
streamer is given by

E,

2= (10)
Ay

E.=C

Relations (6)—(10) are valid independently of the ge-
ometry of the discharge gap. The dynamics of streamer evo-
lution from sharp tip differs from than in a uniform field. In
particular, if a uniform field & is applied to the gap, the
streamer propagation is stationary™>'®'! at a certain critical
value & = &_ (the head radius and velocity do not vary
withtime). At & > & . the radius and velocity of the stream-
er increase slowly with time [remaining proportional to one
another in accordance with Eq. (8)], but they decrease
slowly at & < & .. Asshown in Ref. 5, &, and E, are equal.

The purpose of the here-reported numerical simulation
is to check on the qualitative relations (6)—(10) and to cal-
culate the numerical coefficients C,, C,, and C,. One more
remark is needed to prevent misunderstandings. By solving
(1)—-(3) we obtain the spatial distributions of o, p, and F at
various instants of time, but not the quantities V, ry, 0,,, E,,,
and E, directly. Moreover, these quantities (with the excep-
tion of the velocity V) are on the whole not determined un-
ambiguously, since we do not know, for an arbitrary distri-
bution of the conductivity o. As noted in Ref. 4, however, the
width of the streamer front is small compared with the radi-
us of its head, and the highly conductive region has a suffi-
ciently abrupt boundary. One can therefore introduce the
concept of a streamer surface*® and take 7, to be the curva-
ture radius of this surface at a point located on the discharge
axis. In the present paper we define the streamer surface as
conductivity constant-level line corresponding to o,, /2. For
o,, and E,, we choose the maximum values of o-and £ on the
discharge axis, and E, is taken to be the electric field on the
discharge axis directly behind the streamer front.

3.COMPUTER SIMULATION

Equations (1)-(3) were numerically analyzed in the
plane parallel interval 0 <z < L, 0 < ¥ < R, where z and r are
cylindrical coordinates. The following conditions were im-
posed on the potential @ at the gap boundary:

(p|1=0=0» (P'2=L=_$L,

| z (11
(P r=R— Z,

where & is the uniform external field applied to the dis-
charge gap.

The initial conditions for the potential and for the
charge density were chosen in the form

w|[=o=—$z, p|p=o=0. ( 12)

It was also assumed that a primer having high-conduc-
tivity primer o, located near one of the capacitor electrodes
was placed against the background of the low conductivity
0, initially existing in the gap. The initial conductivity distri-
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bution was correspondingly chosen in the form
z22+rt )

) (13)
2R /)

O'I I=0=Go+:(61_00) exP( -

i.e., the conductivity is equal to o, to the pointz=0,r=20
(the center of one of the capacitor plates) and decreases
exponentially to o, at a distance on the order of R,. In this
case R, acts as the radius of the high-conductivity primer.

We found it convenient in the calculations and in the
analysis of the results to make Egs. (1)-(3) dimensionless
by measuring the quantities ¢, 7, z, E, ¢, 0, and p in units of
(Bo) ™Yy zos 29 Eoyy EyZo, Boy and Ey/z,, respectively. The
choice of z,, as the unit of length calls for the following com-
ments. As noted in Ref. 5, Egs. (1)-(3) contain no param-
eter with the dimension of length, so that the nondimension-
alizing scale z, can be chose arbitrarily. The characteristic
streamer dimensions are determined in fact by the radius R,
of the high-conductivity streamer R, (Ref. 5), and to a con-
siderably lesser degree by the geometric dimensions L and R
of the gap. We assume in the present paper that the dimen-
sions L and R are fixed and are connected with one another
and with the unit length z, by the relations L = 4R,
I' =20z,, and R = 5z, whereas R, ranged from 0.5z, to 2z,
It is important that the nondimensional system of equations
(1)-(3) contains no parameters that depend in any way on
the type of gas or on the pressure. The calculation results
given in dimensionless units are therefore universal and only
the measurement units depend on the specific characteristics
of the gas (the quantities that depend on the type of gas and
on the pressure are 8, and E,;). We note also that the results
make it possible to describe gaps of various lengths, since a
severalfold change of the length-measurement unit z, is
equivalent to an increase of R, L, and R by the same number
of times.

The calculation procedure was the following. Using the
values of o and E on the k th time steps, we calculated from
Eqgs. (1) and (2) the values of o and p on the (k + 1)st time
step. The values of p obtained in this manner were used to
solve the Poisson equation (3) with boundary conditions
(11), and to find the distribution of the potential and of the
electric field on the (k + 1)st step. The process was then
repeated, with the conductivity of the medium smoothed out
at definite time intervals to stabilize the numerical calcula-
tion (the smoothing was over the nearest sites of the numeri-
cal lattice). The interaction scheme used in the calculations
is described in the Appendix.

Figures 1 and 2 show the calculation results for the case
R,=1, 0,= 1072 and for different values of the external
field, viz., & = 0.15 (Fig. 1) and & = 0.25 (Fig. 2). Figures
la and 2a show for various instants of time the distributions
of o along the discharge axis in logarithmic scale. The distri-
bution of the z-projection of the electric field E on the dis-
charge axis is shown in Figs. 1b and 2b (we have considered
acathode streamer, so that the values of the z-projections are
negative), while Figs. 1c, d, e and 2c, d, e show families of
conductivity constant-level lines plotted at various instants
of time.

It is evident from the figures that the streamer motion
becomes quasistationary after a certain stabilization period,
and its parameters stay practically constant. A similar result
was obtained in Ref. 9, but in our case we observed a more
stable streamer evolution during the quasistationary stage.
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In particular, we were able to determine by numerical calcu-
lations, with good accuracy, stationary-motion parameters
such as o,, (see Figs. laand 2a), E,, and E, (see Figs. 1b,
2b), r, (see Fig. 1b,d, eand 2b, d, e), the streamer velocity V
for an external field & that ranged from 0.15 to 0.30 and for
high-conductivity primer radii R, from 0.5 to 1.0. The
choice of these intervals of R, and & was based on the fol-
lowing considerations. At R, values larger than 1.0 the cal-
culation results come under the influence of the ratio of R, to
the gap radial dimension R = 5. If R, < 0.5 numerical insta-
bilities set in because R, becomes comparable with the dis-
tance of the spacing between the numerical-lattice points (a
spacing chosen to be 0.2 in the chosen system of units). For
& larger than 0.30 the background value of the conductivity
0, increases strongly during the time of streamer motion,
owing to ionization in the external field of frequency B(% ),
so that the streamer parameters begin to change significantly
in the quasistationary phase. Finally, if & is to small
(% <0.15) the stabilization slows down and the streamer
reaches the opposite electrode of the capacitor before reach-
ing the stationary development stage. (As seen from Fig. 1,
at & = 0.15 the streamer reaches the stationary stage of its
development in the immediate vicinity of the capacitor elec-
trode.)

The computer-simulation results confirm the validity
of relations (5), (6), and (8)-(10).

It is evident from the figures that the absolute value of
the electric field directly and ahead of the front is constant in
the quasistationary regime and is close to the unity (in terms
of the dimensions x and E,)). A similar result is observed also
at external parameters (&,R,) other than those in the fig-
ures. It can therefore be stated that Eqs. (5) and (6) are
valid. The approximate value of the coefficient C, in (6) is

C€.=0,9£0,1. (14)

It is noteworthy that, in general, in our calculations C, in-
creases slowly with increase of the external field & . The rela-
tive change of C, over its entire range (from 0.15t00.3) does
not exceed 10% and is probably governed by numerical-sim-
ulation errors.

Comparison of the calculations with Eq. (8) requires
allowance for the time dependence of the conductivity a
head of the discharge front. In fact, if the logarithm A in (8)
is calculated using for o, the unrenormalized background
conductivity (g, = 10"%) the value of (VA,)/(By,) ob-
tained by computer simulation is not a constant as suggested
in Eq. (8). The actual conductivity o,(¢) ahead of the
streamer front increases slowly with time as a result of im-
pact ionization in the external field (see Figs. 1a and 2a for
the conductivity in logarithmic scale). Replacing the back-
ground conductivity o, in the argument of the logarithm in
Eq. (9) by o,(t), we obtain good agreement between the
calculations and Eq. (8) if the numerical coefficient C, is

C,=0,18=+0,02. (15)

The electric field far behind the discharge front tends to
the value of the external field & . The field E, directly behind
the front, however, as seen from the figures, is weaker than
# and very weakly dependent on & . Equation (10) agrees
well with the numerical experiment if o, in the expression for
the logarithm A, in (8) is replaced by o,(#). The coefficient
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C, that leads to the best agreement with the calculations is
given by

C.=0,95+0,1. (16)

The coefficients C,, C,, and C, were determined here by
averaging over numerical experiments with various & and
R,. The error in the determination of the coefficients was
taken to be the rms deviation from the mean value. It is seen
from (14)-(16) that the relative error in the calculation of
Cy, C,, and C, is small, of the order of ~10%.

Relations (6), (8), and (19) are thus in good agree-
ment with those of computer simulation. Jointly with (14)—
(16), these relations make it possible to determine quantita-
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FIG. 1. Evolution of discharge in an external field & =0.15 (R, =1,
0, =107% o, = 1). a, b) distribution of the conductivity along the dis-
charge axis (logarithmic scale) and of the electric field at the instanis
t =400(1), 800(2), 1200(3), 1600(4), 2000(5), 2400(6). c, d, e) con-
stant-level lines demonstrating the two-dimensional distribution of the
conductivity o at various instants of time: c) ¢ = 1600 o = 0.001(1),
0.002(2), 0.003(3), 0.004(4), d)tr=2000, o=0.001(1), 0.003(2),
0.005(3), 0.007(4), 0.009(5), 0.011(6), 0.013(7), e) ¢=2400,
o =0.001(1), 0.005(2), 0.009(3), 0.013(4), 0.017(5), 0.021(6).

tively the velocities of the streamer and of the electric field
ahead and behind the discharge front. The situation with Eq.
(7) is somewhat more complicated, since this relation is ex-
act and contains no numerical coefficients. The conductivity
o,, behind the front, obtained by numerical calculation, is
approximately double the value given by (7). Recognizing
that the conductivities ahead and behind the front differ by
several orders of magnitude, Eq. (7) can be taken to be in
qualitative agreement with the numerical computation. The
quantitative difference may be due to several factors. First,
o,, is the quantity most sensitive to commutation errors,
since the conductivity ahead of the front increases exponen-
tially and is altered by several orders of magnitude over a
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very short distance. Second, relation (7) is valid® if the
width & of the streamer front (the distance over which the
conductivity changes by a factor of two) is small compared
with the radius 7, of the streamer head (the conductivity
changes by several orders of magnitude over a distance r,).
The ratio §/7, is of the order of 1/A, (Ref. 4) and should be
small when A, is large. In our calculations A, = 10, and the
front width is approximately three or four times smaller than
the head radius. It is possible that at higher values of the
logarithm A, (and hence at lower values of §/r;) we shall
obtain a more satisfactory agreement between (7) and the
numerical calculation. Actually, however, when an attempt
is made to increase substantially (this can be done by de-
creasing o, by several orders of magnitude) the front width
would become comparable with the distance between the
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FIG. 2. Evolution of discharge in an external field & =0.25 (R, =1,
g,= 10758, 0, = 1). a, b) distribution, of the conductivity along the dis-
charge axis, and of the electric field (b) at the instants of time ¢ = 40(1),
120(2), 200(3), 280(4), 360(5), 440(6), 520(7). ¢, d, e) constant o level
lines demonstrating the two-dimensional distribution of the conductivity
at various instants of time: ¢) ¢ = 200; o0 = 0.01(1), 0.0125(2), 0.015(3),
0.0175(4), d)t =360, 0 =0.01(1), 0.0125(2), 0.015(3), 0.0175(4),
0.02.(5), e) t=520, o=0.01(1), 0.0125(2), 0.015(3), 0.0175(4),
0.02(5).

numerical-lattice points and numerical instabilities would
set in. We note finally that in the derivation of (7) it was
assumed that the streamer motion is strictly self-similar,
whereas in our case the streamer velocity varies slowly with
time even in the quasistationary phase. The calculation re-
sults thus confirm relation (7) qualitatively, Although the
possibility of a rigorous quantitative computation of ¢,, on
the basis of (7) remains uncertain.

The dynamics of streamer evolution at various values of
the external field is of great interest. As shown in Ref. 5,
stationary evolution is possible only at & = & ., where &,
coincides with the field strength E, behind the front. It can
thus be stated that our present results allow the field &, also
to be calculated by using Eqs. (10) and (16). The value of
& . for a conductivity o, = 10~® ahead of the front is ap-
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proximately 0.1 (0.1E, in dimensional units). We were un-
fortunately unable to verify directly the statement that the
streamer development is stationary at & = & . The point is
that when the external field is weakened the time needed to
reach that stationary phase of the development is increased.
For fields weaker than 0.15, the transition period lengthened
and the streamer passes through the discharge gap without
entering into a stationary regime. The external fields investi-
gated in the present study were therefore stronger than & _,
the streamer motion was never strictly stationary, and slow
increases of the streamer velocity and of the radius of its
head were observed in the quasistationary phase. A slow in-
crease of Vand ryat € > & _ was predicted in Ref. 5.

We note finally that, just as in Ref. 9, we observed that
the streamer-head radius r, is proportional to the size R, of
the high-conductivity nucleus.”

4.CONCLUSIONS

On the basis of numerical calculations and a previously
proposed qualitative theory we have derived here, for the
first time ever, quantitative equations for the electric field in
front and behind the front of a streamer discharge, as well as
the streamer propagation velocity. In addition, we have con-
firmed qualitatively the relation (7) for the conductivity of
the streamer channel. The conductivity and electric-field
distributions obtained and presented here in dimensionless
form are universal and are independent of the type of gas or
of the pressure (only the measurement units depend on the
specific gas characteristics). The calculation results make it
also possible to describe intervals of different lengths by
varying the nondimensionalizing scale z,.

The authors are grateful to M. I. D’yakonov for helpful
discussions of the results.

APPENDIX

To determine the values of o, p, @, and E on in the
(k + 1)st time step we used the following numerical scheme

0" =0, explB(E.P)At], (AD)
—4na.fAt) —1
P?JH =p.i* exp(—4no*At) + exp(4 m:j ) VOuREuh»
N0;;
k4t R+t (A2)
Agy; =—dnp;; , (A3)
Ef'=-Vo5', (A4)
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where the subscripts i and j number the numerical-lattice
points and At is the step in time. The differential operators
(the Laplace operator and the Lagrange operator) in (A2-
A4) were calculated by the standard difference scheme.
Expression (A2) was obtained by integrating over the time
interval from ¢, to ¢, , , (assuming o and E to be constant)

the equation
d
—g—t+ VoE+4nop=0,

which is easily derived from (2) by expanding the diver-
gence and using the relation divE = 47p. Expression (A3)
stands in fact for a system of inhomogeneous linear differ-
ence equations (with respect to the potential ¢ at different
numerical lattice points), which was solved during each
time to step. To stabilize the numerical calculations, the con-
ductivity of the medium was smoothed over definite time
intervals. The smoothing was over the nearest numerical-
lattice points.
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2This proportionality was observed only for low R,(R,<R). A depend-
ence of 7, on R set in when R, became comparable with R.
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