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Fluctuations of the order parameter are taken into consideration in an analysis of the temperature 
dependence of the upper critical field of a type I1 superconductor with a three-dimensional 
superconductivity. This temperature dependence is of universal applicability, to all type I1 
superconductors, if the magnetic fields and temperatures are expressed in appropriate units. This 
dependence is derived explicitly for the regions of strong and weak magnetic fields. The results are 
applied to high Tc superconductors, for which fluctuation effects are important. For these 
superconductors, the Hc2 ( T) dependence is quite different from the linear dependence 
characteristic of the mean-field theory, over a broad range of magnetic fields. 

INTRODUCTION 

According to the mean-field theory (the Ginzburg- 
Landau theory ), the upper critical field Hc2 of a type I1 su- 
perconductor is a linear function of the temperature near Tc. 
One would expect that the corrections to this dependence for 
fluctuations would be very small in the case of conventional 
superconductors, because of their extremely small Ginzburg 
numbers (Gi - 10 - "-10 - 14). In the high Tc superconduc- 
tors, in contrast, fluctuation effects are far larger ( Gi a 6;  4, 
where &, is the correlation length at T = 0). For YBaCuO, 
for example, the Ginzburg number is' Gi- 10 - 3.' Accord- 
ingly, the H,, (T)  dependence for the new superconductors 
may be very nonlinear even near Tc. This circumstance may 
be responsible for the curvature observed on plots of Hc2 ( T)  
for the high Tc superconductors in many studies (e.g., Ref. 
2).  

Golubov and Dorin3 included fluctuations in the order 
parameter in a study of the effect on Hc2 (T )  of an electron- 
electron interaction at the microscopic level (in the BCS 
model). That study was restricted to dirty superconductors 
in first-order perturbation theory in this interaction. Sha- 
piro4 and Bulaevskii et u I . ~  have studied Hc2 (T)  theoreti- 
cally in the fluctuation region [IT[ < Gi, where 
T= ( T  - Tc )/Tc ] by a microscopic approach, without spe- 
cifying the superconductivity mechanism. Through the use 
of the Y theory,6 they found the result Hc2 a I T [  4'3. There is a 
point to be noted about that result. In the functional of the VI 
theory which determines the free energy, only the simplest of 
the terms containing powers of the gradient, specifically 

I ( - ifiV - 2eA/c)$I2, was retained in Refs. 4 and 5; here A 
is the vector potential, and @ the order parameter. This ap- 
proach of ignoring terms with higher powers of the gradient 
is justified in the Y theory only for describing situations in 
which the variations in the order parameter occur over 
length scales much larger than the correlation length {(T) at 
the given temperat~re.~ [The functional of the 9 theory is 
essentially a block Hamiltonian, in which a smoothing is 
carried out to scales on the order of c( T) . ] This requirement 
is not satisfied, however, near the line H,, (T). The nucleat- 
ing regions of the superconducting phase which appear have 
a length scale on the order of {(TI, as in the Ginzburg-Lan- 
dau theory (Ref. 4).  The result derived for Hc2 (T) in Refs. 4 

and 5 thus cannot be regarded as having a solid foundation. 
Nevertheless, we would expect it to correctly convey the 
functional dependence of Hc2 on T in weak magnetic fields. 

Below we show that the Hc2 (7) dependence is notice- 
ably nonlinear not only inside the critical region ( 171 < Gi) 
but also outside it. Accordingly, in the present study') we 
analyze this dependence for the case in which there are fluc- 
tuation effects over the entire temperature range with 17) & 1. 
We use the results and methods of the phase-transition theo- 
ry of Ref. 8. In Sec. 1 we state the problem. In Sec. 2 we 
analyze the overall Hc2 (T)  dependence and show that it is 
universal for all type I1 superconductors, if the magnetic 
fields and temperatures are expressed in appropriate units. 
In the next two sections of the paper we derive explicit ex- 
pressions for the functional dependence of Hc2 on T in  the 
limiting cases of strong and weak magnetic fields. The re- 
sults of this study are stated in the Conclusion. 

1. STATEMENT OFTHE PROBLEM 

The field H,, ( T )  is generally understood as the mag- 
netic field below which the superconducting phase appears 
at the given temperature. This definition requires some re- 
finement when fluctuations of the order parameter are taken 
into consideration. We define the line Hc2 ( T) in the (H, T) 
plane as the line of second-order phase transitions from the 
normal phase to the mixed state. We start from the assump- 
tion that such a line exists, without proving it. Let us exam- 
ine the shape of this line. 

In a study of the superconducting phase transition one 
must in general consider fluctuations of the vector potential 
along with fluctuations of the order parameter. We know, 
however, that the contribution of the fluctuations of the vec- 
tor potential to the thermodynamic properties of a type I1 
superconductor is comparatively small, provided that the 
Ginzburg-Landau parameter is sufficient large (Ref. 9, for 
example). The size of the critical region with respect to fluc- 
tuations of the electromagnetic field was estimated in Ref. 
10. It was found that these fluctuations become important 
only under the condition 171 5 Gi, - Gitt - 3, where tt is the 
value of the Ginzburg-Landau parameter far from the tran- 
sition point ( 17-1 > Gi) . Since Gi, is small even for the high 
Tc superconductors ( x  - lo2, Gi, - 10 - 9), fluctuations of 
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the electromagnetic field can be ignored in a study of the 
Hc2 ( T )  dependence. Below we accordingly assume that the 
magnetic field is spatially uniform and equal to the given 
value H. 

To describe the fluctuating field of the order parameter 
$we use the methods of Ref. 8. To determine Hc, , it is suffi- 
cient to consider the fluctuations in the order parameter only 
in the normal phase, i.e., above the line Hc2 ( T ) .  This ap- 
proach is to be understood everywhere below. The part of the 
partition function in which we are interested and the binary 
correlation function are given by path integrals: 

'76' 
Z= J erp (- -)D+ D+., 

T 

where A? is the Ginzburg-Landau Hamiltonian. We will be 
using dimensionless variables everywhere below. Lengths 
are expressed in units off, = (c/a) ' I2, and magnetic fields 
in units of h = H / H F ( O ) ,  where H F ( 0 )  = @,/27rl;, 
and @, is the flux quantum. The dimensionless order param- 
eter $ is related to the dimensional order parameter used 
everywhere in Ref. 8 by $ = [a6 /(2T) ] 'I2. The 
quantities c and a are the coefficients of the Ginzburg-Lan- 
dau Hamiltonian, in the standard notation.' In dimension- 
less variables, this Hamiltonian is 

The reason for the numerical factor in front of Gi'/2 in the 
last term in (3)  is that the Ginzburg number is defined here 
as in Ref. 1. For the dimensionless vector potential A we 
choose the gauge A = ( - hy, 0,O). 

Below we use a representation for $ in addition to the 
coordinate representation. We expand the order parameter 
in̂  the eigenfunctions $ of 5 e  operator 
A?o = ( - i V + A ) , + r :  $ = Z A ~ A $ A 9  Xo$A = E A $ A .  

The indexil represents the set of wave-vector projections k,, 
k, and the nonnegative integer n: il = {k,, k,, n). The 
eigenvalues are EA = T + k + h (2n + 1 ); the $, are nor- 
malizedby6,,.6(kx -k:)S(k, - k:) andarethesameas 
the eigenfunctions of a charged particle in a magnetic field. 
In this representation, Hamiltonian (3)  is 

a (Gi h) " 
-= T I l Z + -  z J dqtdqzdqsdq, 

n &'lr n,n,n,n, 

where q = (k,, k, ) is a two-dimensional vector, and the co- 
efficient I(il l ,  il,, il,, il,) is given by 

Here xi r kxi/(2h) '", H, (x) are the Hermite polynomials, 
and P FP' (0) are the values of the Jacobi polynomials at the 
origin of coordinates. Here and below, all the orthogonal 
polynomials are defined as in Ref. 1 1. It can be shown that in 
this representation the binary correlation function defined 

is diagonal with respect all its indices, is independent of k,, 
satisfies 

and is related to the correlation function in the coordinate 
representation by 

h h 
Gn (k,) = Jdr exp(ikzz)exp [- -(x2+sz)] L. ( T ( ~ + Y z ) )  

4 

where L, (x)  are Laguerre polynomials. The quantity 
exp(ihxy/2) x ($*(r)$(O)) in (7)  is simply ($*(r)$(O)) 
for the case in which the vector potential is chosen in the 
cylindrical gauge: A = [hr]/2. It is clear from symmetry 
considerations that this quantity depends on only x2 + y2 
and lzl. This circumstance was utilized in the derivation of 
(6) and (7) .  

In a given magnetic field, we find the temperature of the 
phase transition from a normal phase to the mixed state in 
the standard way,' as the point at which a condensate ap- 
pears: 

[Go (kz=O, h, t,) ]-'=O. (8) 

We have a few words of explanation regarding Eq. (8).  First, 
by virtue of its meaning, Eq. (8) should contain that correla- 
tion function which leads to the maximum value of T, . In the 
normal phase, it determines the occupation numbers of the 
least stable mode of the order parameter; it is this mode 
which leads to the appearance of a condensate at T, . It can be 
shown that, for a binary correlation function in any repre- 
sentation found by expanding $ in any system of functions 
other than $A, the corresponding T, is no greater than that 
found with the help of G,. This assertion follows from the 
diagonal nature of (czc; ) with respect to all its indices [see 
(6) 1. This diagonal nature is in turn a consequence of simply 
the symmetry properties of the system. Second, in the Gaus- 
sian approximation (Gi- O), the quantities G, (k, ) can be 
calculated easily: 

In this case, condition (8)  leads to a result which has also 
been found in the mean-field theory: rC = - h. The quantity 
(GAO') - ' vanishes earlier-i.e., at a higher temperature- 
than the other quantities (G :') - '. It is natural to assume 
that this assertion remains in force in the general case Gi #O. 
It is for this reason that we selected n = 0 in (8).  We will 
have some further comments regarding this assumption at 
the end of the fourth section of this paper. 
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Condition (8)  means that as the phase-transition point 3. STRONG MAGNETIC FIELDS 

is approached the correlation length along the magnetic As we know,' a Feynman-diagram technique can be 
field, 6 ~ 9  goes off to infinity. This conclusion follows from used to write the correlation functions for the order param- 
the equation which is the inverse of (7) : eter as perturbation-theory series. Here we treat the last 

term in (3)  as the perturbation. To obtain information on 
h  h  

e x p ( i h g )  < y ( r ) * ( O ) ) =  - T(2+y~)]  the function f in ( lo) ,  we analyze the corresponding enpan- 
(2n)' sionofthemassoperat0r2~ ( 2 , ~ + h +  k3 - G o 1 )  of 

OD the Green's function Go given in (6). Figure 1 shows the first 
h  

L . ( ~ ( X ' + Y ' )  ) dk,  e x p ( - i k ~ ) G ~ ( k ~ ) .  few diagrams corresponding to this expansion. We use the 
,,=o representation in which the Hamiltonian is given by (4) and 

It follows from this equation that the correlation lengths 
perpendicular to the magnetic field remain finite even at 
r = 7,. They are on the order of the magnetic length l/h 'I2. 
There is thus no reason to believe that the hypothesis of scale 
invariance would be valid for describing a phase transition in 
the case h #O. These aspects of the behavior of the correla- 
tion lengths in the Gaussian approximation were analyzed in 
Ref. 12. 

2. UNIVERSAL NATURE OF THE H,(T) DEPENDENCE 

Hamiltonian (3) and thus all the correlation functions 
depend on the three parameters r ,  h, and Gi. We set T < 0, 
since the line h, (7) lies in this region in the (h, T) plane. We 
introduce the new coordinates r' and the new order param- 
eter yY by means of 

It is thus simple to show that the parameters appear only in 
the combinations h / I T /  and (Gi/lrl) in transformed 
Hamiltonian (3). Going over to the new variables in Eqs. 
( I ) ,  (2) ,  and (7) ,  we find (for example) that the quantity 
Go (k, ) depends on the parameters in the following way: 

where Fo is some function of its arguments. Consequently, 
condition (8) leads to the equation 

which determines the line of phase transitions in the (h, r) 
plane. The three parameters appear in two combinations in 
this equation. Solving this equation, we find 
hC2/Irl = f(Irl/Gi), where f is a function of one argument. 
The temperature dependence of the upper critical field can 
thus be written in the form 

(5).  The Green's functions in the Gaussian approximation, 
(9) ,  then correspond to the solid lines in the diagrams, while 
factors proportional to (Gih) 1/21(Al, A,, A,, A, ) corre- 
spond to the vertices. An integration is to be carried out over 
all the internal two-dimensional wave vectors qi under the 
condition that the conservation laws for these vectors hold at 
each vertex. A summation is to be carried out over the inter- 
nal indices ni . 

In analyzing the diagrams, we must bear the following 
point in mind: A Hamiltonian of the type in (3)  corresponds 
to a renormalizable field theory. In this theory, only the first 
two diagrams in Fig. 1 are primitively divergent.l3.l4 Conse- 
quently, for a theory of this sort, all the divergences in the 
diagrams at large momenta (or their dependence on the cut- 
off parameter, which in this case is equal to 1/g0 in order of 
magnitude) can be eliminated through a renormalization of 
the "mass": the superconducting transition temperature T, . 
In other words, this can be done by introducing in Hamilto- 
nian (3)  a counterterm (ST, + Sr2)  1$12, in which the con- 
stants ST, and ST, (which are independent of T and h )  are 
chosen in order to cancel the divergences (the dependence 
on the cutoff parameter) in respectively the first and second 
diagrams in Fig. 1. Below we assume that we have gone 
through this renormalization procedure, so the contribution 
of any diagram to 2, is finite and independent of the cutoff 
parameter. 

We consider an arbitrary diagram with I vertices. We 
wish to analyze the behavior of the corresponding contribu- 
tion to the mass operator 86" as a function of the parameters 
h, T, and Gi. For such a diagram, there are 21 - 1 internal 
lines. Of the I conservation laws for the two-dimensional 
vectors q,, one leads to the equality of the external q's. Con- 
sequently, when we take these laws into account we have 
(21 - 1 ) - (1 - 1 ) = 1 integrations over the internal wave 
vectors kzi and kxi . To determine how these integrals depend 
on the parameters, we go over to the new integration vari- 
ables xi = kxi/H(2h 'I2, = k,i/~'/2, where E = T  + h. 
From each Green's function in (9)  we single out one factor 
of E -  '. The expression inside the integral and summation 
signs will then depend on only the ratio h /E, which appears 

It follows that this dependence is of universal applicability in 
the sense that it holds for all type I1 superconductors if 
hc2/Gi and lrl/Gi are used as variables. The entire depend- 
ence on the constants characterizing the superconducting 
material (i.e., the Ginzburg number) is incorporated in the C, = units in which the magnetic fields and temperatures are ex- 

Q + - +  
pressed. Explicit expressions for the function f for strong 

8 + .*. 

( h  % Gi) and weak (h < Gi) magnetic fields are derived in FIG. 1. The composition of the mass operator 8, in of Gill2 of up 
the following sections of this paper. to second order inclusively. 
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in the transformed G F'. We also note that all the integrals 
over xi can be calculated easily by taking account of the 
orthogonal nature of the Hermite polynomials which are in- 
corporated in 1(A,, A,, A,, A,), according to (5).  As a 
result, for an external k, = 0 we find an expression of the 
following type for 26" (we are omitting some inconsequen- 
tial details associated with the renormalization) : 

Here a, (h /E) denotes the result of integrations over the in- 
ternal k ,  and xi and of all summations of products of trans- 
formed G :'' and factors I(A,, A,, A,, A, ). Using ( 1 1 ), we 
easily find the universal functional dependence h,, (T)  in 
(10) again. 

According to ( lo) ,  strong fields h % Gi are equivalent to 
small values of Gi. Consequently, if h is sufficiently large 
[Eq. ( a ) ] ,  then a root of equation h should lie near the 
straight line E = 0 in the (h, T)  plane. This line corresponds 
to the line of phase transitions in the Gaussian approxima- 
tion. In this region of parameter values, expression ( 1 1 ) sim- 
plifies further. According to (9) ,  under the condition ~ ( h  
the quantity G A'' is much larger than the other G LO"s, so we 
can restrict the summation over Landau levels to the single 
term with n = 0. In particular, all the sums in a, reduce to a 
single h /&-independent term in which all the internal vari- 
ables satisfy ni = 0. In this single-level approximation, in 
which only the lower Landau level is taken into account 
from the outset, the quantity a, are constants, and 
8, (k, = 0) is the product of e and some function of a single 
argument: 

We also note that in the case E- Gi1/3h 'I3 all the terms in the 
series for the mass operator are on the same order of magni- 
tude. Consequently, Gil/,h is the size of the fluctuation 
region at strong magnetic fields (at h % Gi1I3h '/'). This re- 
sult agrees with an estimate of the size of this region found 
from an analysis of the specific heat.I5 

Expression ( 12), which was derived through an analy- 
sis of a perturbation-theory series, is strictly valid within the 
convergence region of this series. Furthermore, in deriving 
( 12) we used expression (9)  for G iO', which is valid only for 
E > 0. On the other hand, the root of Eq. (8 )  may lie at E < 0, 
and it may apparently lie outside the convergence region of 
the perturbation-theory series. However, neither the bound- 
ary of this region nor the straight line E = 0 is singled out in 
the (h, T)  plane by any physical consideration. The singular 
points of the exact Green's function lie exclusively on the 
true line of second-order phase transitions, h = h,, (7). The 
functional form of the mass operator should thus not change 
when we go outside the convergence region of the perturba- 
tion-theory series and when we go from positive to negative 
values of E, provided only that we do not cross the phase- 
transition line. Consequently, in sufficiently strong magnet- 
ic fields, in the region in which the normal phase exists, and 
under the condition I & (  <h, the quantity 
G,'(k, = 0 )  = E -  XO(kZ = 0 )  canbewrittenintheform 

which agrees with (12). Here R(x )  is some function of its 
argument. We note that the incorporation of other Landau 
levels (other than the zeroth) in the analysis of the mass 
operator will lead to a correction on the order of (Gih) to 
the right side of ( 13 ). 

Substituting (13) into (a) ,  we find E, = C,Gi'13h 2/3, 
where C, is the largest root of the equation R (x)  = 0. Using 
the definition E = T + h, we find the dependence of the tran- 
sition temperature on the magnetic field: 

If we are to avoid a contradiction between ( 14) and the ap- 
proximation h% le, 1, used in deriving this expression, we 
must require that the second term on the right side of ( 14) be 
much smaller than the first. This requirement refines the 
condition for a strong field. Solving Eq. ( 14) by an iterative 
method in h, we find, within quantities to ( G i / ( ~ l )  'I3 inclu- 
sive, the following temperature dependence for the upper 
critical field ( 1 r 1 % Gi ) : 

For the function f(x)  which appears in ( 10) we find the 
following expression, for large values of the argument of this 
function (x % 1 ) : 

f (x) = i+C,x-'". (16) 

To determine the functional dependence in ( 15) more 
accurately, we would have to take account of the terms on 
the order of (Gih) 'I2 which we ignored in ( 13). In this case 
the corrections to ( 14) and ( 15 ) will depend on the behavior 
of the function R (x)  as x +  C, . There is yet another circum- 
stance to be noted. Since equality ( 13) is valid only in the 
single-level approximation, in deriving ( 14) we tacitly as- 
sumed somewhat more than the existence of a root of (8): 
We tacitly assumed that there also exists a root of the equa- 
tion R (x)  = 0. Otherwise, the functional form of the correc- 
tion term in ( 14) would have been different. Finally, we note 
that a method similar to that used in the preceding section of 
this paper could be used to derive the result in ( 13 ) directly 
from a path integral representing Go, if the single-level ap- 
proximation were used from the outset in (4).  

The line of phase transitions from the normal phase to 
the mixed state was studied in Ref. 16 in the single-level 
approximation, although it was not assumed there that this 
line corresponds to Hc2 (T) (and the concept of an upper 
critical field was not defined physically). The transition 
temperature was found in Ref. 16 as the point at which the 
coefficient of the quadratic term in a certain effective Hamil- 
tonian changed sign. When there are four terms, that ap- 
proach is generally incorrect. Nevertheless, the result found 
there leads to a functional dependence of h on T which is the 
same as that in ( 15). This agreement appears to be a conse- 
quence of the circumstance that the correction to the result 
of the Ginzburg-Landau theory in ( 14) is proportional to 
the width of the fluctuation region, which is the only length 
scale which appears in any calculations in the single-level 
approximation." 
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4. WEAK MAGNETIC FIELDS 

In weak magnetic fields, h ( Gi, the fluctuation region 
becomes broader than the temperature interval ( E  < h) in 
which the single-level approximation could be valid. In this 
case, Landau levels in addition to the lowest should be taken 
into consideration in determining the very size of the critical 
region (this size turns out to be on the order of Gi). 
Throughout this region, a large number of these levels must 
be taken into account simultaneously in perturbation-theory 
calculations, so the single-level approximation is not valid 
for weak magnetic fields. In this situation we would not ex- 
pect to obtain information on the function f in ( 10) by using 
the series of a perturbation theory in Gill2 for the analysis, as 
was done above. We instead examine the quantity Go at r > 0 
by means of a perturbation theory in the magnetic field, in 
which the interaction ) $ I 4  is taken into account exactly. 
Then, staying inside the region of the normal phase, we con- 
tinue the result to negative values of r. We assume that 
everything which pertains to the case h = 0, r > 0 is known. 
Since weak fields correspond to lrcl (Gi, the values of the 
quantities at h = 0 need be known only inside the critical 
region. They have been studied well in this region,' since 
critical phenomena in superconductors in the absence of a 
magnetic field can be described by means of the hypothesis 
of gauge invariance. 

Working in the k representation, we expand the order 
parameter in plane waves: 

9 ( r )  = (2n)-a1r j d ~ e i k r b , :  

In this representation, the Green's function g(k) ,  defined by 

is related to Go (k, ) by an equation which follows from (7)  : 

The part of Hamiltonian (3)  which depends on the magnetic 
field is 

Here 8 ' ( x )  and 8" (x)  are the first and second derivatives of 
the 8-function. We will treat ( 18) as the perturbation of the 
Hamiltonian which we would obtain by setting h = 0 in (3).  
Figure 2 shows graphical representations of the corrections 
to the Green's function of up to second order in h, inclusive- 
ly, at r > 0. There are vertices of two types (with one and two 
wavy lines), which describe the interaction of the order pa- 
rameter $ with the external magnetic field and which corre- 
spond to respectively the first and second terms in ( 18). The 
circles represent I""', i.e., the exact vertex parts with n ex- 
ternal ends for the 1 $ 1 4  interaction at h = 0, while the lines 
are associated with the exact Green's functions in the ab- 
sence of the magnetic field: go (k)  g ( k ,  h = 0) .  As an ex- 
ample, we write the expressions corresponding to the second 
and last diagrams in Fig. 2, within numerical factors: 

Here we have used 

The differentiations with respect to t,, in ( 19) and (20) arose 
after the integrations by parts which eliminated the deriva- 
tives of the 6-functions in ( 18). 

We now seek the dependence of the corrections to go on 
the parameter r. From Ref. 8 we have 

go (k) =E2-%o (kt) ,  
I"‘") (k,. . . . , kzn)=g-"2nTcZn)(k,g, . . . , kznE), (21) 

02,=n(2-q) -3(n-I), 

where g a r  - V  is the correlation length in the fluctuation 
region at r (Gi  and h = 0, and and v are critical expo- 
nents. Going over to the variables k6, pg, tg in (19) and 
(20), and using (2 1 ) , we find that these expressions reduce 
to ihr 2(2 - and h 2g 2 ( 2  - "' + 2, respectively, multiplied by 

order in the magnetic field inclusively. 
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certain functions kg. Correspondingly, it is a straightfor- 
ward matter to analyze the corrections to go for all the other 
diagrams in Fig. 2. As a result we find that the structure of 
the functiong(k, h, 7) calculated within terms of order up to 
h ,, inclusively, is 

g(k, h, T) =5Z-Y(,(kg)+ih52-9nI,o(k~) 
+h2g2'2-q'az,o( kg) +h252-n+2a0,i (kg) +. . .), 

where a, ,, (x) are certain functions of one variable, and the 
term proportional to h 2c 3'2 - T ,  describes the contributions 
of the third through seventh diagrams. 

Let us examine the form of the correction terms to go in 
higher orders in h. An arbitrary diagram is a set of vertex 
parts r""", i = 1, ..., 1, all ends ofwhich except the two outer- 
most are connected in pairs by internal lines, with the result 
that a connected configuration is formed. Each such line 
(there is a total of N = If=, n, - 1 such lines) contains at 
least one vertex of Hamiltonian ( 18) of one sort or another 
(see Fig. 3, which shows an example of such a diagram). We 
assume that there are s, vertices of the first type (with one 
wavy line) and s, of the second type (with two wavy lines), 
with s, + s, >N. Let us examine the contribution of such a 
diagram to g(k) .  Making use of the I conservation laws, one 
of which simply gives us the equality of the external wave 
vectors k, we have N - ( I  - 1 ) three-dimensional integra- 
tions over internal wave vectors p,. Also appearing in this 
expression is the product of all the vertex parts and 
N + 2 + s,  + s, functionsg,. In addition, each vertex of the 
first type introduces a factor of the type ihp, and one differ- 
entiation with respect to they  component of the internal 
wave vector. A vertex of the second type contributes h and 
two such differentiations. Going over to the new variables as 
we did earlier, using (2 1 ) , and carrying out a simple calcula- 
tion of the powers of 6, we find that this contribution has the 
structure 

Consequently, g(k, h, T) depends on the magnetic field 
through the combinations hf - " and h12: 

Finally, a substitution of this expression into ( 17) gives us 

As in the preceding section of this paper, we continue 
Go out of the region in which the result in (22), derived by 
perturbation theory, is strictly valid, into the region 7 < 0, to 
the line of the phase transitions. In addition, making use of 
the small value of the critical exponent 7, we use the approxi- 

FIG. 3. Correction to the Green's function go of seventh order in the 
magnetic field. 

mation 7 = 0 below.' [We are justified in using this approx- 
imation to determine hc2 (T)  at least under the condition 
ln(Gi/\rl)  4 l/vv, i.e., essentially throughout the fluctu- 
ation region, except in a small neighborhood of T = 0, since 
f " essentially reduces to a constant under this condition.] 
As a result we find 

where Q(x) is some function of one argument. Here again 
we have made use of f cc 7 - ". From (8)  and (23) we finally 
find 

Using vz2 /3  (Ref. 8 1, we find the final expression for the 
function f (x)  in ( 10) for small values of its argument 
(x& 1): 

f (x) =C2x'h, (25) 

where C, is a numerical coefficient. Note that (24) agrees 
qualitatively with the corresponding expressions in Refs. 4 
and 5. 

In formulating the problem we assumed that for each 
value of h it is Go among the various G, which leads to the 
maximum value of r,. Actually, this assumption is not im- 
portant for deriving the results of the present study, since in 
practice we have derived them without making use any- 
where of the circumstance that it is Go rather than some 
other correlation function G, which appears in (8).  Only 
the values of the coefficients C, and C, in ( 16) and (25) 
depend on the particular correlation function which is in 
(8) ,  but we have not determined those coefficients in the 
present study. In addition, the equivalence of strong fields to 
small values of Gi allows us to assert that this assumption is 
at any rate valid under the condition h $ Gi. Furthermore, 
since the curves corresponding to the functions (16) with 
different values of C, do not intersect, and a corresponding 
assertion holds for (25), then Go may be replaced by some 
G, with n # O  in (8)  in the course of the decrease in h only at 
fields h /Gi - 1. In this case there would be a change in slope 
of the h,, (7) line; such a change seems unlikely. However, 
even if it does occur, it would have no effect on the results 
found in this paper. 

CONCLUSION 

We have analyzed the temperature dependence of the 
upper critical field of a type I1 superconductor with fluctu- 
ations in the order parameter at temperatures Irl( 1. In the 
(H, T) plane, the line Hc2 ( T) is defined as the line of second- 
order phase transitions from the normal phase to the mixed 
state. We have shown that the Hc, (T)  dependence, written 
in terms of the variables H,, /H, and ( Tc - T) / T,, is the 
same for all type I1 superconductors: 

Here f (x)  is a universal function which does not depend on 
the constants characterizing the superconducting material; 
T, = T, Gi; H, = H 2 ( 0 )  Gi; and H 2 (0) is the value of the 
upper critical field at T = 0 according to the Ginzburg-Lan- 
dau theory. In strong fields H>H, and weak fields H&H, 
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FIG. 4. Approximate overall behavior He, (T ) .  1-C, < 0; 2-C, > 0. 
The dashed line show the results of the Ginzburg-Landau theory. 

(or, equivalently, at temperatures Tc - T )  Tp and 
T, - T(Tp), the function f(x) is given by (16) and (25), 
respectively, in which C, and C2 are numerical coefficients 
which have not been determined. Corresponding to these 
two limiting cases are different sizes of the fluctuation region 
along the temperature scale: Tp for weak magnetic fields and 
Tp (H/H, )2'3 for strong fields. In sufficiently strong mag- 
netic fields, the experimental temperature dependence of the 
specific heat and that of the electrical resistance of a super- 
conductor clearly exhibit an H 2'3 scaling (Refs. 18-20). 
Figure 4 shows two possible versions of the overall depend- 
ence Hc, ( T )  corresponding to the different signs of C, . We 
are apparently dealing with the case C, < 0. 

For conventional superconductors, Tp and Hp are ex- 
tremely small, and only the case of strong magnetic fields 
can be implemented experimentally. The ratio ( H  /Hp ) is 
quite high in this case. According to ( 16), the approxima- 
tion f(x) -- 1 is then quite accurate, so the result of the Ginz- 
burg-Landau theory is always a good approximation for 
H,, ( T )  in these superconductors. In YBaCuO we have2 
H F ( 0 )  - lo3 kOe. Making use of the value of the Ginzburg 
number for this superconductor,' we find Hp - 1 kOe. Con- 
sequently, the deviations from a linear dependence H,, ( T) 
should be seen experimentally over a broad range of magnet- 
ic fields. The field region H 5 10' kOe has been studied in 
most detail experimentally. In this region, we could expect 
the Ginzburg-Landau theory and the result derived above to 
be applicable. The correction term in ( 16) is significant in 
this region, amounting to at least 20% of the leading term 
with C, - 1. In the new superconductors, there is apparently 
no region in which the result Hc2 a 171 holds well. 

As the phase-transition line is approached in a magnetic 
field, only the correlation length which is longitudinal with 
respect to H diverges; the transverse lengths remain finite 

(they are proportional to H - I/'). We would accordingly 
expect that the nature of the singularities in the physical 
quantities upon a phase transition of this sort would be quite 
different than at H = 0 (the singularities would apparently 
be weaker and would be seen only in the derivatives of phys- 
ical properties with respect to the temperature or the mag- 
netic field). A study of this question would clearly be of 
interest, and it would permit a correct experimental deter- 
mination of the Hc2 (T) line. 

The dependence Hc2 ( T )  was studied above under the 
assumption that the superconductivity is three-dimensional. 
In many of the new superconductors, however, there is ap- 
parently a transition from a three-dimensional behavior of 
the order parameter near T, to a quasi-two-dimensional be- 
havior far from Tc. This transition occurs at a certain tem- 
perature T,,. The results found here apply to the region of 
the three-dimensional behavior and are apparently valid 
only under the condition 171 ( IT,, I. Superconductors with a 
quasi-two-dimensional superconductivity, with low values 
of ( r,, I ,  require a special study." 

I '  The basic results of this study were published in Ref. 7. 
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