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If the current relaxation time in a ring is shorter than the time it would take light to propagate 
across the ring, the stored magnetic energy is radiated efficiently along the axis. A method is 
proposed for carrying out calculations on the current relaxation in a thin ring with allowance for 
the radiation and retardation. Some possible implementations of the effects found here are 
discussed. 

INTRODUCTION 

The radiation by any system of slowly varying currents 
is well understood (Ref. 1, for example). In this "magnetic 
dipole" case, the energy flux density P is  given by the famil- 
iar formula 

where m = IS, /c is the magnetic moment, I is the current, 
S,  is the area of the ring, 9 is the angle between the observa- 
tion point and the axis of the system, and R, is the distance to 
the observation point. The efficiency of the radiation in this 
case, by which we mean the ratio of the radiated energy to 
the stored energy, is given by 

(polcro)s 
''=ln(polr). 

It is assumed here that the radiation is being emitted by a 
ring current (Fig. 1 ) with a relaxation time 7, determined 
from, for example, the condition I- I /ro . The proportional- 
ity factor (which is on the order of unity) depends on the 
shape of the current I. If the dipole approximation is valid, 
the efficiency is extremely small, as we easily see. We might 
add that the radiation does not have a pronounced spatial 
anisotropy. 

In the other case in which a ring current is radiating as it 
decays rapidly, i.e., under the conclition ro (p,/c, the situa- 
tion has been unclear, although it has been obvious that ener- 
gy would be radiated very efficiently in the limit r, -0. For 
this range of relaxation times, there has been no quantitative 
study of the radiation efficiency, of the directional properties 
of the radiation, or of methods for realizing such relaxation 
times, to the best of our knowledge. 

In this paper we are reporting a study of the radiation by 
a rapidly decaying ring current for relaxation times r(cro. 
We also examine the conditions under which this case can be 
realized. 

In Sec. 1 we look at the general problem of the radiation 
by a monotonically decaying ring current. In Sec. 2 we exam- 
ine the current relaxation process in a thin conducting ring 
under the assumption that the current has no effect on the 
state of the material. Here we take account of the inverse 
effect of the radiation and also retardation. We find the con- 
ditions under which a rapid current decay is possible. In Sec. 
3 we take the Joule heating of the conductor into account in 
an examination of rapid current relaxation. We conclude 

with a discussion of the results and directions for further 
study. 

1. RADIATION BY A RAPIDLY DECAYING RING CURRENT 

Let us consider the field radiated by a monotonically 
decaying current in the geometry in Fig. 1. Since the prob- 
lem is axisymmetric, it is a simple matter to write an expres- 
sion for the only nonvanishing component of the vector po- 
tential, i.e., the azimuthal component A, (the scalar 
potential can be taken to be identically zero): 

' ~ n  Z(t-  ( ~ o z + ~ z ~ ~ 2 ~ 2 ~ ~ o  cos I$)'"/c) 

A.=" J d r p w q  
0 

(po2+pZ+Z"-2ppo cos 9)" . 
(3  

Since we are interested in large distances (R,)p, and 
R, )pi/crO ) , we can expand the expression in the radical in 
(3)  in powers of l/Ro. As a result we find the expression 

Zn 

A. = J drp cos rpI (t-Ro/c+ppo cos rp/cR,) 
cRo , (4) 

for the vector potential. For the electric field E, = - A,/c 
we find 

zn 

Up to this point we have not specified the time depend- 
ence of the current. To find some concrete results, we take 
the dependence I ( t )  to be 

where r0 is a characteristic relaxation time of the current. 
We can then express the integral in (5)  in terms of elemen- 
tary functions: 

where 
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t'. 
FIG. 1. Geometry of the problem. 

[In ( 7 )  and below we are using r = ( t  - RO/c)/rO and 
E = po sin 8 /crO, and we are considering the case r > 0; for 
r < O  we have F( - r , ~ )  = - F(T,E).] 

Figure 2 shows the field as a function of the time and the 
observation angle. We see that in the case of a rapid current 
decay there is a direction, near the axis, along which the 
amplitude is a maximum. It also follows from Fig. 2 that the 
time between the maximum amplitudes of the pulse (posi- 
tive and negative) increases with increasing observation an- 
gle. The reason is that an observer at direction near the axis 
of the ring receives the fields from all points of the ring near- 
ly simultaneously, while an observer in the plane of the ring 
receives the pulse from the nearest half of the ring arrives 
first, and then, after a time At  = p,/c, the pulse from the 
other half. 

For convenience we also write an expression for the 
spectrum of the radiation: 

4npoZoi j ,  ( ;sin 8 ) 
+ ( a ) =  j d t  e i u ' ~ v ( t ) =  - 

czR0 exp(-l wzo I). 

For the energy flux density P = c[EH]/4.rr we then find 

If the current decays slowly (p, 4cr0  ), expression ( 8 ) natu- 
rally reduces to the magnetic-dipole approximation ( 1 ) . 

A quantity of importance in practice is the total energy 
which crosses a unit area in a given direction: 

This integral can be expressed in terms of elliptic integrals of 
the first and second kinds: 

Figure 3 shows the behavior of the concentration coefficient 
D(6)  [D(8) = 2W(8)/JW(8) sin(8)d6] as a function of 
the "rapidity parameter" of the process (po/cro ) . We see 
that with decreasing relaxation time a maximum arises in the 
energy flux density near the axis of the ring. The height of 
this maximum increases without bound. This spatial distri- 
bution of the radiation is qualitatively different from that in 
the dipole case, ro + 03. 

Integrating expression (9)  over the angle, we find the 
total amount of energy which is radiated: 

In ( 10) and below, the quantity v = p,/cr, is the rapidity 
parameter of the process. If we now assume that all the initial 
energy W,, is stored in the magnetic field and that it has the 
value 

then we can easily find the radiation efficiency 7 = W,,/W,,: 

For slow processes, expression ( 12) becomes the magnetic- 
dipole expression [see (2)  ], with a proportionality factor of 
1/12. Figure 4 shows a plot of the radiation efficiency versus 

FIG. 2. Field as a function of the time and the angle in the case FIG. 3. Directional pattern of the radiation. l-p,,/c~, = 1; 2-10; 3- 
P,/CT, = 30. 1-19 = 1'; 2-50; 3-lo4; 4--20". 100; 4--1000. 
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FIG. 4. Efficiency of the radiation versus po/cr0. 1-p,/r = 10; 2-10'; 
3-lo3; &lo4. 

the speed parameter v and the "thinness" 5 = p,/r. We see 
that, as we suggested, if the relaxation is fast enough energy 
will be radiated efficiently. If cr, - r, the efficiency becomes 
greater than unity, implying that our approximation is not 
valid in this region. This is the result which we would expect, 
since at such short times the distribution of the current over 
the cross section of the conductor would become important, 
while we have completely ignored that distribution in our 
original equation, (3). 

2. CURRENT RELAXATION IN A RING IN THE CASE OF LOW 
INITIAL CURRENTS 

To determine whether fast relaxation processes are pos- 
sible in principle, we consider the case in which the current 
does not alter the state of the conductor. In other words, we 
consider the case of low currents. It is easy to see that a 
current can be regarded as low if two conditions hold: 

a )  The Joule heating or (what is essentially the same 
thing) the stored energy is smaller than the internal energy 
of the conductor: 

where L, M, and w, are the inductance, the mass, and the 
heat of vaporization of the conductor. For ordinary conduc- 
tors we can assume that the current is low if I < r, where the 
current is expressed in milliamperes, and the radius in centi- 
meters. 

b) The electric field does not alter the nature of the 
conductivity, i.e., does not cause breakdown. If we restrict 
the discussion to ordinary conductors and to critical fields 
on the order of 50 kV/cm, we can write another condition 
under which a current can be judged low: j < 150 mA/mm2, 
where j is the current density. 

Under these conditions the relaxation time can be esti- 
mated roughly from T,, -L  /Rc2 [R = 2?rpo/uS, u, S, and 
L = 4npo In (p, /r) are the resistance, conductivity, cross- 
sectional area, and inductance of the conductor]. The rapid- 
ity parameter can be written as 

We see from this expression that if the radius is sufficiently 
large the current in the ring will decay rapidly, and the radi- 
ation will be efficient. Just how accurate this estimate is is 
not clear at the outset, since the concept of an inductance 

which we are using here is valid only in the quasisteady case. 
The case of a rapidly decaying current is by definition not 
quasisteady. To determine the actual relaxation time in the 
casep, %uS/c, we need to consider the radiation reaction. 

We can do this in a first approximation by incorporat- 
ing the dipole radiation in the energy balance equation: 

If we take that path, however, we still do not know the range 
of applicability. In the case of intense radiation, Eq. ( 13) is 
clearly incorrect, and we would have to start from the gen- 
eral Maxwell equations. They lead in the usual way to the 
wave equation 

In order to solve Eq. ( 14), we need to specify initial condi- 
tions. There are two ways to do this. 

First, we could assume that there is no electric field 
anywhere at t = 0 [E(r,O) = 01. On the other hand, the time 
derivative of the field is not zero [a, E (r,O) # 0 1. This case is 
realized when there is a sufficiently fast phase transition 
from a superconducting state to a normal state. 

Second, we can assume that the field is nonzero at t = 0 
[E(r,O) #O], but its derivative is zero [a,E(r,O) = 01. 

From the standpoint of the efficiency of the radiation, 
these cases are extremely similar. In the present paper we 
will discuss only the case with E(0)  #O. We will also assume 
that the initial electric field is concentrated in the interior of 
the conductor. This assumption makes it possible to pursue 
the analytic calculations quite far. In practice, this assump- 
tion means that the energy of the electric field is negligible in 
comparison with the energy of the magnetic field. Under 
these assumptions, Eq. ( 14) can be written as2 

where we can assume - co < t < co , and we can assume that 
all quantities are zero at t < 0. 

Equation ( 15) can be solved easily with the help of the 
retarded Green's function 

Go (r, t)  =-6 (t-r/c) 14nr 

(Ref. 2, for example) : 

Equation (16) is exact. In the case of a thin ring, i.e., under 
the condition 5% 1, we can replace J(r l , t )  inside the integral 
by 

I.(~)=s-'J dS1I.(.', t). 
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In other words, we can assume that the field and the current 
are both uniform over the cross section of the conductor. 
This assumption is completely reasonable, since at charac- 
teristic relaxation times ro -L  /cZR, the skin thickness is 
6 = c/(~P(Tw) '" at w - l /ro. The skin thickness is thus 
greater than the thickness of the conductor, implying that 
the current distribution is approximately uniform. We 
should of course restrict the discussion to parameter values 
such that the condition ro %r/c holds. 

After averaging Eq. ( 16) over the cross section of the 
conductor, we find an integral equation for 

~ ( t ) b s - ~  JE.(~, t)as: 

Now all the "geometry" of the problem is in the function 
G(t), which is given by 

Here we have used the polar coordinates (p, p, z); 
dS = dpdz; the integration is carried out over the cross-sec- 
tional area of the conductor forming the ring; and 8(r) is the 
unit step function. Integrating over p, we can rewrite ( 18) as 

The integration in (19) is carried out over the points at 
which the expression in the radical is nonnegative. 

Using the relation j = oE for the total current flowing 
through the ring, we find from ( 18) 

where I, = I ( t  = 0) and t > 0. Note that expression (20) is 
valid only if the conductivity is not too low ( ~ r u / c  > 1 ), 
since otherwise the distribution of the current over the cross 
section of the conductor becomes an important considera- 
tion. Actually, this condition is not restrictive. Interestingly, 
because of the discontinuity of the initial value E(r,O) at the 
surface of the conductor we have d,I(O) #O. 

To solve (20) we need to specify the function G( t) . This 
function is difficult to find analytically. However, for thin 
circular rings (and we are restricting the discussion to such 
rings), we can rewrite ( 19) as 

G( t )  =O for r<0 wd F>S (21) 

( K ,  K ', E, and E ' are elliptic integrals). The functiong(x, z)  
describes the effect of the remote regions of the ring on the 
current. For sufficiently thin rings (5- w ), this function 
can be replaced by 1/(8[). The function f(x)g(x, z) is plot- 
ted in Fig. 5. 

At t > 2po/c the inhomogeneous term in (20) vanishes, 
and the exact solution of this equation becomes 

where the coefficient f l  satisfies the transcendental equation 

Interestingly, by expanding the current in the integral 
in (20) in powers oft - t ' for the same region, we easily find 
an equivalent differential equation (admittedly, of infinite 
order) to describe the current relaxation process with radi- 
ation: 

The coefficients in this series are decreasing coefficients in 
the quasisteady case, so it is natural to regard (24) as a gen- 
eralization of the quasisteady relaxation equation which is 
found when only the first term on the right side is retained. 
The second term in (24) describes the effect of the radiation 

where 5 = p, /r, ? = ct /2r, FIG. 5. Plot of the function f (x )g (x ,  z) at z = 20. 
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due to the instant at which the current is turned on (due to 
the discontinuity in the first derivative). The third term de- 
scribes the effect of the dipole radiation and therefore differs 
from the corresponding term in ( 13 ) only by a total deriva- 
tive (and so forth). Expression (22) is of course a solution of 
(24). 

More interesting from our standpoint are the non-qua- 
sisteady regime and times 0 < t < 2p,/c, for which (22) and 
(24) are not completely correct. The effect of the field at 
parts of the ring remote from the point under consideration 
is unimportant in this region, and we can actually treat the 
current decay in an infinite conducting cylinder 
(po/r = co ). In this case G ( t )  can be described by the fol- 
lowing expression, in place of (2 1 ) : 

for 

Using this expression, we find that Eq. (20) has the exact 
solution 

has been taken into account here). Analysis of this figure 
reveals that for the parameter values chosen the solution 
with radiation is approximately the same as the solution of 
the quasisteady equation without radiation, LI/c2 = - IR. 
The greatest distinction is that at small values of the time the 
exact solution decays more rapidly than does the solution of 
the quasisteady equation without radiation. Figure 7 shows 
the radiation efficiency for a ring as a function of the speed 
parameter Y = pO / c r O  Comparison of this behavior with 
( 12), in which the replacement .r0 -ro/?r is made to recon- 
cile the time scales, shows that the efficiency of the radiation 
for the quasiexponential current under consideration here is 
higher than that for the current shape described by expres- 
sion (6). 

Overall, the results of this section of the paper lead to 
the assertion that under the condition pO/r%?rra/c the ini- 
tial magnetic energy will be efficiently converted into the 
energy of coherent radiation. 

OD 3. CURRENT RELAXATION IN A RING WITH JOULE HEATING 

X [ I -  
ino l ,  (o r / c )~ ," '  (o r l c )  

o+4nio[ 1 - id ,  (or/c)H'(" (or l c )  I 1. 
An important point is that for t)r/c this expression is the 
same as the exact solution of the problem of a decaying cur- 
rent in a cylinder: 

203, (kr)  R:" ( o r / c ) / ( k r )  
ckl ,  (kr)Ht;) (or/c)-"1, (k r )  Ht," ( o r / c )  

where k = wc - ' ( 1 + 4?ria/w) ' I 2 .  This agreement is further 
support for the validity of our approach. 

Figure 6 shows a representative result of the calcula- 
tions on the relaxation in an A1 ring (the finite value of po/r 

If the conditions for a low current are not satisfied, the 
relaxation process becomes considerably more complicated, 
since the resistance of the conductor increases in the course 
of the heat evolution. This increase in resistance leads in turn 
to an increase in the loss, a decrease in the relaxation time, 
and thus an increase in the efficiency of the radiation pro- 
cess. Furthermore, if the initial current is sufficiently high 
the conductor material may expand, with the result that the 
resistance may increase by several orders of magnitude, and 
the efficiency of the radiation may become comparable to 
unity. If the current is too high, the relaxation times may be 
so short that the induced electric fields cause breakdown and 
thus a sharp decrease in the resistance, since the conductiv- 
ity of the breakdown plasma is close in order of magnitude to 
the conductivity of a good metal. If the goal is to achieve an 
efficient radiation of stored energy, then both the geometry 
of the system and the initial currents should be chosen to 
maximize the heating of the conductor, but at the same time 
to prevent breakdown effects. The discussion below is re- 
stricted to the case in which the maximum electric field is 
less than 50 kV/cm. 

FIG. 7. Efficiency of the radiation by a rapidly decaying current versus 
FIG. 6 .  Current relaxation in a ring with po = 300 m and r = 0.03 mm, po/cr, withpo/r = lo7 and without heating. 1-Exact solution; 2-the 
without consideration of heating. 1-Exact solution; 2--quasisteady so- current is approximated by the expression Z/Zo 
lution. = 0.5 [ 1 - 2 arctan(?rt/r0)/n-1. 
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The heating of a conductor is an extremely complicated 
phenomenon, since numerous competing processes occur: 
thermal spreading, later hydrodynamic expansion, a redis- 
tribution of the current over the cross section of the conduc- 
tor, heat conduction, and more. However, a qualitative de- 
scription of this process is sufficient for our purposes. We 
will accordingly use a simple model in which the resistance 
of the conductor is determined exclusively by the thermal 
energy evolved during the heating of the conductor. The de- 
pendence of the resistance on the heat which has been 
evolved has been studied in many papers. A good approxi- 
mation of this dependence was proposed in Ref. 3. Although 
that approximation is based on a study of "exploding" alu- 
minum foils, we will use it to study the relaxation of high 
currents in a ring. 

According to the approximation proposed in Ref. 3, the 
relative increase in the resistance R (in comparison with its 
initial value R,  ) is described by the following function of the 
thermal energy w which is evolved: 

1. Heating to the melting point, 

2. Melting, 

3. Heating of the liquid, 

4. Explosion, 

R/Ri=14,5 exp (0,42(w-2,5)  ), w>2,5 kJ/g . (25) 

Approximation (25) is of course not valid at arbitrary 
values of the thermal energy which is evolved. If there is a 
pronounced specific heat evolution, the resistance decreases 
to values on the order of the resistance of a normal metal. To 
estimate the maximum specific energy at which (25) is val- 
id, we can draw on two facts. First, according to Ref. 3, 
expression (25) is definitely valid at w g  10 kJ/g. Second, an 
inspection of the data of Ref. 4 reveals that in the absence of 
hydrodynamic dispersal the resistance reaches its maximum 
at a temperature on the order of 40 eV, which corresponds to 
w=: 50 kJ/g. On this basis we can apparently assume that the 
expression (25) is valid at w<2O kJ/g. Taking this point into 
account, we will consider only situations in which the condi- 
tion w < 20 kJ/g holds. We should bear in mind that, if the 
range of applicability of (25 ) is broader, then the radiation 
may be even more efficient; if it is narrower, then in order to 
achieve the same results we should alter the geometry of the 
system, e.g., increase the radius of the ring. Another point 
which must be kept in mind is that for other materials there 
may be other approximations of the type in (25), and this 
circumstance could again lead to a change in the efficiency of 
the radiation from that found here, in one direction or the 
other. 

Once we have found the resistance as a function of the 
energy supplied, R (w), we can easily work from (20) to 
write self-consistent equations for the current relaxation: 

FIG. 8. Current relaxation in a ring with p, = 3 m and r = 0.7 mm with 
heating. 1-1, = 110 kA; 2-170; 3-240; 4--300,5-without heating. 

(M is the total mass of the ring). 
Figure 8 shows the nature of the relaxation for various 

values of the initial current. Note that at high values of the 
initial current the curve drops off progressively more sharp- 
ly; this behavior means that the conductor explodes. Since 
there is a rapid change in the current from a value near its 
initial value to a vanishing value, we would expect that effi- 
cient radiation of energy might be possible here. Note that 
the heating of the conductor takes considerably more time 
that the explosion itself, so that the process can be initiated 
by (for example) arranging the transition of a current-carry- 
ing superconducting ring to the normal state over a time 
short in comparison with the heating time. Such a transition 
is completely feasible. 

Analysis of (26) and (25) shows that, as soon as the 
specific stored energy density w, becomes greater than 2.5 
kJ/g (we recall that we are discussing an A1 ring as an exam- 
ple), a maximum is reached in dI /dt or the voltage U = IR. 
This maximum is interesting because, according to (5) ,  it is 
the behavior of the current near this maximum which deter- 
mines the radiation field. In this neighborhood the solution 
of (26) can be approximated by an expression 

If the voltage maximum is sufficiently sharp (or, equivalent- 
ly, if w, )2.5 kJ/g), this will be a good approximation if we 
choose I * = 2.16/ w;" and 

As the specific stored energy increases, the quantity I * de- 
creases in a power-law fashion, and .r, decreases in an expo- 
nential fashion. In other words, as w, is increased energy 
should be radiated more efficiently. 

Knowing the parameters of the approximating current, 
(28), we can then easily calculate the rapidity parameter of 
the relaxation process, using (9)  and ( 10) : 

v = O1'Oc erp ( 0 ~ 4 2 ~ ~ ) .  
u012 In (po/r) 

We also find the radiation efficiency 
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TABLE I. Parameters of the relaxing current at an initial current density jo = 400 kA/mmZand 
at a maximum field Em,, < 50 ( 100) kV/cm. 

and the maximum electric field in the ring, 
andy(x) = R(xwo)/Ri. If we use the approximation (25) 

- - 

for R (w), we naturally find an expression which agrees with 
(32) (31). 

where Em,, is in units of volts per centimeter, r is in centi- 
meters, and w, is in kilojoules per gram. We have of course 
used the expression W,, = LIG/2c2, rather than L I  */2c2, 
for the stored energy. Tables I and I1 show some typical 
parameter values of the relaxing current which were calcu- 
lated from these formulas. 

Interestingly, an unbounded increase in the initial ener- 
gy (even if the limitation imposed by breakdown is lifted) 
leads to an efficiency 7 = 1.95/ln(p0/r), not 7 = 1, as 
might be expected at first glance. 

The calculations above were carried out for a specific 
functional dependence of the resistance on the energy 
evolved, that in (25). If we are instead interested in estimat- 
ing the efficiency in the dipole approximation, there already 
exists an exact formula which is valid in this case, regardless 
of the dependence of the resistance on the energy evolved: 

K(wo) ( 1' inb(&) ' "=m 'of 

where 

4. CONCLUSION 

We have analyzed the radiation which occurs during 
free relaxation of a current in a ring. We have found that if 
the current decreases sufficiently rapidly stored energy will 
be radiated efficiently. The energy flux density radiated can 
reach high values in directions near the axis of the ring. 

If the heating of the ring can be ignored, efficient radi- 
ation is possible only for rings of sufficiently large diameter. 
Withp = 300 m, r = 0.03 mm, and a current on the order of 
3 kA, for example, the efficiency is 0.1. This result means, by 
the way, that an energy on the order of 10-100 kJ is radiated 
on a time on the order of 10 - S. An important point is that a 
radiator of this sort can be used repeatedly. 

If parameter values at these scales are unacceptable, we 
should apparently make use of the increase in the resistance 
during the flow of a current through a conductor in order to 
achieve an efficient radiation of energy. It has been shown 
here that, for ring diameters of several tens of meters and for 
initial current densities on the order of hundreds of kiloam- 
peres per square millimeter, it is again possible to achieve a 

TABLE 11. Parameters of the relaxing current for an initial current density j, = 100 kA/mm2 
and a maximum field Em,, < 50 ( 100) kV/cm. 

602 Sov. Phys. JETP 74 (4), April 1992 Afanas'ev et al. 602 



radiation efficiency on the order of 3-5%. Parameter values ' L. D.  Landau and E. M. Lifshitz, The Classical Theory ofFields, Nauka, 
in these ranges are recommended for testing the validity of Moscow, 1962 (Addison-wesley, ~ e a d i n ~ ,    ass., 1962). 

V. S. Vladimirov, Equations of Mathematical Physics, Nauka, Moscow, 
these results. 1975 
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