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A symmetry analysis of the normal-metal-superconductor transition in a magnetic field is 
developed by means of the Landau approach. All possible irreducible projective representations 
for this transition are found. The symmetry of the vortex lattice near Hc2 is discussed. For 
superconductors with anisotropic pairing a situation in which the critical fields of two irreducible 
representations have close values is characteristic. In this case, within the mixed state, a phase 
transition from a one-quantum hexagonal lattice of vortices to a lattice that has either a doubled 
or tripled number of flux quanta per unit cell or a reduced number of rotational elements should 
arise. This theory offers the possibility ofexplaining the observed phase diagram of UPt,. 

1. INTRODUCTION illustrated in Sec. 5 for the example of a two-component 

The first data (published a few years ago1.') giving evi- Ginzburg-Landau 

dence of a phase transition in superconducting UPt, at 
H,, < H *Hc2 stimulated a flood of investigations, which, by 
now, have provided a reasonably complete study of the ex- 
perimental picture of this phenomenon (see Refs. 3-5 and 
the literature cited therein). According to these papers, the 
phase diagram of the mixed state of UPt, in the (H,T) plane 
contains at least three different superconducting phases 
(Fig. l a ) .  Besides the nonexponential temperature depend- 
ence of the thermodynamic quantities at T-0, this is one of 
the basic proofs that strongly correlated spin states in com- 
pounds with heavy fermions can lead to mechanisms and 
types of electron pairing that differ from those proposed in 
the BCS theory. 

From a symmetry point of view, we must associate with 
the phase transition to theAsupercznducting state an order 
parameter AaB (rl ,r2) = (V, (r l )Vg (r2)  ), or AaB (k,r) if 
we take the Fourier transform with respect to r ,  - r, and go 
over to r = ( r ,  + r2)/2. We speak of anisotropic pairing of 
electrons whenever, in the homogeneous state, AaB (k )  pos- 
sesses symmetry lower than G x R ,  where G is the point 
group of the crystal and R is time reversal (strong spin-orbit 
interaction is assumed). Near T, , the order parameter trans- 
forms according to one of the irreducible representations of 
the group G (Ref. 6 ) .  Therefore, in most of the theoretical 
papers in which the phase diagram of UPt, has been inter- 
~re ted ' -~  the authors have attempted to associate with the 
split superconducting-transition temperature one of the irre- 
ducible degenerate representations of the group D,,  (the 
point group of UPt,) that is split because this symmetry is 
weakly broken. While it explains the transition in zero field, 
this approach fails to elucidate the nature of the phase transi- 
tion in the mixed state and the accompanying change of sym- 
metry of the vortex lattice. 

In this paper we develop a different method, which 
makes it possible to determine immediately the symmetry of 
the nonuniform superconducting order parameter 
hag (k,r). In Sec. 2 we shall give a symmetry analysis of the 
superconducting transition in a magnetic field, by generaliz- 
ing the results of Ref. 10. In Sec. 3 we discuss the symmetry 

2. IRREDUCIBLE REPRESENTATIONS FOR NUCLEI OF THE 
SUPERCONDUCTING PHASE AT H= H, 

The classic problem of the theory of type-I1 supercon- 
ductivity is the problem of the phase transition in a magnetic 
field from the normal state of a metal to the superconducting 

There are two basic ways of investigating this 
problem-phenomenological (on the basis of a Ginzburg- 
Landau functional), and microscopic (on the basis of the 
Gor'kov equations). In both cases the procedure for calcu- 
lating Hc2 (T)  reduces to the determination of the eigznval- 
ues and eigenfunctions of a certain linear operator 2 that 
possesses a certain symmetry in k-space and in r-space. 

On the other hand, this transition, which is a second- 
order phase transition, can be considered from a purely sym- 
metry point of view in the framework of the Landau classifi- 
cation of phase transitions. For this it is necessary to know 
the complete symmetry group of the system in a uniform 
magnetic field. 

Since the sizes of the Cooper pairs that are formed in the 
superconducting state are large in comparison with the in- 
teratomic spacing, the system is invariant under the group of 
continuous translations. The crystal lattice changes only the 
symmetry of the directions for the interacting electrons. At 
first, for simplicity, we shall assume that there is also sym- 
metry under rotations through an arbitrary angle about the 

of the superconducting state near H,, , and in Sec. 4 the pos- 
FIG. 1.  (a)  Phase diagram of the superconductor UPt, from Ref. 4 ways in which this symmetry can be are deter- (Hlc); (b) phase diagram of a uniaxial superconductor with anisotropic 

mined. These scenarios for transitions at H,, < H * < Hc2 are pairing in the absence of effects that split T,. 
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direction of the magnetic field H. Then the symmetg group 
of the system, and, consequently, of the operator 2, is the 
groupG,= TxD, , (C , , ) xU( l ) ,  where T isthegroup 
of translations, U( 1 ) is the gauge group, and Dm, (C , ,  ) is 
the group containing both the subgroup of rotations about H 
with the inversion P and the combined symmetry elements 
R U, and Ru, ; here, U, are rotations through angle a about 
axes perpendicular to H, and a, are reflections in planes 
containing H. 

The action of the symmetry transformations on the or- 
der parameter A(k,r) (we temporarily omit the spin in- 
dices) includes not only a change of the coordinates but also 
the gauge transformations that return our chosen vector po- 
tential A(r) to its original form. The operators of magnetic 
translations and magnetic rotations have the form (the axis 
z = x, is parallel to H )  : 

X 

~ . = e x p { - i $  I A , ( Y + ~ )  - ~ , ( y ) l d y , )  exp(aV ), ( l a )  
0 

where 

cos cj -sin cp 
I ,= - i (~~a , -x ,a  ,), s,, = 

sinq coscp 

the I, are the generators of rotations in momentum space, 
andd, =a /axi. For the operators ( 1 ) the following relations 
are fulfilled: 

As can be seen from (2),  the operators T, form not an 
ordinary vector representation but a projective representa- 
tion of the group of commutative translations. For this 
group there exist many different projective representations. 
They arise, for example, with different choices of gauge. 
However, we shall be interested in the decomposition of only 
one projective representation (corresponding to the given 
vector potential) into irreducible representations. 

For this, by considering the limits 

we introduce the analog of "the generators of infinitesimal 
transformations" for the projective representations: 

2e 
L,=L+l, - 2 5 ( ~ , a , - y , d , ) A ~  dg, - - 5 (A ,  dy,-A,  dy,) 

Ac 0 k c  0 

By virtue of ( 3 ) ,  the operators t,, t,, and L, do not form 
an algebra. Nevertheless, we can use these operators to in t rc  
duce the analog of the Casimir operator, viz., an operator 3 
:hat commutes with the operators (2)  and with the operator 
2 and makes it possible to enumerate all the irreducible rep- 
resentations within a given projective representation: 

A 

A proof of the commutation relations for 3 is given in the 
Appendix. Defining the operators 

2e fic '" .o)=r, + - H I , ,  a  =(-) (a("-ia"'). 
fic 41e l I f  

2e a(2)=t ,  - - H z  . [ a , a + ] = l ,  [ ~ + . L : ] = - u + ~  [a ,  L , ]=a ,  
t ic 

A 

we obtain expressions for 3 in terms of creation and annihil- 
ation operators: 

A 

The eigenfunctions of the operator 3 (combinations of 
the wave functions of the infinitely degenerate Landau levels 
and the eigenfunctions of the internal angular momentum 
I, ) are characterized by two indices n and m: 

Functions with different n or m form linear subspaces on 
which the action of the magnetic operators is irreducible. 
But on each of the subspaces constructed on the eigenfunc- 
tions A,,, with n + m = N one and the same irreducible 
representation of the operators (2)  is realized. In addition, 
the discrete symmetry of the system makes it possible to in- 
troduce one further quantum number for the functions 
(5)-parity under reflection in the plane perpendicular to 
H. As a result, in a supercznducting transition on th5irredu- 
cible representation with 3 = N the linear operator 2 should 
contain symmetry-allowed terms that mix the specified A,,, 
with the same parity, Thus, the eigenfunctions of 2 are 

with certain constants C, ( H , T )  thaknow depend on the 
concrete construction of the operator 2. 

As regards the spin state of the superconducting nuclei, 
in contrast to the case H = 0 (for which A does not depend 
on r ) ,  when, by means of inversion, it is possible to separate 
the singlet and triplet states by ~ymrnetry,~ when order pa- 
rameter is nonuniform this is no longer possible. The action 
of inversion on the variables r mixes the basis functions on 
each Landau level. Therefore, the functions (5)  do not pos- 
sess any parity under inversion. This leads to the result that, 
at H,, , simultaneously with the singlet states those triplet 
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states on which the same projective representation of the 
group Go is realized should arise (strong spin-orbit interac- 
tion is assumed). Confining ourselves to the s, p, and d har- 
monics, we write out all the possible representations: 

hatN (k, r) =io, {[C:+C, (2k,"-kXZ-k,') If, (r) 

+c3 (k,-ik,)2fN+2 (r) 
+C, (kx+ik,)2fN-2 (r) 'o, [C, (k,-iky)fN+j (r)  

+C,(k.,+ilz,)fN-j (r) I 
+C7 (0,-io,)kzfN+, (r) +C8 (o,+io,) lczfN-, (r) 1, 

(7)  
~ ~ ; ~ ( k ,  r) =io,{Dj (It,-ik,,)Ic,f,+, (r) f D2(k,+ik,)k,fN-, (r) 
+fN(r) [D30,k,+D,(o,-io,l) (k,+iX-,,)+D,(o,+io,) (k,-ik,)l 
+D6(oJ-io,,) (kx--ik,)fN+2 (r) -kD7 ( ~ ~ + i o , ~ )  (lcr+iku)fN - 2  (r)}. 

where a,, a,, , and a, are the Pauli matrices. 
Near Tc , where Ginzburg-Landau theory is applicable, 

the prinicipal role in (7)  is played by just one (e.g., singlet) 
representation of the group G.  All the other harmonics, in- 
cluding the triplet states, are small in comparison with the 
principal representation by virtue of the closeness to the 
critical temperature. However, moving along the line 
Hc2 (T), near T = 0 we can obtain an important contribu- 
tion from p harmonics. Thus, the problem of the paramag- 
netic limit for superconductivity appears in a form some- 
what different from that customarily assumed." The 
paramagnetic limit is associated not with the singlet type of 
electron pairing that occurs for H = 0 but with the distinc- 
tive features of the spin-orbit interaction for the given com- 
pound, which suppress the appearance of the triplet states at 
H =  Hc2. 

The reason for this could be, for example, the complete 
absence of spin-orbit effects. A more nontrivial situation 
arises in the case when the spin-orbit interaction is small in 
the basal plane of a uniaxial crystal, i.e., rotations about the z 
axis in spin space and coordinate space are performed inde- 
pendently, while the rotations U2 act on all variables. In this 
case, in Eqs. (7)  only spinors of the form iu,, u, are mixed 
into the singlet states. Such triplet states correspond to pair- 
ing of electrons with opposite spins (the spins are directed 
along z)  and do not give a contribution to the spin suscepti- 
bility; this leads to the existence of a paramagnetic limit for 
them. For H l z  these same states correspond to pairs with a 
parallel orientation of spin along the field, and thus do not 
have a paramagnetic limit for this direction of the field. 

One further type of discrete transformation (RU,) 
leads to the result that in the representations ( 6 )  and (7) all 
the constants C,  and D, are real. 

For a rotation axis of finitepder p, one operator that 
commutes with 53 is exp [ (2rri/p) 31, and the classification of 
the superconducting nuclei AN (k,r) differs from the pre- 
vious one only in that it is necessary to take Nmodulop (Ref. 
10). 

Up to now we have considered translations parallel to 
the magnetic field in the direction of the z axis. In taking 
these into?ccount, we should introduce one further Casimir 
operator, 3' = t : = [ - id, - (2e/G) A , ( x )  1 2 ,  in order to 
complete the classification of the irreducible representations 
of the group Go. The eigenfunctions of this Casimir operator 
for S'#O are characterized not by the parity + but by an- 
other quantum numberp, instead ($' = pi  ); a a,, reflection 
carries functions withp, and - p, into each other. The ne- 

cessity of discarding such irreducible representations is ob- 
vious for a one-component Ginzburg-Landau functional. In 
this case, we can solve the corresponding linear problem for 
p, # 0 and convince ourselves that it only decreases the value 
of Hc, . Even for just a two-component Ginzburg-Landau 
functional the analogous assertion is not so o b v i ~ u s . ' ~ . ' ~  For 
these irreducible representations, however, the Lifshitz cri- 
terion (absence of invariants linear in the gradients) is vio- 
lated: An antisymmetric combination of functions with p, 
and - p, transforms in the same way as d, . Consequently, 
supercond~ctivity cannot arise continuously on representa- 
tions with $ #O. 

The intersecting lines Hc, (T)  on the phase diagram of 
Fig. l a  should correspond to different irreducible represen- 
tations, characterized" either by different values of N or by 
different signs ( + or - ). In addition, they can corre- 
spond, in general, to different projective representations, 
this being even more probable in view of the "isotropy" of 
the diagram for different directions of H. For a given A(r),  
different values of the charge e in ( 1 ) lead to different projec- 
tive representations. And values of e that differ from the 
electron charge arise, e.g., for a superconducting glass. In 
this case the charge is equal to twice the electron ~ h a r g e . ~  

3. VORTEX LATTICES NEAR He 

In the nonlinear region below Hc2 the symmetry Go of 
the normal state is only partly preserved. The possible sym- 
metry groups of the superconducting state can be found by 
enumerating all the subgroups of the group Go. 

Near Hc2 that symmetry is selected which corresponds 
to the minimum of the fourth-order terms in the Landau 
functional for the representation under consideration. But, 
because the representations of interest to us are infinite-di- 
mensional and admit an infinite number of different fourth- 
degree invariants, this problem in its general form appears to 
be insoluble. 

We shall assume that in the superconducting transition 
the symmetry of the normal state is broken not completely 
but only to a discrete subgroup. By choosing translations 
through a and b as its generators, we formulate the condition 
of periodicity of A(k,r) under T, and T,, : 

TzA r)  =exp(icp,) A(k, r) ,  T,A(k, r) =oxp(icp,) A (k, r). 
(8)  

It follows from this that magnetic translations for this sub- 
group should commute. Thus, any translationally symmet- 
ric solution possesses an integer number of flux quanta per 
unit cell.I5 

Suppose that distances are measured in units of the 
magnetic length 1;  = fic/lelH, and the vector potential is 
given in the Landau gauge. Then the wave function of the 
nth Landau level, 

satisfies the condition (8)  with a = (a,O), b = ( b  cos a, 
b sin a )  and p, = rr, p2 = rr(p + 1 ) , possessing one quan- 
tum of flux per cell. We have introduced the notation 
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p = (b/a)cos a , a =  (b/a)sin a , ~  = p  + ia.Thefunctions 
(9)  can be rewritten in the form 

where 8,, ( z , ~ )  is a Jacobi theta function. In mathematics it 
is well known that the theta function is the only entire func- 
tion with given periods a, b and phases p,,  p,. From this 
follows the uniqueness of $, ( r , ~ ) ,  which, of course, does not 
depend on the choice of gauge. Functions with different p, 
and p, go over into each other under the action of transla- 
tions that do not appear in the symmetry group of the order 
parameter, and are therefore equivalent. Substituting (9) 
into (6), we obtain all possible one-quantum vortex lattices. 
We shall be interested primarily in the solutions (see Sec. 5) 

although all the following discussions are independent of the 
concrete form of A(k,r). 

Originally, the form of the vortex lattice was chosen by 
direct numerical comparison of the energies of the different 
configurations in the framework of the Ginzburg-Landau 
model, using qh0(r,r) (Ref. 1 1 ). In the more complete analy- 
sis in Ref. 12 it is proposed that one consider the energy 
parameter y = ( / $o 14)/( 1 ')' of the same model as a func- 
tion ofp and a ,  thereby establishing a number of its symme- 
try properties. We shall attempt to generalize this approach. 
This is necessary, since the parameter y for exotic supercon- 
ductors is not expressed explicitly in terms of A(k,r), and 
the symmetry properties for it do not follow so obviously 
from its analytical form.I4 

We imagine a lattice constructed on the vectors a and b. 
The choice of basis for the lattice is not unique. Instead of a 
and b, the basis vectors can be any integer combinations of 
them (k  a + l b  and ma + nb) such that kn - lm = + 1. 
The matrices (k f, ), which do not change the orientation of 
the basis, form the group SL (2,Z). In combination with the 
replacement a +  - a, b-+  - b they form all possible para- 
metrization~ of the original lattice. In a physical problem, 
various "symmetrical objects" can form the lattice. The 
state of the system in this case is specified not only by the 
lattice but also by the additional parameters describing the 
orientation of the "object" in relation to the basis vectors. 
Therefore, in the space of the parameters a transformation 
that consists only of a different choice of the basis vectors for 
the lattice changes the initial state of the system. Thus, we 
are dealing with the presence or absence of a new symmetry, 
different from translations and rotations-symmetry under 
the action of the group SL(2,Z) X Z2 in the space of the pa- 
rameters of the system. The functions $, ( r , ~ )  are uniquely 
determined by their lattice, and, consequently, they are ob- 
liged to be symmetric under SL(2,Z) XZ,. We shall verify 
this. 

In complex coordinates on a plane the two new basis 
vectors e; = (k  + 1r)a and e; = (m + n ~ ) a  define a new 
lattice parameter T' = e;/e; = ( n r  + m ) / ( l ~  + k) ,  with 
a' = lei I = ( ~ / a ' ) ' / ~  and b ' = le; I = a'a'. The function 
$, ( r , ~ ' )  is periodic under translations lying at the sites of 
the lattice constructed on the vectors a' and b '7'. In order to 
obtain a function that is periodic with respect to the initial 
lattice, it is necessary to rotate the system, carrying a' into 

e; . Thus, for an arbitrary element &&L ( 2 , ~ )  we have 

where the angle p satisfies 

As a consequence of the SL(2,Z) symmetry, the trans- 
formed function should either coincide with the original 
function or go over into it under translations, rotations, and 
gauge transformations. We shall establish this only for three 
elements of the group SL (2,Z) XZ,, combining which we 
can obtain the whole group. From (9)  it follows that 

and with the formula of Poisson sums, 

where 

Since rotations of the k and r spaces must be performed si- 
multaneously, the same symmetry is possessed by the one- 
quantum lattice A(k,r) for any representation from Sec. 2: 

In addition, the replacement of the lattice base orientation 
p-. - p ( ~ - ,  - T*) gives: 

I#~ (P -t') =RU2,,q:,, (r, t) . ( 1 2 ~ )  

By substituting such an order parameter into an arbi- 
trary functional that is invariant under translations, rota- 
tions, and gauge transformations, we obtain the energy of 
the system as a function of T-an energy that does not 
change under transformations from the group SL (2,Z) x Z2. 
In this case, we need not consider the energy in the entire 
complex plane of the parameter T, but can confine ourselves 
to the fundamental region in Fig. 2. The point Q in the figure 

FIG. 2. Fundamental region for the energy of a one-quantum vortex lat- 
tice in the plane of the complex parameter T = p + iu. 
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corresponds to a square lattice, and the point H to a hexag- 
onal lattice. Near these corner points transformations from 
SL(2,Z) act as rotation axes- second-order at Q, and third- 
order at H. This implies that the energy as a function ofp and 
a is bound to have extrema at the corner points. Whereas at 
Q there can be an extremum of any type, at H there can be 
only a maximum or a minimum. Also extremal is the point 
a = c ~ ;  the absolute maximum corresponds to it. If we as- 
sume that other extrema, not due to symmetry, are absent, 
we find that the absolute minimum of the nonlinear problem 
is bound to be situated at H. 

Thus, the one-quantum hexagonal vortex lattice is ex- 
tremal for any of the representations from Sec. 2-in partic- 
ular, for the solutions ( 10a) and ( lob) (see also Sec. 5.2). 
Therefore, the statement in a number of  paper^'^.'' that a 
hexagonal lattice of vortices is distorted in exotic supercon- 
ductors is incorrect. 

In addition to the translational symmetry, the lattices 
corresponding to a given Landau level also possess rota- 
tional symmetry. From (12b). for a hexagonal lattice with 
r0 = exp(~i /3) ,  it follows that 

Lx~3$,2  (r, ~ ~ ) = e s 1 1 [ - - ~ i ( l - , 1 ) / 3 ] 4 1 ~  ( r .  T"). 

Therefore, the point symmetry group of $, (r,ro) includes 
the elements exp[n-i( 1 - n)/3] L , ,  , R U,, , 
( - 1 )" + ' R U,, . The presence of combined symmetry ele- 
ments-products of rotations and gauge transformations- 
leads to the existence of zeros of the functions qhn (r,rO) at all 
the positions of such rotation axes. 

Far from the line of phase transitions the order param- 
eter no longer corresponds to some particular representa- 
tion. There remains only the symmetry of the order param- 
eter-the subgroup Go. However, it may be asserted that the 
symmetry of the minimum of the nonlinear problem found 
above for one representation will remain a symmetry of the 
minimum of the general nonlinear problem in a certain 
neighborhood of H,, ( T). In this region, all the other repre- 
sentations on which it is possible to construct a lattice with 
the same symmetry are mixed into the initial representation. 
For example, for an ordinary hexagonal Abrikosov lattice, 
in the case of s-pairing, starting from H,, all Landau levels 
with n equal to a multiple of six will be mixed into $"(r,r0) 
(this result was obtained numerically in Ref. 18). From the 
same arguments applied to A(k,r) it follows that the repre- 
sentations ( 10a) and ( lob) are not mixed near H,, . Since 
the critical fields corresponding to them can approach very 
close to each other (see Sec. 5.2), below H,, a second-order 
phase transition should arise, when (10a) is mixed into 
( lob) or vice versa. 

4. CLASSIFICATION OFTHE PHASE TRANSITIONS IN A 
LATTICE OF SUPERCONDUCTING VORTICES 

Following the conclusions of the preceding section, we 
assume that the superconducting nuclei that have arisen on 
the representation A, + form, in a certain neighborhood of 
H,, , an Abrikosov lattice with hexagonal symmetry: 

Gs2={exp (-icp,)T,,: esp (-rrp,)T ,:; eyp [x i  (I-%) 1.31 L,,,; 

+of,; RCi,y). (13) 

The elements listed are the generators of the symmetry 
group G ,  * of the lattice. Below H,, the magnetic field in the 

sample is nonuniform. However, Eqs. ( 1 ) make it possible to 
introduce discrete magnetic symmetry operators in this case 
too; the integrals in ( 1 ) have meaning under the condition 
that curl A(r  + a )  = curl A(r) .  Thus, the symmetry analy- 
sis given below is valid in the entire range of fields 
H,, < H < H,, . We represent the group ( 13) in the form of a 
product of three groups: 

The first group is the commutative group of discrete transla- 
tions. The magnetic operators of the translations ( 1 ) are 
unitary. The group C,, (E) is also a unitary group, isomor- 
phous to the group C,, . The phase factors that accompany 
the rotations, translations, and reflections do not change the 
rules for multiplicatioll of these elements, or, corresponding- 
ly, the classification of the irreducible representations. The 
third group {E,RU,) contains an anti-unitary operator. 
Therefore, we first determine the irreducible representations 
of the group T X C,, (E) and then we consider how this clas- 
sification is changed by the presence of the symmetry opera- 
tor R U,. 

The irreducible representations of the space group 
T X C,, (E) are found in the same way as for a two-dimen- 
sional crystal with an isomorphous group. Since this group is 
symmorphous, its irreducible representations are deter- 
mined by the star of a wave vector lying in the Brillouin zone 
(BZ) and by the label of the small representation. Following 
the Lifshitz criterion, we consider only the most symmetri- 
cally positioned vectors (points in the BZ) for which there 
are no terms linear in the gradients in the Landau expansion. 
In the case of a regular hexagonal BZ these points are the 
point r-the center of the BZ (the star consists of one vec- 
tor, and the little group P, = C,, ), the point M-a vertex of 
the hexagon (the star consists of two vectors, and 
P, = C,, ), and the point X-a midpoint of a side of the 
hexagon (the star consists of three vectors, and P, = C, ,  ). 

We consider the irreducible representations that are re- 
alized by the functions corresponding to the center of the 
BZ. In transitions on such representations the volume of the 
unit cell does not change. The group P, = C,, has 
twelve one-dimensional irreducible representations 
r+ ( n  = 0, ..., 5) .  The label n determines the phase 
that the basis functions acquire under the action of the rota- 
tional symmetry element e x p [ ~ i ( l  - N)/3]L,, ,  and the 
sign . denotes the parity under reflections in the plane a,. 
In the presence of a magnetic field the symmetry under time 
reversal is violated, and there are no requirements that basis 
functions of an irreducible representation be real. In fact, the 
operator R U, carries complex basic functions of these one- 
dimensional representations over into themselves. 

The classification of the irreducible representations has 
a different distinctive feature, associated with the presence 
of the operator R U,. The gauge symmetry of the system is 
already broken after the first transition from normal metal 
to superconductor. The gauge transformations do not ap- 
pear separately in the group G ,  ' , but appear only in combi- 
nations with translations and rotations. Therefore, the re- 
quirement that arises is not that the basis functions be real, 
but that the coefficients multiplying them be real (or imag- 
ninary ). This is so, of course, only in the case when the basis 
functions do not acquire complex factors under rotations or 
translations. It follows from this that the representations 
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with n = 0 and n = 3 should be classified by one further par- 
ity-their parity under the action of the operator R U,. 

Thus, for the center of the BZ there are eight one-di- 
mensional real irreducible representations with n = 0,3 (the 
coefficients of the expansion of the new order parameter in 
these basis functions are real), and eight complex one-di- 
mensional representations with n = 1, 2,4, 5. For the com- 
plex representations the phase with which new nuclei appear 
is determined by minimizing the fourth-degree terms in the 
Landau expansion, while for the real representations the 
phase already appears explicitly in the quadractic terms (see 
Sec. 5). The possible changes of symmetry in phase transi- 
tions on these representations are a decrease in the number 
of rotational elements and violation of the mirror symmetry 
and Ru, symmetry; the latter symmetry can disappear com- 
pletely, but it can appear in combination with other ele- 
ments. Phase transitions on the representations T,f and T,+ 
can only be first-order, since a cubic invariant exists for 
them. Transitions on all the other representations are sec- 
ond-order. 

The star of the wave vector for the point M of the Bril- 
louin zone contains two rays, which can be expressed as fol- 
lows in terms of the basis vectors b, and b, of the reciprocal 
lattice: k, = (2b, + b2)/3 and k, = - k,. The proper sym- 
metry group of these vectors is isomorphous to C , ,  . The 
transformation R U, carries the vectors k, and k, into them- 
selves, but, because of the complex factors that are acquired 
by the functions under translations, for the basis functions it 
is not possible to introduce a parity under R U,. The small 
representations for this star are one-dimensional and com- 
plex (T:, where n = 0,1,2, and + denotes the parity ofthe 
basis functions under a, ). For the point M there are, in all, 
six two-dimensional complex representations. As a result of 
the onset of instability on any of them, the volume of the unit 
cell increased by a factor of three, and at the phase-transition 
point the system becomes periodic under a hexagonal lattice 
of translations through 3a, and a, + a,, or, if we choose the 
cell in a more symmetrical form, through a, + a, and 
2a2 - a,. For the representations with n = 0 the rotational 
symmetry either does not change or is decreased to C , , ,  
while for n#O it is broken completely. Transitions on the 
representations T,i are first-order, and the other transitions 
are second-order. 

The star of the wave vector for the point X of the Bril- 
louin zone contains three rays: p, = b1/2, p, = b2/2, and 
p3 = - (b, + b2)/2. In this case the volume of the unit cell 
is doubled, if one basis function arises (for p, the periods are 
2a, and a,), or increases by a factor of four, if two or three 
functions arise (the periods are 2a, and 2a2). The group 
P, = C,, has representations r' (n = 0,l).  The presence 
of the R U, symmetry leads to the result that the representa- 
tions with n = 0 should be characterized by a parity under 
the R U, transformation. For the representations with n = 1 
the basis functions with real and imaginary phases also 
transform differently under R U,, , although it is not possible 
to introduce a parity for these. The result is that for the point 
X there are eight three-dimensional real representations. 
For the representation r,+ + there exists an invariant cube 
(since p, + p, + p, = O), and, therefore, the transition for it 
is only first-order. If in the transition one of the parities is 
violated, combined symmetry elements of the type T,, CT, or 
Ta2 R U2, arise. 

5. PHASE TRANSITIONS IN A MODEL WITH A TWO- 
COMPONENTGINZBURG-LANDAU FUNCTIONAL 

It is well known that in the case of ordinary isotropic 
superconductors a one-quantum hexagonal lattice of vorti- 
ces is stable in the entire range of fields H,, < H < H,, . One 
can convince oneself of this by investigating, e.g., the stan- 
dard one-component Ginzburg-Landau (GL) functional. 
In the determination of H,, (the solution of the correspond- 
ing linear problem) a set of Landau levels arises. Amongst 
these, the principal role is played by the zeroth level, for 
which the critical field is a maximum. The next critical field, 
for the first Landau level, is already three times smaller. As 
the external field decreases no additional transitions on the 
other (see the end of Sec. 3) representations (Landau levels) 
arise, since the superconducting order parameter that has 
arisen on the zeroth Landau level [and has, in this range of 
fields, a squared magnitude of order - (H,, - H)/H,, - 1 ] 
renormalizes the critical fields for the other Landau levels, 
making the appearance of these impossible. 

An investigation of the mixed state of superconductors 
with anisotropic pairing near the critical temperature can 
also be performed on the basis of a GL functional. The order 
parameter in this case transforms according to one of the 
irreducible representations of the point group of the crystal; 
these can be one- and two-dimensional for uniaxial crystals, 
and also three-dimensional for the cubic group. Let us con- 
sider the simplest case-the El representation of the group 
D,. Then the free energy has the following form: 

where the vi are the coefficients of the expansion of A(k) in 
basis functions that transform under rotations as a two-di- 
mensional vector, and x is the GL parameter. The solutions 
of the linear problem for this functional were found for H l c  
in Ref. 13 and for Hllc in Refs. 16 and 17. They possess the 
following distinctive feature: For each of the directions of H 
two solutions have critical fields, which, for a sufficiently 
general choice of the constants in the GL functional, lie close 
to each other. In this case, below H,, one further transition, 
corresponding to the second solution, arises. Because of the 
proximity to H,, , this transition cannot be suppressed by the 
already existing superconductivity. The possible types of 
symmetry breaking were found above in Sec. 4. We now con- 
sider this phenomenon in more detail. 

5.1. Hlc 

Let HIIx; then the GL equations for the energy ( 14) 
must be solved by setting p, = 0. The solutions corre- 
sponding to the maximum critical field are (as an example, 
we use d-pairing) 

for 

and 
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for 

where K,,,,, = K, + ... + K,. 
According to the classification in Sec. 2, for the case of a 

magnetic field oriented along a second-order axis the irredu- 
cible representations of the superconducting nuclei can be 
distinguished either by their parity under reflection in the a, 
plane or by the label N, which takes the values 0 and 1. The 
solutions found differ in their parity. In addition, their posi- 
tion dependence is described by the deformed zeroth Landau 
levels that arise because of the special form of the gradient 
terms in the GL expansion. They are a superposition of un- 
deformed Landau levels with n = 0,2, ... . Therefore, when 
the dependence on k is taken into account, the solutions 
( 15a) and ( 15b) correspond to N = 0 and N = 1. Since the 
lattices of nuclei for A +  and A -  possess different parity un- 
der ux and different rotational symmetry, near Hc2 they do 
not mix. 

The magnetic field of the superconducting currents, 
which is found from Eqs. ( 15), is directed along the x axis 
and has the form 

h* = -- 
( I i  I K,,) '" (KIzJlr,) "* 

.I 2%" 111.1~. h,,=- 2x2 Iqvlz 

Taking it into account in the terms of second order in 17 1 and 
neglecting it in the fourth-order terms (x )  1 ), we obtain the 
free energy in the form 

+2pl(I~1xI'111!.J') ( h i 1 2 1 h ~ ( 2  

+p2( (11x-~11~~,~2~22+'(ly~2rl~~3s2~za12) ), 

1 (li ,  I') =hlll,(r) klk:+ii?ll!l (r)li.ih.zl 

where (...) denotes averaging over the volume. This depend- 
ence on H of the terms quadratic in 1, and 1, could have 
been predicted, in the Landau theory of phase transitions, 
beforehand. However, their coefficients, and also the form of 
the coupling of the representations in the fourth-order 
terms, depend entirely on the GL expansion used. We note 
that, even with a split critical temperature in ( 14), we would 
have obtained an energy of the same form near Hc2. 

Assuming for definiteness that K2, > 0, we obtain the 
following sequence of phase transitions: 

H<U' : _\ (k, r )  =hlr~,~i,k,'h.,iiLikvl~,. 

In the region H * < H < H I  a one-quantum hexagonal 
vortex lattice, deformed in the ratio K :'2:K:'2 along the y 
and z axes, is stable. In order to find the field H * (the field of 
the second transition in the vortex lattice) it is necessary to 
minimize the parameter S with respect to the distribution of 
the functions rl, . To order (HI - H2)/Hl, which we assume 
to be small, in place of 7, and rl, in the expression for S we 
can substitute the corresponding solutions of the linear 
equations ( 15). For the phase 7, this solution is a rhombic 
lattice ( A ,  = - Hz, a2a = 2n-/%HI, a = (3K,/4Kl)"2): 

- * (5) )'I. (2-rnb a ) ' ] .  (17a) 
2 Ii,, 

For the phase rl, this solution is that linear combination of 
superconducting nuclei that transforms according to some 
particular irreducible representation of the symmetry group 
of the pre-existing lattice (see Sec. 4).  To the wave function 
of the irreducible representation (a  wave function corre- 
sponding to the wave vector k from the BZ) there corre- 
sponds a lattice displaced relative to the original lattice by 
yo = k, /xH, zo = - k, /xH: 

x H 
x exp [- (2 ) 'b (i+z,-mb sin a )z ] .  ( 17b) 

The points of interest to us on the boundary of the BZ corre- 
spond to displacements lying on the boundary of the 
Wigner-Seitz cell. 

The maximum H * must be sought among the displace- 
ments to symmetry points: 1) the undisplaced lattice 
(yo =zo = 0; the point r in the BZ); 2)  displacement 
through half of the smallest period (yo = a/2, zo = 0; the 
point X in the BZ); 3) displacement to an interstice (yo = a/ 
2, zo = ( b  sin a)/3; the point M in the BZ). By substituting 
( 17a) and ( 17b) into ( 16) and assuming, in the first approx- 
imation, the K2,/Kl 4 1, we obtain the following values of 
the parameter S for these three cases (for the procedure of 
the calculation, see Ref. 12) : 

The average (17,*27: + f12v;) =0  for a11 irreducible repre- 
sentations except two (k = 0 and k = v/a).  

The condition that the phase-transition point of the 
transition to the superconducting state at H = 0 be stable 
imposes restrictions on the coefficients p: 8, > 0  and 
P2 > - Dl. In this region we have 

where 
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The transitions under consideration for Hlc occur with 
violation of the parity under reflection in the ox plane, and, 
consequently, they should all be second-order phase transi- 
tions. The change of the lattice symmetry can be found by 
investigating the energy below H *. For the three cases indi- 
cated above we obtain 

In the weak-coupling approximation there is a definite 
relationship between the coefficients in ( 14) : P, = P1/2. In 
addition, the comparable magnitudes of the specific-heat 
discontinuities in UPt, at H = 0 indicate thatfi, -fi,. Thus, 
if we have UPt, in mind, the most probable variants of the 
transition are a transition with doubling of the lattice con- 
stant and a transition with no change in the size of the cell 
but with violation of the parity under ox. 

From Eqs. ( 16) we also obtain the temperature depend- 
ence of the transition field and the ratio of the specific heats: 

For H((z the solutions of the linearized GL equations 
for the functional ( 14) can also be found e ~ a c t l ~ : ' ~ . ' ~  

if (K2 - K,) <K:,/(2K1 + KZ3), and 

if (K,-K3)>K:,/(2K,+K2,), A2=f0(k, - j k , ) k , ,  
where p2, pO, and fo are normalized Landau-level functions. 
In the classification of Sec. 2, the solutions ( 18) belong to 
irreducible projective representations that differ in the labels 
N = 1 and N = - 1, respectively. For both solutions a hex- 
agonal lattice of vortices is energetically favored (see be- 
low). However, as shown in Sec. 3, these hexagonal symme- 
tries are different, and the solutions A, and A, do not mix 
near H,,. A natural restriction on the coefficients in ( 14), 
associated with the approximate particle-hole symmetry 
near the Fermi s ~ r f a c e , ~  is the condition K2 - K3- ( Tc/  
cF ) 2  g 1. Therefore, for a two-component GL functional the 
appearance of nuclei of the phase A, is the most probable at 
H = H,, . In order to rewrite the GL functional in the form 
of a Landau expansion about Hc2 , it is necessary, as in Sec. 
5.1., to find the magnetic field of the superconducting cur- 
rents. By making use of the results of Ref. 14 and assuming 
that x )  1, we arrive at a free energy of the form 

H-R, N-Hz F=- A i , ~ ~ l ~ 2 ( ~ + ~ 2 ) ~ ~ ~ o i 2 ) + -  ,~,la,l~<l1~1~> 
2x 2% 

This functional contains the following sequence of phase 
transitions: 

where 

( 2 ~ , / f o I Z l c p 2 1 ' + ( P 1 + 2 p l ) ~ Z I f O ~ 2 ~ . p O 1 2 )  
('j = .- -- 

B1(l+o"(Ifo12>(lcpo1z) 

In the region H * < H < HI the form of the lattice is found 
from minimization of the parameter y,. As has been proved, 
the one-quantum hexagonal lattice is an extremal for this 
problem. In addition, for small K2,/2Kl, or, equivalently, 
for large w, we find that y, - (lp0)4)/(lp0/2)2 (the usual 
Abrikosov parameter), for which a hexagonal lattice is fa- 
vored. The corrections, which are small in l/w2 and have the 
same symmetry with respect to the parameter r, cannot 
change the position of the absolute minimum of the nonlin- 
ear problem. If we take into account that l/w2 -0.1 even in 
the weak-coupling approximation, when K2,/2K, = 1, in a 
real system (UPt,) we must expect that for H * < H < HI the 
lattice will have a hexagonal form that becomes distorted 
below H *. In order to find this symmetry, and also the field 
H *, it is necessary to minimize the parameter 6 with respect 
to the function fo. The desired combinations of the basis 
functions f, will again be periodic solutions, displaced to 
symmetric positions in relation to the original lattice (see 
Sec. 5.1 ) . The calculation of the parameter 6 in these three 
cases gives the following results: 

For P2/fi, > - 1/2 - 0.23/w2 the instability corre- 
sponds to the point M of the BZ (small representation I',+ ), 

and 

O=S3= (1,957+0,020 - 
PI 

for -'Is-0,23/to2>i3~/ j3,>-i/~-o,i/6)-. point X (I', - )  , 
p,"' -32 

Is=,,,= ( ,.:,,i:;+,,.,,,,i -- ,, ) / , ,--c.,;,. 
9 1 

(19) 
for -i/2-O:i/~'>p:i~,>- 1, point 1' (r.'): 

The transition corresponding to the point X of the BZ is 
second-order. Minimization of the energy below H * gives 
for it a doubling of the lattice constant. The points M and r 
correspond to first-order transitions, since in the expansion 
in powers of A, cubic terms not forbidden by symmetry are 
present. In our expression for the energy there are no such 
terms, since they appear only when sixth-order invariants 
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are included in the functional ( 14).  The coefficient of A in 
the cubic term in this case is of order [ ( H I  - H  
and is small in the region under consideration. Thus, we are 
concerned with weak first-order transitions. For such transi- 
tions the displacement of the critical field from H  * is of order 
[ ( H I  - H  * ) / H I  ] 3 ,  the discontinuity of the order parameter 
is of order [ ( H I  - H * ) / H , ] 3 ' 2 ,  and the latent heat of the 
transition is of order [ ( H I  - H * ) / H ,  ] 3. In calorimetric in- 
vestigations with a temperature step much greater than 
[ ( H I  - H * ) / H l l 3 [ T ,  ( H )  - T * ( H ) ]  it is not possible to 
detect the heat of the transition, and the transition looks like 
an ordinary second-order transition. 

The symmetry groups of the superconducting order pa- 
rameter in these three cases have the form 

G , = { T . , :  T,,; L,: o*: KU,), 

According to ( 1 9 ) ,  for UPt, the transition should occur 
with a tripling of the lattice constant. 

6. CONCLUSION 

Thus, at least for certain symmetry directions of the 
magnetic field, the phase diagram of superconductor with 
anisotropic pairing should have the form shown in Fig. lb. 
The generalization to the case of an arbitrary orientation of 
H must be performed as a supplement to this. Our theory 
does not impose restrictions on the existence of transitions in 
the region of fields Hcl < H  < H  *. Comparison of the sym- 
metries found for the Abrikosov lattices below H  * with the 
symmetries of the lattices of isolated vortices near H,, 
makes it possible to reach a rigorous conclusion about the 
possiblity of these additional transitions. 

The symmetry of the mixed state of superconductors 
with anisotropic pairing below H  * differs from that in ordi- 
nary superconductors by the large number of spontaneously 
broken symmetries. This should lead to diversity of the 
physical properties of the mixed state, in analogy with the 
diversity found in rotating superfluid 3He (see Ref. 19).  Pos- 
sible observable effects of this kind are dipole and magnetic 
moments of the cores, spontaneous current along the vortex 
axis, etc. In experiments on neutron scattering by a vortex 
lattice a phase transitions with a change of the number of 
flux quanta per unit cell should signaled by the appearance 
of additional Bragg peaks, corresponding to the wave vec- 
tors in Sec. 4  and with an amplitude that increases as 
[ ( H  * - H ) / H  * ] * below the transition point. A transition 
without a change of the translational symmetry is accompa- 
nied by deformation of the vortex lattice, and this can also be 
observed by means of neutron diffraction. 

It is of interest to compare the results of our theory with 
the numerical investigation of the functional ( 14) that was 
performed for the case Hllc in Ref. 20. There is a discrepancy 
between these results, which is evidently due to the fact that 
the method applied in Ref. 20 permits one to find only the 
structure of a vortex for H  = H c l ,  leaving the structure of 
the lattice unelucidated. 

After this article had been completed, we become aware 
of Ref. 21, in which the author considered transitions for the 
functional ( 14) for H l c .  The formulas obtained in Ref. 21 
are analgous to ours from Sec. 5.1, but, nevertheless, in Ref. 

21 the complete change of the symmetry of the supercon- 
ducting order parameter in the transition was not elucidated 
and an analysis of which of the different vortex structures is 
energetically favored when the values of the coefficients in 
the GL expansion change was not carried out. 

In conclusion, we should like to thank G. E. Volovik, 
V. G. Marikhin, and V. P. Mineev for useful discussions. 

APPENDIX 

We shall prove ( 3  ) . Let 

Then 

and, consequently, 

The other formulas in ( 3 )  are derived analogously. 
Any magnetic-translation operator can be represented, 

to within a numerical factor, in the form of a product of 
operators from two one-parameter commutative groups 
(translations along the axes x, and x,) : T, - T,, Ta2. 

For an arbitrary gauge the operator T,, ( T,, ) is not an 
exponential function of the translation generator t ,  ( t , )  , but, 
nevertheless, 

h 

By virtue of ( 3 ) ,  [ $ , t l ]  = 0 .  We represent 
T,, = (Tat,,),; then, as N -  w ,  

A ( I , '  0 
[3, T , , ] = [ 5 .  (T , ,  . ) , ' I=  -- .\'2 - 9 ,?',' ,,..T,,:',': ' 

Since the sum, which contains N terms, increase in pro- 
portion to N, the entire rig$-hand side tends to zero ~s 
N -  W ,  and, consequently, [&,T,, ] = 0.  Analogously, [X, 
Ta7 ] = 0 ,  and, finally, 

h 

In exactly the same way, from [&, L, ] = 0  it follows that 
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