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Holes injected into a lattice of electronic quantum dots move in the potential valleys between the 
dots. The Coulomb interaction of the holes with localized electrons results in renormalization of 
the hole cyclotron frequency by a polaron mechanism. This effect is calculated without the 
assumption that the interaction is weak. 

Progress in submicron technology has made it possible 
Hint = z unF(r-an), ( 1 )  to develop, in the last few years, regular periodic structures 

an 
of artificial atoms--quantum dots, in which the parameters 
of the confining potential and the number of electrons per where the force F ( r  - a, ) at distances Ir - a, I which are 
"atom" can be changed in a controlled manner within very larger than the electronic radius of a quantum dot is asymp- 
wide limits. Such objects are usually prepared from a struc- totically equal to 
ture containing a two-dimensional electron gas. Many inter- 
esting effects, well known in solid-state physics, can be mod- NZ2 (r-a,) llr-a, 13. 

by a system of quantum dots under Here Nis the number of electrons at a quantum dot and $ is 
completely controllable conditions. the square of the effective charge (taking into account di- 

In the present paper we investigate a polaron-type ef- electric constants of the media in contact with one another). 
fect, governed by the Coulomb interaction between the elec- The potential energy associated with the oscillations of elec- 
trons of quantum dots and nonequilibrium holes, which are trons at the dots is equal to 
injected into the sample or are photoproduced in the sample. 
In a sufficiently strong magnetic field (the cylotron radius of 
the hole is shorter than the period of the lattice of quantum z ~ r n . ~ ~ u . ~ / 2 ,  

dots) the situation at hand can be reduced to an exactly solv- an 

able model. The observable effects are the dependence of the and for the complete Hamiltonian of the system under study 
hole cyclotron resonance frequency or the interband-lumi- in a magnetic field we have 
nescence frequency on the number of electrons in the quan- 
tum dots. 

We consider a lattice of quantum dots, in which local- 
ization of electrons is achieved by creating a periodically 
modulated electrostatic potential. Such a system was real- 
ized, for example, in Ref. 1. A hole, evidently, feels the effect 
of the same potential, but with the opposite sign, so that the 
regions occupied by the electrons in quantum dots are poten- 
tial barriers for holes and the intervals between the dots are 
valleys, where the potential energy of the holes has minima. 
We denote the latter potential energy as V(r), where r is the 
coordinate of the hole, V(r + a, ) = V(r), and a, is the set 
of lattice vectors of the quantum dots. 

We use a parabola with frequency (n to approximate the 
potential restricting the motion of electrons at a quantum 
dot. The theoretical and experimental justifications for this 
approximation can be found in the review by A. Kumar2 and 
in references cited there. We also assume that the period of 
the lattice of quantum dots is large compared with the elec- 
tronic radius of the dots. Then a hole is located primarily at 
large distances from the electrons at the quantum dots, and 
its Coulomb field within each dot, in leading order, can be 
regarded as uniform. It is known3 that such a field, in the 
case of a harmonic confining potential of the quantum dot, 
excites only the degree of freedom that corresponds to the 
motion of the center of mass of the system of electrons. Des- 
ignating the coordinate of the center of mass of a quantum 
dot, located at a lattice site a,, by u, we can write the interac- 
tion energy as 

where me and m, are the electron and hole effective masses, 
P, is the hole momentum, and P, is the momentum asso- 
ciated with the coordinate u, . 

Thus the problem has taken on the typical polaron 
form, where collective oscillations of electrons in the quan- 
tum dots play the role of phonons." 

The potential energy of the "hole + electrons in quan- 
tum dots" system consists of the last two terms in Eq. (2)  
and the term 

The positions of the minima (and in general the extremal 
points) in the configuration space of the system are deter- 
mined by the system of equations 

Nm.Qzun+F (r-a,) =O! (3a) 

Substituting u, from Eq. (3a) into Eq. (3b), we verify 
that the coordinates of the hole which correspond to the 
extrema of the total potential energy are determined by the 
extrema of the function 
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Consider a square lattice of quantum dots, in which the 
coordinates of the sites are n,L and n2L, where L is the peri- 
od and n, and n2 are integers. Then, obviously, the minima of 
V(r) are located at the points (n, + 1/2)L and (n, + 1/ 
2)L. The second term in Eq. (4) has a minimum near the 
lattice sites. Thus the situation is a multivalley one, in the 
sense that W(r) has equivalent minima at four points in each 
unit cell which are located on the diagonals of a square. 

The motion of a hole near a minimum in the presence of 
a magnetic field, oriented perpendicular to the plane of the 
structure, is localized in a region of size (Nm,  w) 'I2, where 
o is the hybrid frequency of the hole. The motion can also be 
finite near a maximum of the potential, if the magnetic field 
is sufficiently strong. In general, for a two-dimensional par- 
ticle in a neighborhood of an extremum of the potential ener- 
gy with the principal curvatures 4 and $, the hybrid fre- 
quencies in a perpendicular magnetic field are equal to 

where w, is the cyclotron frequency. It  is easy to verify that 
the for 4 ,$ > 0 (minimum) 65: ,a: > 0, i.e., the motion is 
finite; for Y: ,$ < 0 (maximum) both hybrid frequencies w , 
and w, are real (i.e., the motion is finite), if w, > Iv, I + IvZI. 
Finally, in the case of a saddle point 4,$ < 0 one of the 
hybrid frequencies is always imaginary, i.e., the motion is 
infinite no matter how strong the magnetic field is. We note 
in passing that the frequently used argument about the mo- 
tion of a Larmor center along lines of constant level is not 
always applicable: Near a maximum of the potential all lines 
of constant level are closed, but the motion becomes finite 
only in a field exceeding some critical value. 

We assume below that the motion of a hole is finite, and 
in addition the size of the region where the hole is localized is 
assumed to be small compared with the lattice period of the 
quantum dots. Then Hi,, can be expanded in powers of the 
small deviations of r from the extremum point r,, retaining 
only the term proportional to (u, - u,, ) ( r  - r,), where 
u,, is found from Eq. (3a) at r = r,. Then we arrive at the 
exactly diagonalizable Hamiltonian of coupled harmonic os- 
cillators in a magnetic field. The closest analogy is the prob- 
lem of local modes in crystal lattice dynamics. The levels 
corresponding to coupled oscillations of a hole and electrons 
at the dots split off the band of oscillations of quantum dots 
with frequency a."  It is these levels that contain the desired 
polaron shift of the hole cyclotron frequency. The corre- 
sponding characteristic frequencies are found from the con- 
dition that the following system of equations have a solution: 

Here the two-dimensional vectors A, correspond to the am- 
plitudes of the displacements of the center of mass of the 
quantum dot at the site a,, B is the same thing for a hole, we 
and oh are the electron and hole cyclotron frequencies, and 
v$ (a, P = x,  y) are coefficients in the quadratic form aris- 
ing when V(r) is expanded around the extremum point r,, 
and 

Finding A,, and A, from the first two equations of Eqs. (5) 
and substituting into the last two equations of Eqs. (5) ,  we 
obtain the dispersion equation for the frequencies which are 
split off: 

where 

(we used the asymptotic expression for F ( r  - a, ) under the 
assumption that the extremum points r, are located far from 
the lattice sites of the quantum dots). The desired roots, 
which correspond to the hole cyclotron resonance, are those 
solutions of Eq. (6) which pass into v +  as y-0. Because of 
the complexity of the general formulas, we examine the sim- 
plest limiting case: 6 (w: (hole on an almost flat section 
of the potential relief) and ?(a2,  w: , which corresponds 
to a weak-coupling polaron. We obtain 

For w, > a  (strong magnetic field) for a heavy hole the in- 
equalities w + > w, > w - are satisfied. Then 

i.e., the change in the hole cyclotron mass Am, is positive 
(normal polaron effect). The frequency shift is proportional 
to f ,  i.e., the square of the number of electrons at a dot. An 
anomalous polaron shift Am, < 0 is obtained in the situation 
m, <me (light holes in Ge, Si) for sufficiently strong mag- 
netic fields, when the inequalities w, > w+ > w- are satis- 
fied. Pseudocrossing of terms occurs near a+ = oh : 
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which should be exhibited in an experiment as splitting of 
the cyclotron peak of a light hole. 

In conclusion we note that our harmonic-oscillator 
model becomes unstable when the value of y is too high. 
This, of course, is a consequence of the expansion of Hi,, in 
powers of u, and r - r,. This instability disappears when the 
anharmonicity of the vibrations of the quantum dots and the 
fact that Hi,, decreases with increasing Ir - r,l are taken 
into account. The threshold of instability is obtained from 
Eq. ( 6 ) ,  if we set there w = 0 (appearance of a soft mode). 
Then we obtain f12 min( 4 ,d ) > 5y"/2, where y: and 4 are 
the principal values of the tensor y2,8. For GaAs with 
fifl = 2 meV, fiv,,, -0.2 meV the region of stability corre- 

sponds to N <  30, which is easily achievable for systems de- 
scribed in existing  experiment^.^.^ 

'' In the Hamiltonian (2)  the dipole-dipole interaction of quantum dots 
with one another, which decreases with distance more rapidly than the 
charge-dipole interaction Hi,, , was omitted. Taking this interaction into 
account would result in smearing of the band of vibrational levels 
fiQ(n + 1/2), which correspond to "phonons" of the system of quan- 
tum dots. For the problem under study such smearing is not of funda- 
mental significance. 

'' In the absence of interaction between dots the width of this zone is equal 
to zero. 
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