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An expression for the DC density generated by a coherent pump field and its second harmonic due 
to impurity-band transitions is derived. The method used in obtaining the expression is that of 
nonequilibrium Green's functions. The estimates given show that the coherent photovoltaic 
effect can play a key role in explaining the photoinduced second-harmonic generation in quartz- 
glass-based optical fiber guides. 

INTRODUCTION 

In 1986, Osterberg and Margulis reported on the first 
observation of effective second-harmonic generation in 
quartz-glass based optical fiber guides.' Since then this phe- 
nomenon has been under intense investigation since it is not 
only of interest for technological reasons but also is offunda- 
mental value, because in glass such generation should not be 
present because the nonlinear second-order susceptibility 
vanishes. Experimental data fits the general model, in which 
it is assumed that under laser radiation a nonlinear second- 
order susceptibility grating is written in the guide. 

There are several qualitatively different models for ex- 
plaining the emergence of a nonzero second-order suscepti- 
bility in glass as an effect of laser radiation (see, e.g., the 
review paper by Sokolov and Sulimov2). Among these is the 
model of Dianov, Kazanskii, and S t epan~v ,~  according to 
which a strong transverse electrostatic field %',, of the or- 
der of lo4-lo5 V c m  ' is generated in the guide. The reason 
is the spatial redistribution of charges between traps, caused 
by the coherent photovoltaic effect initiated by the photoion- 
ization of impurities in the glass of the fiber core. The coher- 
ent photovoltaic effect consists in the appearance of DC 
when the pumping radiation is coherently superimposed on 
the radiation's second harmonic and may occur in centrally 
symmetric media such as, say, glass, in contrast to the usual 
photovoltaic effect, which is realized only in crystals with- 
out an inversion  enter.^.^ 

The possibility of such an effect manifesting itself in an 
insulator was considered theoretically by ~ n t i n . ~  For semi- 
conductors the theory of the effect was examined earlier by 
Shmelev et a1.' and by Baskin and Entin.' Zel'dovich et 

considered the generation of DC by the interference of 
two photoionization channels: the single-photon channel in 
the second harmonic and the two-photon channel in the 
pumping radiation and gave the results of an experiment in 
observing this mechanism in the photoemissive effect. 

The theory of the coherent photovoltaic effect devel- 
oped by ~ n t i n y s  based on the kinetic equation. It anpears 
that in considering impurity-band transitions Entin was in- 
sufficiently thorough in separating the contributions to the 
effect from the field term and from the collision integral. In 
addition, the final expression for the DC is written in a rather 
complicated form, which makes it difficult to estimate the 
effect numerically. 

The authors of Refs. 9-12 considered the interference of 
quantum mechanical transition amplitudes and the associat- 

ed probability but failed to give the procedure for calculating 
DC proper in the photoionization of impurities. 

These drawbacks of the cited papers devoted to the the- 
ory of the coherent photovoltaic effect, along with the grow- 
ing interest in this effect among researchers studying second- 
harmonic generation in glass optical fiber g~ides, '~-~O 
prompted the present author to return once more to calcula- 
tions of DC induced in a solid by the pumping radiation and 
its coherent second harmonic. He believes it expedient to 
employ not a kinetic equation but the method of nonequilib- 
rium Green's functions introduced by Keldysh,z' which can 
be applied to a much broader range of phenomena (say, 
when only localized states participate in the photoexcitation 
process and the kinetic-equation method does not work). 
Such a method also allows the contributions from the field 
and the generation to be described in a unified manner. 

Let us consider a semiconductor or insulator that in 
addition to distributed band states contains localized states, 
which correspond to impurity or defect centers of some kind. 
Suppose that intense monochromatic laser light (pumping 
radiation) of frequency R is incident on this system. We will 
assume that because of the radiation the respective electron 
subsystem is transformed to a nonequilibrium time-indepen- 
dent state, and energy dissipation will be taken into account 
by electron-phonon interaction. Radiation of double fre- 
quency 2R (the second harmonic of the pumping radiation) 
is incident on this nonequilibrium system. Our goal is to 
calculate the time-constant DC density linear in the second- 
harmonic field. 

LINEAR RESPONSE AND THE TWO-PARTICLE GREEN'S 
FUNCTION 

The Hamiltonian of this system is 

A 

Here H, is theAHamiltonian of the electron system in the 
static ion field, Hi is the electron-photon interaction Hamil- 
tonian, 

Bi=g 3 dxq+I&, (2) 

where $+ and $ are the electron field operators, x is the 
phonon-field Bose oxeratorkg is the electron-phonon cou- 
pling constant, and H,  and H,, are the Hamiltonians of the 
interaction between electrons and the pump field (of fre- 
quency R ) and its second harmonic (of frequency 2 n ) ,  re- 
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spectively, which we take in the form 

with A, and A,,, the vector potentials, v the electron veloc- 
ity operator, e the electron charge, and c the speed of light. 

The electromagnetic pump field and its second harmon- 
ic are assumed monochromatic and can be written in general 
form as 

A,-, ( t )  = (c12Qi) [Zfp exp (iQt) -%*' exp (-iQt) 1, ( 5 )  

where g, and g,, are the complex-valued amplitudes of 
the electric pump field and the second harmonic, respective- 
ly. 

By linearizing the total density matrix of the system in 
the second-harmonic radiation field we can easily arrive at 
an expression for the average value of the 0 th component 
(f3 = x,y,z) of the current density: 

wherej8(xt) is the operator of the P t h  component of the 
current density, 

[...I - stands for a commutator, (...) for an average over thc 
state of the system in the absence of second-harmonic radi. 
ation, B(t - t ') for the unit step function, and fi  for Planck's 
constant. 

Since we are interested in the value of the current den- 
sity averaged over a macroscopic volume V, we substitute 
(4) into (7)  and transform to the A-re~resentation, in which 
the set of eigenfunctions (x)) of H, is used as the basis. 
Assuming summation over the repeated index a and setting 
fi  = 1, we get 

x (-elc) AZpa (t') 

x<  [a,+(t)a,(t), aS+(tf)a1 (t') I-), (9)  

where a; ( t )  and a, ( t )  are the Heisenberg A-state elnectron 
creation and annihilation operators, and j f2 = (A,VB \A2) 
and v;, the matrix elements of the respective components of 
the current density operator and the velocity operator that 
do not incorporate the dependence of the pump field on the 
vector potential [the corresponding terms are written expli- 
citly in (9)] .  For the sake of brevity, in (9) and in what 

follows we use the integers 1,2,3, and 4 instead of the indices 
A,, A2, 4 ,  and A4. 

In Refs. 22 and 23 it was shown that the term in Eq. (9)  
containing the step function of the time difference t - t ' and 
the average of the commutation relation for the creation and 
annihilation operators can be written as 

O( / - t f ) (  [a,* (t)a,(t), a,* ( ! ' ) a ,  ( t ' ) ]  -) 

where G is the two-particle nonequilibrium Green's func- 
tion, introduced in the following In accordance 
with the Keldysh technique," we introduce the causal two- 
particle Green's functions 

where the operator T, [. .. ] performs T-ordering along the 
contour C, which passes along the time axis from - a, to 
+ co and back. The subscript i assumes values 1 or 2, de- 

pending on whether the temporal component of the first in- 
dependent variable x,  lies on the direct or the return branch 
of contour C. The same correspondence exists between in- 
dicesj, k, and land the positions ofthe temporal components 
of the other independent variables x,, x,, and x,. From casu- 
al functions we go to retarded and advanced functions via 
the following transf~rmation.~'-~" 

where the summation convention is assumed and the matri- 
ces U and U -  ' have the form 

The second equality in ( 10) defines function GI1 and the 
exact meaning of function G ii for concurrent times. 

Thus, in accordance with Eqs. (9)  and ( lo),  to calcu- 
late the current density we must find the two-particle 
Green's function in the nonequilibrium state created in the 
system by the pumping radiation. We start by considering 
the spectral representation of the nonequilibrium two-parti- 
cle Green's f ~ n c t i o n . ~ ' . ~ ~  

SPECTRAL REPRESENTATIONS 

An arbitrary two-particle function GI1 (t,t2;t,,t4) in an 
equilibrium system depends on any three time differences, 
say, 7 = t, - t4, r' = t2 - t3, and r" = t ,  - t,. In the time- 
independent nonequilibrium state created in the electron 
subsystem by the monochromatic pumping radiation of fre- 
quency a, homogeneity in time is, apparently, violated only 
by periodic variations (with the period of the pumping radi- 
ation). In this case any two-particle function can be repre- 
sented as a Fourier series in harmonics that are integer mul- 
tiples of R: 
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G(E. El)= ~ ~ ~ G ~ ( E - E ' - ~ Q ) G ( E ,  E'; n), (20) Gxl(t,. t,: t,, t , ) =  exp(-inRt,)GL1(r, r'; r"; n). (13) 
n=-m 

where the Fourier transform G(E,E ') is related to the tem- 
poral function through the transformation In turn, we can represent the amplitude of nth harmonic, 

GI1 (.r,.rf;r";n), in the form of a triple Fourier integral: 
G(E, Ef  ) F= 3 dt dt' exp (iEt-iE1t') G(t, t'). (21) G" ( t , ,  t:; t,, t') 

In Keldysh's method2' the one-particle functions and the 
mass operator are 2 X 2 matrices: 

XG" (E, E'; a; n) . (14) 
where G' is the retarded function, Go the advanced function, 
and F the correlation function. The matrix elements of the 
mass operator are defined as 

We must now pass to the limit in ( 14), as required by Eqs. 
(9) and (10); t,-+ t, = t and t,+t, = t '. Asaresult wearrive 
at the final expression for the spectral representation of the 
two-particle function: M*, (x, x') =-ig2 Jdx, d x z 7 ~ l ~ ~ v j ~  (x, x,) 

where the (x,xl) are phonon functions, r; (x,,xf;x2) is 
the complete vertex matrix, g is the electron-phonon cou- 
pling constant, and yi is a matrix defined as 

and a, is the first Pauli matrix. 
The following conjugacy conditions can be shown to 

hold true: 

GA:;(E1, E; -n)=Gn;, (E, E'; n) , 

F,*,,(E', E; -n) =-F,,, (E, E'; n). (24) 

where we have introduced the notation 

In ( 15) and ( 16) the lower indices 1,2,3, and 4 stand for the 
one-particle states A,, A,, A,, and A,. In what follows we call 
G:,,, (E,E1;n) the spectral densities of the harmonics or 
simply the harmonics of the two-particle function. We will 
also find it expedient to use the conjugation condition M:,*,(E', E; -n)=-M;&.(E, E'; n). (25) 

AN EXPRESSION FOR DC IN TERMS OF HARMONICS OF THE 
TWO-PARTICLE GREEN'S FUNCTION which can easily be proved via the definition (10) and the 

spectral representation ( 15 ) . Employing the Fourier trans- 
formation 

Combining Eq. (9) with ( S ) ,  (6),  ( lo) ,  and ( 17) and 
taking into account the spectral representation ( 15), we get 
the following expression for the DC density (valid to within 
terms of the order of $& g,, ): 

dE, dE, dE, dE, 
exp (-iE,t,-iE,t,+iE,t,+iE,t,) 

where we have introduced the notation 

e 
je (I) = -- 

dE 
C ~ m [ j ~ ~ f i ( v . ~ ,  a,.) 1, G::,~.(E. E;  +2)]. 

4vQ I , ,  

3.4 

and the spectral representation (15), we can establish the 
relation between the spectral densities of the harmonics and 
the Fourier transform of the two-particle function: 

x GI1 ( E ,  E,; 8; n) . (19) 

A similar harmonic expansion can be obtained for one- 
particle functions and the mass operator, 
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Appendix A shows that the contributions of j O ( I I ) ,  
~ " ( I I I ) ,  and j  ( I V )  can be ignored, and the problem is re- 
duced to determining the second harmonic of the two-parti- 
cle function and then using the formula ( 2 7 ) .  

AN EQUATION FOR THE TWO-PARTICLE FUNCTION 

The equation for the causal two-particle functions ( 1 1 ) 
in the ladder approximation has the form 

where Gu ( x , x l )  and 9 k k  (x ,x t  ) are one-particle electron 
and phonon functions. 

Appendix B shows that the ladder approximation can 
be used provided that 

where y is the linewidth caused by the electron-phonon in- 
teraction, and E is the characteristic electron energy. 

Applying transformations ( 12) and ( 10) to both sides 
of Eq. ( 3  1 ) and passing to the limit in ( 10) as t ; + t ', we find 
that the resulting equations contain, in addition to the de- 
sired function G" , two Hermitian conjugate functions p and 
p + :  

11' 
q ( x l r  xz: x3, x,.) =GZ1I1 (x , ,  x2; x3, x1)+G12 ( 2 3 ,  x4; xi ,  2 , ) .  ( 3 3 )  

(t3=b) ( t P t I + O )  (t3+t1-0) 

Symbolically the equations for GI' and p can be written as 

GI1=-G'F-FG"+{@ (G'G1IG"+GrrgF+Fq+ G") 
+an(FGr1G"+G'rp+ G") +ar (GrG"F+G'cpG") }, ( 3 4 )  

q=-GrG'+ {@G'cpG'+arG'G"Gr). ( 3 5 )  

Here the ordering of the fermion cofactors is important. The 
independent variables of the functions and the integral oper- 
ator, denoted by braces, in the space-time representation 
have the form 

X q,(x't', 2,;  xl'tT, x,) G' ( x Z X ' I ~  I' + ... 

It is more convenient to use the 1-representation, however. 
Performing the Fourier transformations analogous to ( 18 ) 
and ( 2  1 ) and using the spectral representations ( 13)-( 15) 
and ( 2 0 )  to go over to the harmonics of functions, we get 

11 
G ,  E E ;  = -  [Gz3r(E', El-ZO; 1 )  P1. (E+mB, E; m )  

1 ,m 
(l+rn=n) 

+F,, (E', E'-la; 1 )  G,,"(E+mB, E ;  m )  ] 

X Gi2, (E', E'-mQ; m )  

X G , : ~ , , , ~  (E+lQ-k,, Ef-mQ-k,; m' )  G,"(, (E+ZQ, E; 2 )  + . 

( 3 6 )  

The other terms on the right-hand side of Eq. ( 3 6 ) ,  which 
for the sake of brevity are denoted by dots and have been 
written explicitly in the symbolic equations ( 3 4 )  and ( 3 5 ) ,  
have a similar form with appropriate replacement of phonon 
and electron one- and two-particle functions. In Eq. ( 3 6 )  we 
haveset J,,. (k )  = ( A  lexp(zkx)IA'), and gr, g a ,  and Q, 
are the retarded, advanced, and correlation equilibrium 
phonon functions, which in the homogeneous-continuum 
approximation have the following 

(P ( k ,  ko)=-inlfk12(1+2N,)6(ko~ok), 
a' ( k ,  ko) = (*' /z)  I f k 1 2 /  ( k O T o k + i 6 ) ,  6++0, ( 3 7 )  

D ( k ,  ko) = B v . ( k )  , 

where summation over is implied, fk is the electron-phonon 
interaction matrix element, wk specified the dispersion law 
for phonons, and 

for acoustic phonons, for instance, we have 

where us ,  E D ,  and dare the speed of sound, the deformation 
potential constant, and the density of the substance, respec- 
tively. 

Thus, the second harmonic of the two-particle function 
can be found by solving the system of equations ( 3 4 )  and 
( 3 5 ) .  The latter equation incorporates harmonics of one- 
particle functions, and the next section is devoted to calcu- 
lating such harmonics. It must be mentioned, however, that 
the contribution of p and p + to the current density can be 
ignored. 

DETERMINING THE HARMONICS OF ONE-PARTICLE 
FUNCTIONS 

One-particle electron functions satisfy the following 
equation:2' 

Applying the Fourier transformation ( 2 1 )  to both sides 
of this equation and using the spectral representations ( 2 0 ) ,  
we arrive at a system of coupled equations for the harmonics 
of one-particle functions. Using these equations, in which we 
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ignore terms of the third and higher orders in the pump field, 
we findz4 (G = G' or Go ): 

Gu, ( E ,  E-$2; + I ) = - D , : ~ G , ( E ) G ~ *  ( E - Q ) .  (39) 

FAA- ( E ,  E-2Q; + 2 )  

+GAr ( E )  Gk,'(E-Q)F,f (E-2Q) 

Here Du.= (orh,/2Q) (exil,, g o ) ,  

oiie= (Er-EA.) , x~~,=<hlxl;h.'>, 

n, = {exp[(E - E, )/TI + I ) - ' ,  T is the temperature in 
energy units, EF is the Fermi level, and y, = Im [ M ;  (E, ) ] 
is the width of the energy level E,, the eigenvalue of the 
Hamiltonian H, renormalized with allowance for the elec- 
tron-phonon interaction. 

In the derivation of Eqs. (39)-(42) all terms contain- 
ing the first and second harmonics of the mass operator were 
omitted, which can be done (see Appendix C )  provided that 

Obviously, this condition is met if the electron-phonon in- 
teraction is fairly weak. 

CALCULATING THE DC DENSITY: CONTRIBUTION OF 
PRODUCTS OF HARMONICS OF ONE-PARTICLE FUNCTIONS 

For convenience we write (27) as 

where 

We start by calculating the contribution to the current 
from the abstract terms of Eq. (34): 

G,;,:, (E,  E;  + 2 )  =-GZar ( E ,  E-2Q; +2)FI4  ( E ,  E;  0 )  

-GZsT(E, E;  O)F,,(E+ 252, E;  4-2) 

-F,, ( E ,  E'2Q; + 2 )  GI," ( E ,  E;  0 )  

-FZs ( E ,  E;  0 )  GiLa (E+2Q, E ;  + 2 )  

-Gznr(E, E-Q; +I)F,r (E+Q, E ;  + I )  

-F2,(E, E-Q; + l )Gl ,o (E+ Q,  E; + I ) .  (48) 

Now we can use (39)-(44). When calculating the inte- 
gral with respect to E, we assume, in accordance with (47), 
that the following conditions hold true: 

yr/EA<1 and yr/T<l, (49) 

which makes it possible to ignore the contributions of the 
poles of ( 1 - 2n, ). We find 

where we have introduced the notation r,,, = y, + y,. . 
Up to this point no assumptions concerning the proper- 

ties of the electronic states were made, with the result that 
(46) and (50) can be applied to any model of the coherent 
photovoltaic effect. But we are interested in the description 
of this effect for impurity-band transitions. Hence, we will 
assume that the indices 1, 2, 3, and 4 in (50), which denote 
one-electron states, can refer either to the conduction band 
or to an impurity state (excitation of holes in quartz glass is 
of less interest because of the low hole mobility). 

Thus, in summing over the four indices in (50) we en- 
counter sixteen types of terms corresponding to the distribu- 
tion oftwo types ofstates (impurity "i" and band "p" states) 
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over four indices. To simplify matters, we assume that the 
intraband matrix elements are diagonal in momenta: 

wherex,,. = (2 Id'), and 

Formulas ( 5 1 ) - ( 5 3 ) have been obtained for the simple case 
where the delocalized states are described by plane waves. 
We also assume that 

B fii,=O, v:,=o, Dii*=O for all i and it, (54) 

which simply reflects the fact that state (il is localized and 
that the concentration of such states is so low that the over- 
lap of the wave functions belonging to different centers can 
be ignored. Conditions (54), obviously, also imply that the 
centers cannot have excited localized states. 

Allowing for (54), we note that Eq. (50) can have only 
the following nonzero combinations of four indices: four 
combinations in which one index corresponds to a localized 
state and the others to delocalized states, and combinations 
in which two indices correspond to localized states and the 
other two to delocalized states, with the respective terms in 
(50) containing the products of four matrix elements of im- 
purity-band transitions. Appendix D shows that the contri- 
bution of the latter terms to the current can be ignored if 
conditions (45) are met. 

If conditions ( 5  1)-(53) are met, among the four com- 
binations of indices in which one index corresponds to a lo- 
calized state we first isolate the combinations in which either 
index 1 or index 3 corresponds to a localized state. In this 
case conditions (51)-(53) ensure that the other three in- 
dices coincide. Such combinations of indices have the char- 
acteristic feature that each term in (50) acquires a factor 
y,- ', guaranteeing that the terms under consideration domi- 
nate all other terms if condition (45) is met (see Appendix 
Dl .  

Thus, in (50) we put either 2 = and 
h , = h , = h 4 = p , o r h , = i a n d h , = h , = A 4 = p . W e a l s o  
allow for the fact that summation over localized states in the 
case considered here can be replaced with multiplication by 
NV, where Nis the concentration of localized states (i.e., the 
concentration of the respective defects), and Vis the system 
volume. As a result, combining (46) and (5 1 )-(53) with 
(50) yields 

where the delta function appears as a result of the passage to 
the limit 

which is justified due to the first condition in (49). 
Thus, formula (55) gives the contribution to the DC 

density from the abstract terms in Eq. (34) for the second 
harmonic of the two-particle function G" . 

CALCULATING THE DC DENSITY: CONTRIBUTION OF 
INTEGRALTERMS 

Appendix E shows that if condition (45) is met, of all 
the integral terms in Eq. (34) only the integral term contain- 
ing the second harmonic of function GI1 provides a contribu- 
tion to the DC density comparable, in order of magnitude, 
with (55). In accordance with (46) and (47), let us intro- 
duce a new function 

in terms of which the DC density will be calculated. An 
equation for this function can easily be derived from (36) 
(to within terms of order $, $, $,, ) : 

g2ba ( E )  =Cz4a ( E )  

rEk dko 
++9. 5 - J23,(k,J*t-.(k)g;~~(E-ko) 

, ( 2 n ~  

where 

and the A ,,,,, (E)  stand for the abstract terms in (36), 
whose form is specified by the right-hand side of Eq. (48) 
with allowance for (39)-(44). 

In the previous section we saw that if condition (45) is 
met, the main contribution to the current density, specified 
by formula (55), is provided by the abstract term of Eq. 
(53), C &  (E), in which the indices "2" and "4" coincide 
and belong to the set of delocalized states. If we allow for the 
general form of the solution of the inhomogeneous Fred- 
holm integral equation of the second kind (see, e.g., Ref. 
25), this suggests that [provided that condition (45) is met] 
the contribution to the current from the solution of Eq. (58) 
with identical indices "2" and "4" belonging to delocalized 
states, g& (E)  = g; (E), considerably exceeds the contribu- 
tion to the current from the functions g;4 ( E )  with distinct 
indices. 

Assuming that the electron-phonon interaction does 
not take charge carriers outside the conduction band and 

which is true if the wave functions of the localized states are 
plane waves, we find that Eq. (58) leads to the following 
equation for g; (E) : 
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i dkdk, , 
gpa ( E )  =Cpa ( E )  + g2 gp-k ( E - L )  

The integral operator in this equation can be simplified 
by employing ( 3 7 )  and ( 4 4 ) .  As a result we get 

where summation over double signs is implied. 
Now, by taking into account the definition ( 5 9 ) ,  the 

explicit form of the function A ,,,,, ( E )  [the right-hand side 
of Eq. ( 4 8 )  1, and Eqs. ( 3 9 ) - ( 4 4 ) ,  we easily conclude that 
G ( E l ,  as well as the integral operator in Eq. ( 6 2 ) ,  contain 
a factor G; ( E )  G; ( E ) ,  which becomes S ( E  - Ep ) as 
yp -0 .  Thus, the desired function g,"(E) proves to be pro- 
portional to 6 ( E  - Ep ): 

gpa ( E )  =ga ( p )  2n6 P E P ) .  ( 6 3 )  

If we integrate both sides of Eq. ( 6 2 )  with respect to E, we 
get 

Noting that the function 

is actually present when we obtain formula ( 5 0 )  and the 
expression ( 5 5 )  for the current density, we find 

where 

Here we have omitted, as we did in deriving ( 5 5 ) ,  the terms 
containing S(w,, + 0) and S(wp, + 2 R ) ,  since in the case 
under investigation Ep is higher than E, and, in addition, 
summation over localized states has been replaced with mul- 
tiplication by NV. 

For quasielastic scattering, the solution to Eq. ( 6 4 ) ,  
where the free term is taken to be the first term on the right- 
hand side of (65 ), has the form 

B " ( P )  = P " ~ I  ( P ) I ~ ,  ( P ) ,  ( 6 8 )  

with TI ( p )  independent of the direction of vector p: 

This equation can be simplified if we take into account the 
explicit form of the phonon level width 
yA = Im [ M ;  ( EA ,E,;, 1. Using the general expression 
( 2 2 )  for the mass operator and taking the complete vertex 
matrix in the zeroth approximation in the electron-phonon 
coupling constant, 

For the quasielastic approximation and delocalized /2 and /2 ' 
states this yields 

which can easily be used to transform ( 7 0 )  to 

Function TI  ( p )  is independent of the direction of mo- 
mentum p, say, in the event of depolarized pumping. This 
leads to an average of f , ( p )  over the various directions of 
pump radiation the polarizations, as a result of which this 
function ceases to depend on the direction of vector p  and in 
( 7 1 )  the factor f ,  ( p  - k ) / f l  ( p )  becomes equal to unity. 
Clearly, the fraction (pa - k " ) / p a  in the integrand in ( 7  1 ) 
coincides with the cosine of the angle 13 between vectors p  
and p  - k, and Eq. (7  1 ) assumes the form 

( 7 2 )  
This quantity is well-known from solid-state physics, the in- 
verse transport relaxation time (see, e.g., Refs. 26 and 27)  in 
quasielastic scattering on acoustic phonons. 

In the case of polarized radiation, to find the inverse 
relaxation time we must use the general expression (7  1 ) con- 
taining the fraction f ,  ( p  - k ) / f ,  ( p ) ,  which it is advisable to 
rewrite in a form containing the polarization of the pump 
radiation explicitly. For this, as Eq. ( 6 6 )  shows, we must 
calculate the product of matrix elements, D $ D s, expressed 
in terms of the dipole-transition matrix elements xi,. Obvi- 
ously, if the wave function of a localized state /i) is isotropic 
(ans state), the only preferred direction in the expression for 
xi,, is that of the momentum p, and we arrive at the following 
expression for the plane wave describing a delocalized state: 
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xiP=bpp exp [ i  (p, Rt) I ,  (73) 

where R, is the radius vector of a localization center, and the 
scalar bp is independent of the direction of the vector p. Here 
also 

DiPeDpr'=-eZ (opi/2Q) 1 bp 1 (p, go') ', (74) 

In the case of directed orbitals of localized states, the 
vectors xi, and p may not be collinear, but in obtaining 
expression (66) an average over the various directions oc- 
curs for random orientations of different defects, and we can 
again use the formula (73). 

Similarly, we solve Eq. (64), where the second term on 
the right-hand side of (65) serves as the abstract term. As in 
(68), the solution has the form 

where 

From v; = iwipxG, if condition (73) is met we have 

Here, obviously, T , (p)  = T2(p) = T(p).  
Thus, the solution to the linear integral equation (64) 

in the quasielastic approximation has the form 

where f , (p)  and f,(p) have been defined by (66) and (67), 
respectively. Taking into account the definition (57) and 
Eqs. (46) and (47), we conclude that an expression for the 
DC density allowing for the integral operator in Eq. (58) is 
actually Eq. (55) with y; ' replaced with 1/T, (p)  in the 
first term and with 1/T2(p) in the second: 

If condition (73) is met, we have 

(p, Zp') D,,' (oiP/Q) (exip, 8zp) =+2DiP'Dpi' (p, gZo), ( 8 1 

owing to which formula (80) is transformed into 

PHYSICAL INTERPRETATION OFTHE RESULTS 

Let us now interpret the results physically. Each of the 
terms in (80) can easily be associated with the common 
expression for a drift current-density component which, 
however, contains a nonequilibrium distribution function 
for the electrons excited by light from localized states to the 
conduction band. This leads to the following interpretation 
of the phenomenon. 

The probability P( t )  of the transition between two 
states, n -- m, stimulated by a biharmonic perturbation 

P (t) =i exp (-iQt) +"h exp (iQt) 
+a exp (-i2Qt)+8+ exp (i2Qt), (83) 

h 

where h and Hare  operators representing the interaction of 
an electron with the pump field of frequency R and with the 
second-harmonic field of frequency 2fl, respectively, con- 
tains not only a time-independent term but also terms that 
vary with time harmonically with frequencies R and 2R: 

x exp (*i28t) 

Here summation over repeated indices and double signs is 
implied and terms proportional to H2 and to exp( * i3flt) 
are discarded. We assume that the perturbation (83) in- 
creases adiabatically (6  is the adiabaticity parameter) start- 
ing at time t = - CO, when the system was in state n. Formu- 
la (84) shows that the distribution function for electrons in 
the conduction band must contain time-dependent terms: 

Anp(t) =An, (p)cos (Qt) +An2(p)cos(2!2t+q). (85) 

As formula (84) shows, the first term in (85) appears be- 
cause of the photoionization of defects caused by the inter- 
ference of the second-harmonic radiation and the pumping 
radiation. The second term in (85) emerges because of the 
photoionization of electrons solely by the pumping radi- 
ation. The time-constant current can be obtained from the 
general expression 

j=en (t) &t), (86) 

wherep is the electron mobility, in two cases. First, when the 
second-harmonic electric field is the attractive field in 
( 86) and the density n ( t )  is determined by the second term 
on the right-hand side of (85), and, second, when the elec- 
tric field in the pump wave is the attractive field and the 
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density is determined by the first term on the right-hand side 
of (85). Thus, we arrive at (go), where the first term de- 
scribes the drift of nonequilibrium electrons, photoionized 
by the pump wave, in the electric field of the second-harmon- 
ic wave, while the second describes the drift of nonequilibri- 
um electrons, photoionized owing to the interference of the 
pump wave and the second-harmonic wave, in the electric 
field of the pump wave. From Eq. (84) we see that the sec- 
ond mechanism operates when the energy difference be- 
tween the electron levels amounts to either fin or 2fiR. This 
agrees with the form of the second term on the right-hand 
side of (80). 

Electron excitation caused by the interference of the 
pump wave and the second-harmonic wave and accompa- 
nied by absorption of an amount of energy equal to 2fiR was 
discussed in Refs. 9-12, 16, 18, and 20. The first term od the 
right-hand side of (80) was obtained in Refs. 2, 28, and 29. 
The expression for the current density in a coherent photo- 
voltaic effect obtained in Ref. 6 also contains terms describ- 
ing processes with energy absorption amounting to either 
fiR or 2fiR (apparently, because of a misprint the process 
thresholds listed in Ref. 6 are incorrect). 

All the above mechanisms of the coherent photovoltaic 
effect, obviously, may yield contributions to DC similar in 
order of magnitude, differing, perhaps, only in the probabili- 
ties of the corresponding impurity-band dipole transitions. 

ESTIMATING THE CURRENT DENSITY IN THE COHERENT 
PHOTOVOLTAIC EFFECT 

To be definite, let us estimate the size of the first term in 
the expression (80) for the current density. Since the coher- 
ent photovoltaic effect is used to explain second-harmonic 
generation in quartz-glass based optical fiber guides, we will 
carry out this estimate for SiO,, whose conduction band can 
be assumed to be isotropic and parabolic (see, e.g., the calcu- 
lations done in Ref. 30) and the effective mass to be close to 
the mass of a free electron, m* --m (see Ref. 3 1 ). For simpli- 
city we take the wave function of the delocalized state with 
momentump in the form of a plane wave, 

and use a hydrogenlike model with an s-type wave function 
for the localized state, 

with a localization radiusp whose magnitude can be estimat- 
ed by p = fi(2mI) '',, where I = fiR - Ep is the ioniza- 
tion potential of the defect. 

We now use the wave functions (87) and (88) to calcu- 
late the dipole-transition matrix element xi, : 

wherev= 8ss(1 + s * ) ~ ,  ~ i t h s = ~ ~ / f i .  
Taking into account the well-known relation p = e r r  / 

m existing between the transport relaxation time r, for elec- 
trons and their mobility p in the conduction band (p z 20 
cm2 V ' s ' for SiO,; see Ref. 32), we can easily calculate 
the first term on the right-hand side of (80). As a result, for 
%',~3~10~ V m - '  and @ , , , z 3 ~ 1 0 ~ V m - '  (such fields 

correspond to the power of laser radiation used in experi- 
ments in second-harmonic generation in light guides) at 
A =  1064 nm, Ep ~ 0 . 1  eV, and N z ~  x 10" cmp we get 
p -- 0.19 nm and j,,, z 10 A cm 2 .  This value of the cur- 
rent density is sufficient to explain, in accordance with the 
model of Ref. 3, the appearance of a strong electrostatic field 
ED, =: lo4-lo5 V cm- '  in the fiber core in the process of 
preparing the guide for second-harmonic generation. Such 
an estimate was first done in Ref. 33 but can probably be 
better substantiated along different lines. 

For instance, in planar geometry the equation for the 
total current in the direction transverse to the guide's axis 
(along the x axis) is 

where6, andA,, are the drift and diffusion currents, respec- 
tively, and E is the low-frequency dielectric constant 
( E  = 3.8 for SiO,). Obviously, only the current j",, of the 
coherent photovoltaic creates an asymmetric charge distri- 
bution and, hence, a corresponding nonzero average electro- 
static field ED,. To estimate the order of magnitude of this 
field it is thus sufficient to put j",, =EE&,, /t,, where t ,  is 
the time required to record the nonlinear susceptibility in the 
process of preparing the guide for second-harmonic genera- 
tion, that is, the average time during which the pump field 
and the initial second-harmonic field are nonzero in the pro- 
cess of preparing the guide. Following Ref. 33, we put 
t ,  -- s, and for jDc - A cmp2  we obtain 
ED, z tJ,, ( E E ~ )  z lo4 V cm ' . An electrostatic field of 
this strength (ED, > lo4 V cm ' ) was observed in the exper- 
iment reported in Ref. 34. 

Within the same approximation scheme and for the 
same values of the above parameters, the absorption coeffi- 
cient a of the pumping radiation in defect-band transitions 
proves to be approximately equal to Np2z  10 cm ' z lo2 
dB km- I .  We see that the absorption of the pumping radi- 
ation over distances of several centimeters is extremely low 
(it is over lengths like this that second-order nonlinear sus- 
ceptibility is recorded in optical fiber guides2). Thus, at least 
in essence the model is noncontradictory: the processes lead- 
ing to optical generation of an asymmetric current of the 
necessary magnitude are not accompanied by such a strong 
absorption of the pumping radiation that no radiation tra- 
vels along the guide. This consistency feature is retained up 
to defect densities N of approximately lOI4 cm 2 that is, it 
has a "safety factor" of about a thousand. 

On the one hand, the above defect density N z 2  X 10" 
cmp3  at which a current density necessary for explaining 
second-harmonic generation appears is extremely low. On 
the other, the majority of defects in SiO, have filled levels 
deep in the forbidden bands.35-37 Hence, the localized elec- 
trons on energy levels close to the conduction band (at a 
distance of 1-2 eV from its bottom) may appear in quartz 
glass only due to electron excitation (because of multipho- 
ton absorption) from deep-lying localized states. Such im- 
purity complexes are suggested in Refs. 2, 28, and 29, say, a 
pair of germanium atoms and a neighboring phosphorous 
atom at the silicon sites of quartz glass. Not only phospho- 
rous atoms but also triply coordinated silicon atoms can act 
as optical donors. 
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CONCLUSION 

We have derived an expression for the density of DC 
generated by coherent pumping radiation and second-har- 
monic radiation and found two mechanisms of current gen- 
eration: the first due to the absorption of pumping radiation 
and the drift of photoelectrons in the field of the second- 
harmonic wave (one photon from the pump field is ab- 
sorbed), and the second due to the drift of photoelectrons in 
the field created by the interference of the pump field and the 
second-harmonic field (either one photon from the pump 
field is absorbed or two). The latter differs from the mecha- 
nism suggested by Zel'dovich et u Z . , ~ - ' ~  although it also be- 
longs to photoionization by the pumping and second-har- 
monic radiations. 

The expressions obtained in this paper make it possible 
to estimate the photocurrent and show that the coherent 
photovoltaic effect may quite reasonably be considered re- 
sponsible for second-harmonic generation in glass optical 
fiber guides. 

The author is grateful to all participants of the seminars 
arranged by the Fiber Optics Department and the Vibrations 
Department and of the theoretical seminar held at the Insti- 
tute of General Physics of the Russian Academy of Sciences, 
the staff of the Semiconductor Theory Department at Mos- 
cow State University, and B. A. Veklenko, E. M. Dianov, V. 
P. Makarov, and V. 0. Sokolov for critical remarks and 
fruitful discussions. 

APPENDIX A 

Let us show that the current-density contribution de- 
termined by (28)-(30) vanishes when the two-particle 
function can be represented as the sum of products of one- 
particle functions. Obviously, if we wish to remain within 
the required accuracy in the field amplitudes, the two-parti- 
cle function in (30) must be the equilibrium one: 

Then integrating in (30) with respect to E yields zero. 
Using Eq. (361, for G ::,,, (E,& + 1 ) we find that 

-Fzl ( E ,  E-Q; + 1 )  

X Gira(E,  E;  O)-G,l'(E,E; O)Fqc(E+Q,E; + 1 )  
-Fz, ( E ,  E; O)Gf4a(E+Q, E;  + ' I ) ) .  

Remaining within the required accuracy in the field ampli- 
tudes, we can assume the zeroth harmonics to be the equilib- 
rium harmonics and, hence, diagonal in A. As a result, Eq. 
(A2) assumes the form 

~ , ' z f t &  ( E ,  E; + I )  Gzlr(E, E - 8 ;  + i ) F ' ( E )  

+F2, ( E ,  E - 8 ;  + I )  GLa(E) I 
-si2[G,' ( E )  FI4 (E+Q, E ;  + 1 )  +Fz(E) GikO(E+Q, E;  + I )  I .  

(A31 
Substituting (A3) into (29), employing for the first har- 
monics of one-particle functions the expressions (39) and 

(40), and integrating with respect to E, we get zero. 
Remaining within the required accuracy in the field 

amplitudes, from Eq. (36) we find for the function 
G :is,, (E,E - a; + 1 ) the following expression: 

G::,,~(E, E-Q; + I )  =-[Gee (E-Q, E-2Q; '+I)F4(E)  

+Fb3(E-Q, E-252; + 1 )  Gka(E) 16th 

-[Grr(E-Q)Fi,(E+Q, E; + I )  

+F4(E-9)  Gtha(E+Q, E ;  + I ) ]  6,,. (A4) 

Substituting (A4) into (28), employing the expressions 
(39) and (40), and integrating with respect to E, we get 

Obviously, when condition (45) is met, that is, when y, can 
be neglected in comparison to fl in the denominators of the 
fractions in the parentheses in (A5), this expression for 
j (11) becomes equal to zero. 

Thus, we have demonstrated that the abstract term of 
the integral equation (34) contributes nothing to the DC 
density if we use formulas (28)-(30). This implies that the 
solution to the integral equation (34) also contributes noth- 
ing to the DC density if we use formulas (28)-(30). Indeed, 
physical considerations suggest that the solution to Eq. (34) 
must be unique for any function (belonging to a certain 
class) that is the abstract term. Here, in accordance with the 
Fredholm a l t e r n a t i ~ e , ~ ~  the homogeneous equation corre- 
sponding to Eq. (34) has no nontrivial solutions. 

APPENDIX B 

Let us compare the contributions to DC from cross and 
ladder diagrams. The contribution to the causal two-particle 
function from a cross diagram with two phonon lines is 

A ladder diagram yields 

k"' h' ' xGtOr ( x , ,  ~ ~ ) ~ ~ k j ~  G1ri ( x ~ ,  xt ' )  G t m ( ~ ' ,  ~ ~ ) y r n r n ~ G r n ~ ~ ~  ( ~ 4 ,  ~ * ) y j , j  
X Gj,, (x, ,  X")%krr (51, X Z ) . @ ~ ' ) " '  ( x a  ~ 4 )  (B2) 

with summation over repeated indices implied. 
It is easily shown that to compare the contributions to 

the current density from (B 1 ) and (B2) one need only com- 
pare the following quantities (for the sake of simplicity the 
phonon energy is ignored) : 
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dk dk' ;=I 
[E ( p )  -E (p-k)+iy] [ E  (p)-E (p-k') -iyl [ E  (P)-E(p-k-kT)  +i7Iz' 

where E ( p )  = p 2 / 2 m  specifies the dispersion law for elec- 
trons in the conduction band. A direct estimate of these ex- 
pressions shows that their ratio is equal, in order of magni- 
tude, to y/E, with y the phonon width of the energy levels, 
and E the characteristic energy of electrons participating in 
photoconductivity. 

APPENDIX C 

Let us estimate the contribution to the DC density from 
terms in expressions for one-particle functions containing 
the first and second harmonics of the mass operator. From 
( 3 8 )  we easily establish that such a term in the first harmon- 
ic of the retarded one-particle function has the form 

G:,. (E, E-St; + I )  

where the "tilde" indicates that instead of writing the entire 
term we have written only the part of interest to us. The 
zeroth harmonic on the right-hand side of ( C l )  can be as- 
sumed to be the equilibrium one. Obviously, the contribu- 
tion to the current density is provided by the term next to the 
last on the right-hand side of ( 4 8 ) ,  in which for 
F,,(E + R,E; + 1 ) we can use ( 4 0 ) .  As a result the corre- 
sponding additional term to the current density is 

The ratio of the additional term ( C 2 )  to the current density 
determined by the second term in ( 5 5 )  in order of magnitude 
is evidently 

and is small if condition ( 4 5 )  is met. 
Similarly, it is easy to show that the corrections from 

the first harmonic of the mass operator to the first harmonics 
of the correlation and retarded functions lead, in accordance 
with the last two terms on the right-hand side of ( 4 8 ) ,  to 
additional terms in the DC density whose expressions coin- 
cide with ( C 2 ) ,  in order of magnitude. 

Next, from ( 3 8 )  we can find the corrections from the 
first harmonic of the mass operator to the second harmonics 
of one-particle functions: 

Fu, (E, E-2Q; +2)  

=- F . ~ , ( E ,  E-Q; +I )M; ,~ .  (E-Q, E-2% + I )  
L, 

G,:. (E,  E-2Q; +2)  

=-z Mi*, (E,  E-Q; + I )  G; (E-Q, E-2Q; + I )  G ;(E-2Q). 
A, 

( C 5 )  
If for the first harmonics of one-particle functions we use 
( 3 9 )  and ( 4 0 ) ,  we can easily calculate the additional terms 
in the DC density. It appears that under condition ( 4 5 )  in 
the model used in deriving formula ( 5 5 )  these additional 
terms also coincide with ( C 3 ) ,  in order of magnitude. 

Similarly, it is easily shown that the ratio of the addi- 
tional term in the DC density from the second harmonic of 
the mass operator to the current density given by formula 
( 5 5 )  is, in order of magnitude, 

where rpi = yp + yi. Obviously, the right-hand side of ( C 6 )  
is small if condition ( 4 5 )  is met. 

The harmonics of the mass operator, which appear on 
the right-hand sides of ( C 3 )  and ( C 6 ) ,  can be calculated 
explicitly for each specific case via the general expression 
( 2 2 ) .  For instance, if we take the complete vertex matrix in 
the zeroth approximation in the electron-phonon coupling 
constant and the phonon functions in their equilibrium form 
in the homogeneous continuum approximation ( 3 7 ) ,  the 
right-hand sides of ( C 3 )  and ( C 6 )  are equal, in order of 
magnitude, to the fraction yp/R, which in accordance with 
condition ( 4 5 )  is much lower than unity. 

APPENDIX D 

Let us show that the contribution to the current density 
from terms containing products of four matrix elements of 
impurity-band transitions is negligible in comparison to the 
value given by ( 5 5 ) ,  provided that condition ( 4 5 )  is met. 
Such terms appear when two of the four indices over which 
summation is done in ( 5 0 )  refer to a localized state and the 
other two to delocalized states. As an example, here is one 
such term in ( 5 0 ) :  
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where the dots indicate that there are several other similar 
terms. All the terms of this form at p = p' provide the follow- 
ing contribution to the DC density [if condition (73) is 
met] : 

Obviously, the ratio of expression (D2) to expression (55) is 
equal to y/R, in order of magnitude. The more general 
expression ( D l  ) provides a contribution to the current den- 
sity which is no greater than (D2) in order of magnitude. 
Thus, if condition (45) is met, the contribution to the cur- 
rent from terms containing products of four matrix elements 
of impurity-band transitions can be ignored. 

We now consider the contribution to the current den- 
sity from the terms in (50) that contain the product of two 
matrix elements of impurity-band transitions with different 
values of indices "2" and "4." This occurs when one of these 
indices refer to a localized state and the other to a deloca- 
lized state. Assuming that (5  1 )-(54) and (73) are valid, we 
easily find from (46) and (50) that 

The ratio of this expression to (55 ) is clearly equal to y/fl, in 
order of magnitude, where y is a typical value of the inverse 
time for nonequilibrium electrons to scatter on phonons. We 
see that if condition (45) is met, the terms considered here 
are indeed small in comparison to the value specified by 
(55). 

APPENDIX E 

Let us estimate the contribution to the DC density from 
integral terms in the equation for the two-particle function 
G" containing functions p and p + [see Eq. (34) 1. In sym- 

bolic form the integral term in question has the form 

en={@ (G'cpF+Fcp+G") +2T(G'cpGa)+6"(G'cp+G")), (E l  ) 

where the bar over function G I 1  implies that the right-hand 
side constitutes only a part of the full function GI1. It can be 
demonstrated (in a way similar to that in Ref. 23) that when 
the electron-phonon interaction is fairly small, Eq. (35) for 
function p can be solved iteratively and only the first approx- 
imation need be retained, with p = - G' Gr . Then the M th 
harmonic of G" has the form 

+Gi,.'(E~oh+nS2+n'P, E r o , + n P ;  n') 

where summation over all the integers m, m', n, and n' satis- 
fying the condition m + m' + n + n' = M is implied, and 
the dots refer to other terms that are similar products of 
harmonics of other combinations of one-particle functions 
(with the same independent variables and indices). The full 
expression (E2) can be written symbolically 

where the double sign + corresponds to the double signs in 
(E2), over which summation is implied. 

In accordance with formula (27) for the DC density, 
we must consider the second harmonic of the two-particle 
function. Then we have M = 2 in (E2). Let us examine in 
greater detail one of the terms corresponding in (E2) to the 
set m = 2 and m' = n = n' = 0 (for all other terms the esti- 
mate remains valid). For the second harmonic of the retard- 
ed function we use (41 ) and for the zeroth harmonics we use 
the equilibrium functions. Employing (E2), we calculate the 
value of (47), denoting it by 1 B .  As in the derivation of 
expression ( 55 ) for the current density, we consider the case 
where the indices 1,2,3, and 4 in (E2) pertain to delocalized 
states, and we also assume that 4 = 2 = p and 1 = 3 = q and 
allow for (5 1 )-( 53) and (60). Here the term explicitly writ- 
ten in (E2) leads to the following expression for p: 

where, as before, the index idenotes a localized state (not to the DC density from (E3) to the current density given by 
be confused with the unit imaginary number in the denomi- formula (55) is equal, in order of magnitude, to the small 
nators). Obviously, integration in (E3) with respect to k quantity y/fl. 
leads to the appearance in the numerator of a quantity of the Similarly, it is easy to show that the integral terms on 
order of y, . For this reason the ratio of the contribution to the right-hand side of Eq. (34) containing the zeroth har- 
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monic of the two-particle function G" yield the same value 
of the current density. 
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