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The permittivity tensor for 2 1 GeV y rays in the region of single-crystal orientations 
corresponding to coherent pair production is determined in a model in which the single crystal is 
treated as a region with an electric field generated by atoms arranged in an ordered fashion in 
space. The polarization characteristics of normal electromagnetic waves propagating in single 
crystals are found using the permittivity tensor. In particular, it is shown that there exist solutions 
of the dispersion equation for elliptically polarized waves. Other electrodynamic processes in 
single crystals, including Cherenkov radiation from charged particles, are also studied. 

According to theoretical and experimental investiga- 
tions (see Refs. 1 and 2 and the literature cited there) elec- 
trodynamic processes in single crystals differ significantly 
from the same processes in an amorphous medium. This is 
because a single crystal is a medium that is filled with an 
electric field that is generated by an ordered arrangement of 
atoms. It is with such a field that elementary particles inter- 
act. For electrodynamic processes the most important prop- 
erties of single-crystal fields are their magnitude, periodic- 
ity, and anisotropy. 

In some sense the electric field of a single crystal is simi- 
lar to that of a dielectric in which are present virtual elec- 
tron-positron pairs, which are analogous to the bound 
charge in a dielectric medium. The polarization of these 
pairs alters the external field and ul t i~ately causes Max- 
well's equations to be nonlinear for the fields of the single 
crystal with an electromagnetic wave propagating in them. 
Of course, a single crystal contains carriers of electric charge 
(electrons, ions, etc.), but their direct presence is significant 
only if the frequencies of the electromagnetic radiation pass- 
ing through the single crystal are low, while at high frequen- 
cies the fields formed by these charges play the main role. 
These considerations give a graphic picture of the process; a 
more accurate description of the vacuum polarization can be 
found in the l i t e ra t~re .~  

The interaction of an electromagnetic wave with the 
fields of single crystals can be described by introducing the 
permittivity tensor, as done for a constant uniform field.4.5 
The field of the wave satisfies the standard equations of lin- 
ear electrodynamics in a medium, in the present case an elec- 
tromagnetic vacuum, while such a tensor makes it possible 
to describe, from a unified standpoint, a number of processes 
occurring in single crystals, such as dichroism accompany- 
ing the passage of y rays, Cherenkov radiation from charged 
particles, and others. There is no doubt that the solution of 
these problems is of interest in practical applications for ob- 
taining polarized beams of high-energy electrons and y- 
rays."I2 

The present paper is concerned with determining the 
permittivity tensor in single crystals oriented in the region of 
coherent pair p rod~ct ion '~- '~  for 2 1 GeV y-rays, and ex- 
amining some electrodynamic processes using this tensor. 

ELECTRIC FIELDS OFSINGLE CRYSTALS 

The three-dimensional potential of a single crystal 
(averaged over thermal fluctuations of the lattice) has the 

where e and Z is the electron charge and the atomic number 
of the material of the single crystal, A is the cell volume, g is a 
reciprocal lattice vector,I3 r is the radius vector drawn from 
the origin of the unit cell 

S(g)  is the structure factor, F(g)  is the form factor of an 
atom in the single crystal, and A is the mean-square ampli- 
tude of thermal vibrations of the atoms. Thus the potential of 
the single crystal is determined, if we know the quantities 
U(g), which can be measured (strictly speaking the quantity 
1 U(g) 1' is measured) from the diffraction of x-rays or elec- 
trons. 

A y-ray can propagate in a single crystal at an arbitrary 
angle to the crystallographic axes of the cry2al. It  is of inter- 
est to find the intensity of the electric field 6 f ?  in a Cartesian 
coordinate system one axis of which is oriented along the 
direction of motion of the particle. In this coydinate system 
we obtain for the components of the vector 6 f ?  from Eq. ( 1 ) 

where a. are the elements of the matrix of the transforma- 
tion from the system of crystallographic axes into a new co- 
ordinate system (xl,x2,x,), the vector g is expanded in terms 
of the basis vectors of the reciprocal lattice 

and U(n,,n2,n,) = U(g). In this notation any of the three 
axes can be taken as the direction of motion. In the case that 
the matrix a. is unitary the formula (3)  describes the field in 
the system of crystallographic axes. 

It is well known that the properties of the field of an 
ultrarelativistic uniformly moving particle are close to those 
of the field of a light wave.4 We show that the field of the 
single crystal also has the same properties. For this we trans- 
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form into a coordinate system moving relative to the single 
crystal with velocity v (along the x, axis) close to the veloc- 
ity of light c. i n  this system we have for the intensities of the 
electric field if?' and magnetic field H' 

&',I= - 4nez C U (n,, n,, n,) (njGia..) 

x exp {-i [x,' (njGja2,) +x3' (njGjaSj) 1 

where y = ( 1 - v2/c2) - 'I2 and the variables x,, t andx', , t ' 
are related by the Lorentz transformations ( t  is the time). It 
is obvious that the longitudinal component of the field satis- 
fiesg; 4 O ; z H ; ,  g;z - H ;  ifthefactoryissufficiently 
large, and the formula (4)  can be regarded as an expansion 
in plane waves, where the quantity 1 p ( n j  Gja, ) 1 plays the 
role of frequency. In order to find the number of equivalent 
photons4'13 corresponding to the field of the particle we find 
the total electromagnetic energy flux along the direction v: 

where 

and V is the volume of the single crystal. Hence \Ire find the 
number of pseudophotons (determined by the indices n,, n,, 
n,) per atom of the single crystal: 

where N,  is the number of atoms per unit cell, g,, = njGjalj 
is the projection of the vector g on the direction of motion, 
and fi  is Planck's constant. The number density of pseudo- 
photons in momentum space q is given by (per atom of the 
single crystal) 

and the two sets of indices n,, n,, n, and - n,, - n,, - n, 
correspond to the same energy of a pseudophoton 
Ifi(njGjalj ) ycl. The total number of pseudophotons is de- 
termined by the sum over all reciprocal lattice vectors g in 
the relation (6). The main difference between the pseudo- 
photon spectra of an atom and a single crystal is that in the 

first case the spectrum is continuous while in the second case 
the spectrum is discrete. The existence of thermal oscilla- 
tions of the atoms of the single crystal radically changes the 
spectral density of pseudophotons for large g. Likewise, the 
spectrum lacks the divergence, characteristic for an individ- 
ual atom, in the limit qll -0 [the term with n,, n,, n, = 0 is 
eliminated from the spectrum (6) or (7) ,  since this term 
corresponds to an additive constant in Eq. ( 1 ) 1. Pseudopho- 
tons in single crystals have also been studied in Refs. 2 and 
13. 

Knowing the cross section a,, of the process4 
yy-e + e - , we can calculate the coherent part of the pair 
production cross section in single crystals from the formula 

where 

w, and w2 are the energy of the y-ray and the pseudophoton, 
respectively (wlw2 is a relativistic invariant). Hence it is ob- 
vious that only the lattice sites n,, n,, n, for which 
w1w2 > mZc4 holds contribute to the cross section. The quan- 
tity up, calculated from the formula (8),  is equal to the Born 
cross section, i.e., for a single crystal the logarithmic indefi- 
niteness characteristic for the pseudophoton method is ab- 
sent. 

The cross section up depends on the linear polarization 
of the y-ray6 

where the unit vectors e and T determine the polarization 
plane of the y-ray beam and some definite plane relative to 
the crystallographic axes (the wave vector of the y-ray lies in 
both planes). The formula (9) essentially determines a sym- 
metric tensor of rank two, whose components we denote as 
akr (k,l= 1,2). 

The case when the y-ray propagates in the single crystal 
at a small angle 8 4  1 relative to the crystallographic axis, 
determined, for example, by the factor G,, is of practical 
interest. The angle a ,  chosen as the plane angle between the 
plane containing the momentum of the y-ray and the vector 
GI and the plane containing the vectors G, and G,, deter- 
mines the azimuthal direction of motion relative to the axis 
GI. There is no loss of generality in this approach, since the 
choice of crystallographic axes is not unique and any axis 
can be chosen as the G, axis. In this case 

gIl=G,nl+O (Gznz cos a+Gsn, sin a ) ,  (10) 

and it is obvious from a comparison of Eqs. (7)  and (8)  that 
the terms of the reciprocal lattice with n, = 0 make the main 
contribution to the cross section. This fact is well known in 
the theory6.l3 and the y-ray energy is 2 1 GeV when this 
approximation holds. This means that the coherent pair pro- 
duction occurs, in practice, in the field 

0 

(1 1) 
Q , = b  

4nezi 
U(0 ,  n,, n,) (n,G.)erp[-i(r2n2C2+x3n.G,)]. 

nz.na 

741 Sov. Phys. JETP 74 (4), April 1992 Maisheev eta/. 741 



This field is obtained by averaging (3) over the longitu- 
dinal coordinate with a unitary matrix (aii ). An important 
case is realized when the angle is sufficiently large (but 
8g 1). Then only one transverse coordinate dominates 

where from the set of numbers n2 and n, the particular 
numbers n2 and n, with the same ratio n2/n3 are selected, 
n; G :  = n: G : + n: G :, and xp is a variable transverse coor- 
dinate. In this case the field of the signal crystal reduces to 
the effect of the field of one plane. 

The conditions which the angles 8 and a must satisfy 
will be presented below. 

As is well known, the theory of coherent pair produc- 
tion is valid only for orientation angles 

(see Refs. 1 and 2),  where 8, is the entry angle of the y-ray 
relative to the axis or plane with the potential V,. For 
8, < p, the character of pair production is close to that of 
the same process in a constant field.2*9p10 The strength of the 
interaction of the y-ray with the electric field is character- 
ized by the parameter2 x = y%'/%',, where %' = m2c3/efi. 
We obtain the following estimate: 

where d is the interplanar spacing and p1 is the plane angle at 
which the first harmonic comes into play [see Eq. (8)] .  
Thus for coherent pair production, when the effect is most 
fully manifested (near the maximum of the first harmonic), 
small values of the parameter 1x1 5 1 are typical. 

We note that the pair production process in single crys- 
tals also occurs on fluctuations of the electric field. In Refs. 
13-1 5 it is shown that this process can be taken into account 
by adding to the cross section a, a term that is virtually 
identical to the cross section in the case of an isolated atom, 
i.e., the pair production processes in the potential ( 1 ) and on 
fluctuations of the potential ( 1 ) are virtually independent of 
one another. 

PERMITTIVITY TENSOR IN SINGLE CRYSTALS 

We write the equations of the electromagnetic field in a 
medium in the following f ~ r m : ' ~ , ' ~  

1 dD 
rotB=-- div D=O, 

c dt  ' 

div B=O, 

where E is the intensity of the electric field and D and B are 
the electric and magnetic induction vectors. All properties of 
the medium-the electric field of the single crystal ( 1 1 ) is 
the medium-are reflected in the relation between the vec- 
tors B, E, and D. We represent the relation between D and E 
in the form 

where E~ = eii + iEii is the complex permittivity tensor and 
w is the frequency of the y-ray. 

In order to determine the tensor .zii in the case of a mo- 
nochromatic field 

E=l/,{Eo exp [i (kr-at) ]+Eog exp [-i (kr-at) I ) ,  ( 16) 

where k is the wave vector of the y-ray, we find the average 
energy lost by the electromagnetic wave per unit volume and 
per unit time16,17 

The mechanism by which the wave loses energy is electron- 
positron pair production in the field of the single crystal. The 
process is determined primarily by the transverse part of the 
permittivity tensor, while the longitudinal components of 
the tensor are higher-order infinitesimals in the interaction 
constant a.Iv2 Taking this into account, and in the coordi- 
nate system one axis of which is oriented parallel to the wave 
vector of the y-ray, we have 

where 

On the other hand, knowing the tensor a,, we can write 

where cn, is the y-ray flux density and e is the polarization 
vector of the y-ray [the quantum analog of this vector in the 
formula ( 18) 1. 

Comparing Eqs. ( 18) and ( 19) we find the imaginary 
part of the permittivity tensor 

where E, is the energy of the y-ray. 
We determine the real components of the permittivity 

tensor with the help of the dispersion relations17 

where S,, is the Kronecker 6-function and the integral is a 
principal value integral. The integrals arising here are calcu- 
lated with the help of the theory of functions of a complex 
variable. Then in the system of coordinates such that one 
axis is oriented parallel to the direction of motion of the y- 
ray and the other two axes lie in planes determined by the 
vectors G,, G2 and GI, G,, the tensor E,, is a sum over reci- 
procal lattice vectors g = n,G2 + n,G, (n, = 0 8g 1) and 
has the following components: 
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2mc2 
zfl= . - - 1 

E,B (gz cos a+gs sin a)  I L ~  W,+n, W, ' 

The summation over g in Eq. ( 2 2 )  satisfies the condition 
2, > 0, 

BNa A 
SV=eA + - -C, b ( g )  (gZz+g3') F,X (2.). 

2 mc a 

The summation over g in Eq. ( 2 5 )  satisfies the condi- 
tion O<z,<l: 

I+ (1-z)"? 
F," ( z )  =z4[ln + 

I -  ( I - z ) ' I 3  Z 
( 2 6 )  

- ( l - Z ) t h  ( l + z ) ] ,  

A, = Wrnc is the Compton wavelength of an electron, 

a is the fine-structure constant, and rc is the classical elec- 
tron radius. The term E, in the formula ( 2 5 )  takes into ac- 
count the absorption of y-rays on thermal vibrations of the 
lattice and is equal to 

where we have ern and e r n ~ c o n s t  and these quantities are 
determined in the theory. 13-15 Since E, E, =: const, the corre- 
sponding terms in E ; ,  and E;, are negligibly small. Here we 
employed the system of units in which the reciprocal lattice 
constant is measured in units of A c- ' and the direct lattice 
constant is measured in units ofAc; this system is adopted in 
the theory of coherent radiationI3-l5 and is convenient for 
performing specific calculations numerically. The relations 
( 2 2 ) ,  ( 2 5 ) ,  ( 2 9 ) ,  ( 3 1 ) ,  ( 3 7 ) ,  and ( 3 8 )  are written in this 
system of units. 

It is obvious from the relations ( 2 2 )  and ( 2 5 )  that the 
components of the tensor E~~ are quadratic functions of the 
electric field of the single crystal. This is a manifestation of 
the nonlinearity of Maxwell's equations for the system con- 
sisting of the field of the single crystal in which an electro- 
magnetic wave propagates. In other words, the resulting 
field of such a system is not a superposition of fields of the 
single crystal and the wave. Although this nonlinearity is 
weak, it does result in easily observable physical processes, 
some of which are examined below. 

In a number of problems in crystal optics it is more 
convenient to employ the tensor qkr ,  which is the inverse of 
the tensor E ~ , .  When - Ski I 4 1, these tensors are related 

by 

One can see from the expressions (22)-(26)  that the 
components of the tensor ckl are functions of the two univer- 
sal parameters W, and Wv (if the term E, is neglected); this 
makes it easier to study processes occurring with different 
energies and orientations. The dependence on the param- 
eters WH and W v  is essentially a manifestation of spatial 
dispersion, i.e., the dependence of the components of the 
tensor Ekl on the wave vector of the y-ray. Thus in classical 
crystal optics the tensor E,, for a monochromatic wave is 
often determined by only several numbers." 

For orientation angles close to p, = Vo/mc2 (but larg- 
er than it), the components of the tensor can be easily modi- 
fied by introducing an effective mass, as done in Ref. 2  for the 
cross sections for pair production in single crystals. 

As we have already indicated, two types of orientations 
are important: axial and planar. Axial orientation occurs 
when we have W, 5 1 and Wv 5 1; planar orientation is real- 
ized when we have (W;+W$)1'2 ,1 ,  but 
W v /  WH z G,n,/G,n,. In the planar case only terms with 
n,/n, = const need be included in the expressions ( 2 2 )  and 
( 2 5 ) ,  since the contribution of the remaining terms is negli- 
gibly small. 

For high y-ray energies ( z  - 0) and fixed angles 8 and a 
the anisotropy of the properties of the single crystals is low 
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and the tensor &kl reduces to the following value of the real 
permittivity: 

where if is the Heaviside unit step function. It is helpful to 
compare this formula with the well-known relation for the 
permittivity at high energies16," 

where N, is the number of electrons per unit volume. The 
formula (29) takes the form (30), if it is assumed that the 
number of virtual electron-positron pairs with effective mass 
mg,, per unit volume is equal to 

where N, (g) is the number of pseudophotons, determined 
by the formula (6) ,  and the relation (29) can be written as 

This result shows that an electromagnetic wave interacts 
with one component of the pair, since the pairs occupy a 
spatial region of characteristic size -A,, while the wave- 
length of a y-ray is much smaller [hence the dependence 
E' - w - (Ref. 16) 1. Under these conditions, however, a vir- 
tual pair is a quite rigid system (at sufficiently high frequen- 
cies the pair production cross section decreases), so that it 
interacts with the wave as a particle with effective mass mg 
and charge e. 

In the general case the symmetric complex tensor E,, 

does not reduce to principal axes (i.e., there does not exist a 

coordinate system in which the tensors EL, and &I1 are simul- 
taneously diagonal). Thus the principal axes of the tensors 
EL, and E; !  are not parallel and make with one another some 
angle which depends on the parameters W, and WV. In 
the symmetry planes of the single crystal (in the coordinates 
W, and WV), however, we havep = 0 or 90" and the angle0 
approaches the same values away from the axis W,, W, ) 1. 
Thus the tensor Ekl  cannot be reduced to principal axes only 
when the y-rays make a small angle with the crystallograph- 
ic axis also. The physical nature of this phenomenon is ex- 
plained by the nonaxial nature of the electric field of the 
single crystal. Mathematically this results in the fact that for 
fixed angles of orientation, but different y-ray energies the 
position of the principal axes of the tensor is different; 
but, since the relation (21 ) is satisfied, the principal axes of 
the tensors and become nonparallel. 

Everything said above is also true for the tensor v k l .  
Thus in the system of the principal axes of the tensor 17L1 the 
tensor vkl has the form 

The manner in which the components of the tensor vkl 
transform when the coordinate system is rotted around the 
wave vector of the y-ray by an angle O, [relative to the system 
in which the tensor vkr has the form (32) ] is obvious. 

Figure 1 illustrates the behavior of the quantities 
S '/2 - 1 (top) and S "/2 (bottom) in the ( W,, Wv ) plane 
for a silicon single crystal near the (001) axis. These quanti- 
ties represent the permittivity of the single crystal neglecting 
the anisotropy of the properties of the crystal. The picture is 
symmetric with respect to the diagonal (the (100) plane), 
i.e., 

(along the diagonal0 = 0 or 90"). The figure was construct- 

FIG. 1.  Permittivity &' = 1 + S 1 / 2   and^" = S "/2 ofasilicon 
single crystal near the (001) axis in the coordinates W, and 
Wv [for W, and Wv = 0 the y-ray propagates along the 
(001) axis and for W, = 0 the y-ray propagates in the ( 110) 
plane]. Further explanations are given in the text. 

0 f 2 3 
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FIG. 2. Values of lei, - e;, I along the principal axes of the 
tensor EL, (bottom) and the angle O, ' between these axes and 
the (C,,G,) plane (top). The choice of crystallographic axes 
corresponds to Fig. 1. Further explanations are given in the 
text. 

ed according to the following principle: The maximum value 
of the quantity S '/2-1 or S "/2, equal to I ,  is divided into ten 
equal parts; the zero level corresponds to the values of S '/2- 
1 or S "/2 corresponds to the values ofS '/2-1 or S "/2 from 0 
to 0.11, and so on, I s . ,2~l=1.08-10-16 ,  
I,.,, = 0.67.10 - 16. In the calculations the MoliCre form 
factor was employed.' 

Figure 2 illustrates the values of A&' = leil - &12 I in 
the principal axes of the tensor E;, near the (001) axis of 

silicon. The quantity A&' is shown at the bottom of the figure 
and the angle q, ', which the principal axes of the tensor E;, 

make with the (Gl,G,) plane, is shown at the top. The princi- 
pal of construction is the same as in the case of Fig. 1. 
I,. = 18V, I,,. = 3.3.10 - 17. Similarly Fig. 3 illustrates the 
values of AE" = I&; ,  - E; I in the principal axes of the ten- 
sor &;/ near the (001 ) axis of silicon. The angle q, ", which the 
principal axes of the tensor make with the (G,,G2) plane 
(I,. = 18V), is shown at the top and A&" 

FIG. 3. Values of I&;; - E;; I in the principal axes of the ten- 
sor E:, (bottom) and the angle O, " between these axes and the 
(G,,C2) plane (top). The choice of the crystallographic axes 
corresponds to Fig. 1. Further explanations are given in the 
text. 
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(I,,. = 1.94.10 - 17) is shown at the bottom. In Figs. 1 and 3 
the term is neglected (E, = 1.32- 10 - 15/E, GeV for sili- 
con). We also note that p = q, ' - p ". Thus it is easy to see 
that the data in Figs. 1-3 completely determine the tensor 
&k/ near the (001) axis of silicon. 

PROPAGATION OF y-RAYS IN SINGLE CRYSTALS 

The main problem of crystal optics is to investigate the 
propagation of monochromatic plane waves, characterized 
by definite values of the frequency w and wave vector k, in 
single crystals. Such waves, satisfying a homogeneous wave 
equation, are called normal electromagnetic waves,17 and 
they have the form 

0 
E=E, exp-i (kr-at ) ,  k = - 

C 
a, 

where ii is the complex index of refraction and S = k/l kl is a 
real unit vector. The vectors D and B have the same form. 

From Maxwell's equations (14) we obtain the wave 
equation1' 

Taking into account the relation between D and E in a sys- 
tem of coordinates in which the axis x, is oriented parallel to 
the wave vector, we obtain 

For a monochromatic plane wave it follows from these equa- 
tions that 

From the condition that the two homogeneous equations be 
compatible we find the index of refraction of the y-rays: 

where S and DM are, respectively, the trace and determinant 
of the matrix vkl .  Thus two waves with different indices of 
refraction iil and ii,, in particular, with different absorption 
cross sections, can propagate in the single crystal. 

We first study the case when the y-rays propagate near 
the surface. For these orientations the tensor ?Ikl  can be re- 
duced to principal axes and the solutions of the dispersion 
equation will be two linearly polarized waves (parallel and 
perpendicular to the field of the plane). The corresponding 
values of these indices of refraction ii,, and ii, are determined 
by the relations 

where 
2mc2 

zn = - 
(E,Gnb)  ' 

and 0, is the angle of entry of a y-ray relative to the plane. 
The asymptotic behavior of the refractive indices in the limit 
z+ co (low energies or small angle of orientation 8, ) is of 
interest: 

,m 

where ( %'), is the mean-squared magnitude of the field of 
the plane in the single crystal (see Appendix). 

These formulas are similar to the analogous relations in 
a uniform constant electromagnetic field.4*5 The values of f i l l  
and ii, remain valid also for small orientation angles 
8, < p,, so long as x 5 1. Figure 4 illustrates the behavior 
of the refractive indices for the ( 110) plane in silicon as a 
function of the parameter W, # E, GBP/(2mc2). 

We now study the general case of the propagation of y- 
rays in single crystals. From Eq. (35) we find the ratios of 
the components of the vector D 

where S is the phase shift between Dl and D,. By adjusting 
the angle p the ratio x can be reduced to zero or to the form 
x = ip (since ID111D21sinS = b1b2, where b, and b, are the 
semiaxes of the ellipse and Ip I = bl/b2) .I8  The first case cor- 
responds to the propagation of a linearly polarized wave and 
the second case corresponds to an elliptically polarized 
wave; in addition, p > 0 (p < 0) corresponds to left (right) - 
hand polarization of the y-ray. 

The character of the polarization of the y-rays is deter- 
mined by the form of the tensor r],, . If we have M = 0 or 
A - B = 0, then two linearly polarized waves will corre- 
spondingly propagate in the single crystal along the princi- 
pal axes of the tensors r];, and 7i l .  It is the case M = 0 that is 
studied in the theory of coherent pair p rod~ct ion .~ , '~ '~  

If (A - B) .M # 0, then two elliptically polarized waves 
will propagate in the single crystal, and in addition their 
circular PC,, and linear P, polarizations are found from the 
relations 

From the relation (40) we determine the angle through 
which the polarization ellipse turns, and we substitute this 
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FIG. 4. Real (a)  and imaginary (b)  parts of the refractive indices for the ( 1 10) plane of silicon as a function of the parameter W,, = GE,OP/(2m$).The 
numbers on the curves correspond to the quantities shown on the left-hand side of the figure in the order top to bottom. 

angle into Eq. (41) in order to determinep. From Eqs. (36) sion equation in an infinite medium. In order to resolve the 
and (39) we obtain question of the propagation of waves near a boundary (and 

therefore describe the establishment of polarization) it is 
necessary to study the system of equations (34) with bound- 

(44) 

where the indices in parentheses refer to waves with refrac- 
tive indices ii, and ii,. Hence it follows that the polarization 
ellipses of two waves have the same ratio of the axes, but the 
ellipses are turned relative to one another by 90", and in addi- 
tion the direction of rotation is the same in them. Some com- 
putational results for a silicon single crystal and the polar- 
ization characteristics of y-rays propagating in it near the 
(001) axis are illustrated in Fig. 5. 

The case when in the matrix (32) a = b is especially 
simple. Then 

M 
IP.~,I-21 B-A -1 , 21M(41B-AI, 

, 1 B-A 
(45) 

IPc~wI =-I 2 M  -1, 21MI;+IB-A(. 

Although the two waves have the same absorption cross sec- 
tions, the real parts of the refractive indices ii, and ii, are 
different (Reii, = Reii, only if 21M I = IB - A I ) .  

The case studied here, of elliptical polarization of nor- 
mal electromagnetic waves near the so-called singular axis, 
described in the l i t e r a t ~ r e , ' ~ ~ ' ~  where, strictly speaking, the 
condition B - A  = 2M #O holds for the components of the 
tensor (32), i.e., y-rays are certainly absorbed in the medi- 
um, is interesting in that ii, = ii,, as a result of which there 
appear nontrivial solutions for the normal waves.17 In addi- 
tion, conditions at the vacuum-medium boundary must play 
a definite role in the formation of normal elliptical waves. 
Indeed, normal elliptical waves are solutions of the disper- 

FIG. 5. Computed properties of a silicon single crystal and y-rays propa- 
gating in it as a function of the orientation parameter W, for W ,  = 1.16 
(the choice of crystallographic axes corresponds to Fig. 1 ). a )  Values of 
Ir];, - 7i2 I and 17;; - 7;; I in the principal axes of the tensors qLr and 
(curves 1 and 21, respectively; is the angle between the principal axes of 
these tensors (curve 3); b) absolute magnitudes of the circular polariza- 
tion PCi, of y-rays (solid line) and the asymmetry parameter R = Im 
(n, - n,)/Im(n, + n,). Here R does not include the absorption on ther- 
mal vibrations of the lattice. 

747 Sov. Phys. JETP 74 (4), April 1992 Maisheev et al. 747 



ary conditions for E and D. However, this problem is made 
more complicated by the fact that near a boundary the ex- 
pressions for the tensor E,, or T,, are not valid, since the y- 
ray absorption cross sections employed in the calculations 
are valid in a medium only at thicknesses greater than the 
pair production length I,. It can only be asserted that ellipti- 
cal polarization of normal waves results from the interaction 
of y-rays with the field of the single crystal at a distance > I,. 

We note that for these orientations ii,, and ii, are differ- 
ent and the general case of propagation of y-rays in single 
crystals was studied. 

Although the present work concerns the interaction of 
y-rays with single crystals, the relations obtained for the ten- 
sor &,, and the refractive indices will also be valid for the 
interaction of a y-ray with the field of a linearly polarized 
wave, for example, when an intense laser beam encounters a 
beam of y-rays (possibilities for performing such experi- 
ments on electron accelerators are already being studied). 
According to the formula (16), in order to describe such a 
process the number NN, of pseudophotons with energy 
ficygll per unit volume must be replaced in the relations ob- 
tained by the average number of photons per unit volume of 
the electromagnetic wave. 

COHERENT SCATTERING OF A y-RAY IN THE FIELD OF THE 
SINGLE CRYSTAL 

As is well known, the optical theorem4 relates the am- 
plitude of elastic scattering of a y-ray through zero angle 
with the total cross section for the production of an electron- 
positron pair. Thus the cross section for scattering da/dCl 
through zero angle in the field of the single crystal can be 
expressed in terms of the components of the tensor E,, . For 
planar orientation of the single crystal we obtain 

where&' and E" are the values of &, , and e2, (along the princi- 
pal axes of the tensor e,, ), depending on the polarization of 
the y-ray (parallel or perpendicular to the plane), and dR is 
an element of solid angle. It is obvious that the dependence 
on the polarization of the y-rays is also manifested in elastic 
scattering of y-rays in single crystals. In addition, it is evi- 
dent that the expression (46) contains interference between 
the scattering of y-rays in the field of the single crystal ( 11) 
and the scattering by separate atoms. The cross section for 
the scattering of normal elliptic waves by zero angle can also 
be obtained similarly. 

ROTATION OF THE POLARIZATION PLANE OF ./-RAYS IN 
SINGLE CRYSTALS 

If in the matrix (32) we haveA = B, then after a linear- 
ly polarized y-ray traverses some distance in the single crys- 
tal the polarization plane of the y-ray will, generally speak- 
ing, change.I2 The mechanism of this phenomenon is quite 
simple and is explained by the different rate of absorption of 
normal waves. Indeed, a completely polarized wave can be 
decomposed into two normal waves in orthogonal directions 

where R (0)  is the initial polarization angle (R  = 0 along the 
plane with the cross section all ). As one can see from Fig. 4, 
the condition A = B is even satisfied in the planar case, 
though for one angle of entry of the y-ray relative to the 
plane. Specific calculations show that near the axis there 
exist quite large regions of orientation when A =Band where 
this effect should occur [for example, for the (001) axis in 
silicon the center of such a region lies at W, ~2 and W ,  =:4 
(see Fig. 2) 1.  

CHERENKOV RADIATION IN SINGLE CRYSTALS 

As is well known, a charged particle can emit Cheren- 
kov radiation only in a medium whose permittivity E' > 1. 
Calculations of the permittivity for high energy y-rays show 
that E' > 1 in single crystals near axes and planes, but because 
the difference E' - 1 is small Cherenkov emission is possible 
only for very high-energy particles [we have 
y = ( 1 - v2/c2) - > 10' near the (001) axis in silicon]. 
In the subsequent calculations we neglect the anisotropy of 
the single crystal (it is small for the axial case) and we char- 
acterize its properties by the single quantity E' = 1 + S1/2. 
For ultrarelativistic particles ( y$ 1 ) and E' - 1 4 1 the 
Frank-Tamm formula can be written in the form 

where n, is the number of y-rays with energy E, emitted 
over the thickness of the single crystal L. The results of cal- 
culations performed using this formula are presented in Fig. 
6. The choice of angle 8 is based on the consideration that it 
must be greater than the angle p, = Vo/mc2z0.15 mrad 
(silicon, (00 1 ) axis), and the choice of a permits extending 
somewhat the high-energy part of the spectrum, though the 
dependence on a is weak at the beginning and in the middle 
of the spectrum. Increasing the angle 8 results in a shift of the 
spectrum toward low energies. The quantity dn,/dL for y- 
rays with energy 0-1000 GeV is equal to 0.02 photons/cm 
and 0.01 photon/cm, respectively, for y = oo and y = 2-10'. 
We note that Cherenkov emission will also exist for 8 < p, . 
Indeed, as has already been indicated, the asymptotic behav- 
ior of E' in the limit 8-0 is identical to that of E' for small 
values of E,. Thus a high-energy particle will radiate for 
6 < p, as long as X (  E, ) 5 1 holds. The use of single crystals 

with different absorption cross sections all and a,. Hence we 
FIG. 6.  Energy spectrum of Cherenkov y-rays (for a 1 cm path) from 

find the angle of rotation fl of the polarization plane charged  articles with the relativistic factor = ( 1 - v2/cZ) - ' I2 - A 

= m ( 1 ) and 2.2.10' (2)  and moving near the (001') axis of silicon. The 

(47) angles of orientation of the single crystal are 0 = 0 . 2 5  mrad and 
a =  tan-' 1/4. 
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consisting of materials with a high atomic number makes it 
possible to reduce somewhat the threshold energy of charged 
particles. 

In the present paper we have derived the permittivity 
tensor for y-rays 2 1 GeV on the basis of a representation of 
a single crystal as a region of electric field of atoms arranged 
in an ordered fashion in space. With the help of this tensor 
we found and studied the polarization characteristics of nor- 
mal electromagnetic waves propagating in single crystals, 
and in particular we showed that there exist solutions of the 
dispersion equation for elliptically polarized waves. We also 
studied some other electrodynamic processes occurring in 
single crystals. 

The existence of refractive indices of y-rays different 
from unity in single crystals was associated to the nonlinear- 
ity of Maxwell's equations, and it is certainly of interest to 
observe such refractive indices experimentally. The exis- 
tence of electron-photon beams with energies of hundreds of 
GeV on modern proton accelerators provides the necessary 
prerequisites for such experiments. Calculations show that it 
is quite possible to measure the difference of the real parts of 
the refractive in dice^'^^*"*'^ in such beams. Assessments of 
the possibility of measuring the absolute values of these in- 
dices are more pessimistic, but nonetheless Cherenkov emis- 
sion from ultrahigh energy charged particles makes it possi- 
ble, in principle, to determine these quantities 
experimentally. 

From the standpoint of practical applications, the re- 
sults obtained in this work can be used for generating high- 
energy polarized electron-photon beams and for determin- 
ing their polarization characteristics. 

APPENDIX 

Some useful relatlons for the interplanar fields in a single 
crystal 

where p and Z? are the average potential and average electric 
field, respectively, of a plane of a single crystal, G = 27~/d, d 
is the interplanar distance, and the value of the transverse 
coordinate x = 0 corresponds to the midpoint between the 
planes. The rest of the notation is explained in the text. In 
order to compare the formula (3)  with ( i3?)2 it is necessary 
to take into account the fact that A = N,/N. It is especially 
desirable to write the first three formulas in this form when 
S(g )  is a real number. 
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