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We propose a modified version of the model of Palmer et al. [Phys. Rev. Lett. 53,958 ( 1984); 54, 
365 ( 1985) ] for isothermal hierarchically constrained structural relaxation in glasses and 
glasslike liquids, in which the distribution of hierarchy levels is continuous rather than discrete. 
On this basis we construct continuous p (k)  spectra for the relaxation rates and investigate their 
shapes, along with the spectral properties of a continuous parameter that measures the degree of 
structural nonequilibrium character. The results of analytic and numerical calculations agree 
quite well. We show that within the framework of this approach the difference between glass- 
formingsystems with weak and with strong nonequilibrium behavior arises naturally, and we find 
criteria for identifying these regimes of relaxational behavior. We establish that from the point of 
view of statistics, a glass is a non-self-averaging system, i.e., a system in which the first moment 
and dispersion of the distribution density p ( k )  differ considerably from the most probable value 
of the relaxation rateand the width of the spectrum, respectively. 

1. INTRODUCTION 
A universal characteristic of various types of glassy sys- 

tems is nonexponential Kohlrausch The ori- 
gin of this universal property is associated with the existence 
of a hierarchy of potential barriers in nonequilibrium strong- 
ly interacting condensed systems such as glasses. These ran- 
domly distributed potential barriers are present because the 
structural formation of a glass is a kinetic phase transition of 
the "solidification without crystallization" type, for which a 
freezing-in of the structural disorder occurs. Therefore, 
properties of the glassy state such as the wide spectrum g, (k )  
of rates (k )  of structural relaxation (SR) are determined by 
memory effects and by the disordered nature of the "hot" 
frozen-in atomic structure, both of which arise in the process 
of glass f~r rna t ion .~ .~  

It has been shown previously',4 that a description of 
isothermal SR in glasses can be based on the following postu- 
lates: ( 1 ) the dynamics of nonexponential SR are hierarchi- 
cally constrained; and (2)  structural rearrangement takes 
place via the mechanism of defect reaction. The model relax- 
ation function q( t )  postulated in (4)  allows us to (a)  de- 
scribe the three regimes of time evolution of a quasiergodic 
glassy system, including fractional-exponential Kohlrausch 
relaxation, in a unified way; (b)  obtain a density p ( k )  of the 
distribution of relaxation rates that is finite at every instant, 
and investigate its asymptotic behavior in the ranges of large 
and small k; (c)  connect the parameters of the theoretical 
model with experimental data on SR; and (d )  calculate the 
activation energy spectrum for atomic reconstruction in the 
glass. 

The fundamental idea of the well-known model of hier- 
archically constrained glassy relaxation' is as follows: from 
the point of view of nonequilibrium statistical thermody- 
namics, a glass is an infinite set of weakly interacting subsys- 
tems (clusters), in which relaxation takes place simulta- 
neously and independently. The clusters are classified 
according to levels of a hierarchy labeled by n = 0,1,2, ...; 
relaxation in each cluster is successively blocked by taking 

into account "cooperativeness." This postulate regarding 
the hierarchical structure of the reservoir of structural de- 
grees of freedom of the glass,' by its very nature, is analo- 
gous to representations of elementary excitation in solid- 
state theory. In fact, in a certain sense the hierarchy levels 
can be treated as elementary relaxational excitations of a 
system with structural nonequilibrium character. 

However, the approach of Ref. 1 fails to incorporate the 
fact that each atom of a glassy system can participate in an 
arbitrary number of cooperative processes whose mecha- 
nisms mediate the SR; in other words, each atom can belong 
to several relaxing clusters. Therefore, strictly speaking, the 
total system cannot be divided up into independent clusters 
as was implicitly assumed in Ref. 1. Such clusters, which 
should perhaps correspond to the various levels of the sys- 
tem hierarchy, always overlap. Therefore, we cannot expect 
discrete clusters and hierarchy levels, since this expectation 
is tenable only in an approach where n is an integer. In this 
paper we assert that cooperative SR in glasses takes place not 
through a denumerable set of paths but rather via a continu- 
um of parallel and independent paths. Thus, it is natural to 
seek a formulation of the model of hierarchically con- 
strained SR in which the recursion relations for the relaxa- 
tion rates and occupation are preserved, as postulated in Ref. 
1, but to assume that the index n for these relations, which 
enumerates the various levels of the hierarchy, is a contin- 
uous positive quantity. 

In this paper we propose a modification of the model of 
hierarchically constrained glass relaxation dynamics1 that 
is characterized by a continuous (not discrete, as in Ref. 1) 
distribution of relaxation probabilities. This allows us to in- 
vestigate the properties of this distribution and its evolution 
in cases where the system is weakly or strongly out of equi- 
librium. In Sec. 2 we discuss our interpretation of the model 
of glass relaxation with a discrete set of hierarchy levels; in 
Sec. 3 we justify the transition to a continuous hierarchical 
distribution. In Sec. 4, we investigate the shape of the spec- 
trum p ( k )  in an exactly-soluble model of correlated isother- 
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ma1 SR with a continuous distribution of hierarchy levels. In 
Sec. 5 we find the asymmetry parameters of the spectrum 
p ( k )  for the cases of weak and strong structural nonequilib- 
rium character. In Sec. 6 we attempt to associate the param- 
eters of the "nonequilibrium character" of this model of cor- 
related SR with the fundamental concept of a glass 
structural temperature. The interpolation model we con- 
struct in this paper, with a continuous distribution of hierar- 
chy levels, can serve as a basis for analysis and processing of 
experimental data on frozen-in nonexponential relaxation in 
condensed systems. 

2. INTERPRETATION OF A MODEL OF COOPERATIVE 
RELAXATION WITH A DISCRETE SET OF HIERARCHY 
LEVELS 

In what follows, we investigate SR in a temperature 
region for glass formation that is somewhat higher than the 
liquid-glass transition point. The discrete model of hierar- 
chically constrained glass relaxation1 is based on the follow- 
ing recursion relations: 

1 ) Relaxation that is correlated in character (barrier 
scaling for the kinetics) : 

implying that the system of the (n + 1)th hierarchy level 
must overcome a certain characteristic potential barrier [the 
exponential factor in ( 1 ) is the barrier transmittivity 1, after 
which its relaxation proceeds in the same way as the system 
for the nth level; the relaxation rate k, corresponds to the 
latter in Eq. ( 1). 

2) A hierarchy of reduced potential barriers p, for co- 
operative glass relaxation that separate subsystems of adja- 
cent levels with labels n and n - 1 and have the form 

The quantity p is referred to as the "cooperativeness" pa- 
rameter. The casep = 0 corresponds to neglecting cooperat- 
ive effects in overcoming the barriers to structural relaxa- 
tion, while the case p --+ cu is for completely frozen-in SR. 

3) A statistical distribution w, ( n  = 0,1,2, ... ) of the 
subsystems with respect to hierarchy level that acts as the 
measure of the structural nonequilibrium character of the 
total glass-forming system. We can expect that a "narrow" 
distribution w, corresponds to "weak" nonequilibrium 
character, while a "wide" distribution reflects "strong" non- 
equilibrium character. In order to describe the scaling of the 
occupations w, , it is useful to introduce a representation of a 
certain averaged glass defect; this allows us to describe the 
statistical behavior of the disorder on the average at the hier- 
archy level in the glass. Then the system for the nth level 
contains n independent glassy defects. The probability of 
annihilating one of these defects for the nth level equals 
exp( - p, ) [see ( 1 ) and (2)  1. The atomic reconstruction in 
the glass is cooperative, i.e., it is arranged in such a way that 
in order to annihilate a single glass defect in the system for 
the (n + 1 ) th level we need to overcome a smaller potential 
barrier than we do in the system for the nth level [see (2)  1. 
The occupation of a level with n glassy defects is determined 
by the probability p = 1/A ( 1 <A < w ) of its formation in 
the nonequilibrium cooling process (multiplicative scaling 
of the occupation) : 

From this, based on the recursion relations ( 1 )-(3), the iso- 
thermal structural relaxation function in the glass is de- 
scribed by the weighted average over all the levels of the 
hierarchy: 

where s = 1 + E, E<  1 (the strong inequality guarantees the 
existence of the Kohlrausch regime at intermediate times1 ). 
The incomplete Riemann zeta function <(s,n) should be 
supplemented in its definition by <(s,O) = 0, i.e., for n = 0. 

This model of correlated glass relaxation can also be 
viewed as a specific realization of the distribution function 
for the heights of the potential barriers in the glassy system; 
therefore the parameter p in (2)  is the effectiveness of the 
barrier, independent of how the latter is overcome, i.e., 
whether by thermal activation or tunnelling. We can expect 
that the quantityp corresponds to the probability of appear- 
ance of weakened or broken bonds in the atomic lattice of a 
structural glass, while the quantity exp( - p, ) is the trans- 
mittivity of the effective barrier corresponding to coopera- 
tive processes of annihilation of such a defect at the nth hier- 
archical level. 

The spectral density of the distribution p ( k )  of relaxa- 
tion rates for the model proposed in Ref. 1 is a discrete set of 
delta functions: 

It is known that a weakly nonequilibrium system is charac- 
terized by a single relaxation time, i.e., for such a system the 
relaxation-time approximation is exact. In this case, the 
many-particle system described in the discrete model by re- 
lations ( 1 )-(6) is found in the zeroth level of the hierarchy 
(w, = a,,, ,p = 0); in other words, the relaxation of this sys- 
tem occurs without participation of the structural degrees of 
freedom (the value of the parameter p is insignificant). For 
a glassy system with strong nonequilibrium character, levels 
with large values of n [0 < n < 6, where Fiz (In A )  - ' I  con- 
tribute substantially to the spectrum p ( k )  [see (6)  ], where 
the quantity n is the width of the distribution w,. Thus, in 
terms of this model of correlated (or cooperative) SR, the 
structural nonequilibrium character is characterized by the 
inequalities E > 1, In A < 1, and the scale parameterp is deter- 
mined according to ( 3 ). 

In what follows, we present the results of our investiga- 
tion of the shape of the SR spectrum in glasses, both for fixed 
values of the fractional exponent a [i.e., the case p = const 
in (2)  ] and for variable p ;  in this case, it turns out that the 
regimes of strong and weak structural nonequilibrium char- 
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acter of the many-particle systems are distinguished precise- 
ly by their values of the parameters p (more precisely, the 
parameter In A). 

3. TRANSITION TO A CONTINUOUS HIERARCHICAL 
DISTRIBUTION 

In this section we construct generalized models' such 
that the spectral density p ( k )  is a continuous normalized 
distribution of relaxation rates, each moment of which is 
finite (see also Ref. 4) .  The well-known postulates of the 
hierarchically constrained model of glass relaxation dynam- 
ics (Sec. 2) are satisfied in this case as well. The advantage of 
this generalization is the fact that it allows us to investigate 
the shape of the spectrum p ( k )  and compare it with other 
models and approximations (Sec. 4).  

Central to this proposed generalization of the glass SR 
model is an interpolation of the incomplete Riemann zeta 
function, which is given in the form of the discrete sum (5)  
for n = 1,2,3, ..., over the entire range of positive real n. For 
n > 1 this continuation is trivial, and follows from the well- 
known properties of the incomplete zeta function: 

where C-0.5772 is the Euler constant. The error in approxi- 
mation (7)  at the point n = 1, where f ( s , l )  = 1, is about 
7.7%, and decreases rapidly as n increases. In order to con- 
struct the continuation into the region n < 1, in this paper we 
propose an interpolation procedure for the function f (s,n) 
when the distribution of hierarchy levels in relations (4)- 
(6)  is continuous by matching the analytic expression (7) ,  
which is valid for n > 1, to a certain model function with the 
following properties for OGn < a  (where a is the matching 
point; see below): (a )  the function should increase mono- 
tonically with increasing n; (b)  the function and its first and 
second derivatives should equal the corresponding values 
that follow from Eq. (7)  at the matching point; and (c)  the 
function (f ') - ' = (df/dn) ' should reduce to zero at the 
point n = 0. As we will show below (Sec. 4),  this latter con- 
dition guarantees continuous behavior of the distribution 
density p ( k )  at the upper boundary of the spectrum 
(k -+ko  1. 

The requirements we have formulated lead to the fol- 
lowing form of the function f(s,n) for n <a:  

where the coefficients bi are specified by condition (b) .  The 
choice of the matching point for Eqs. (7)  and (8)  is deter- 
mined by the following additional condition on the resulting 
spectrum (compare with (6); O < N =  1nA < w ) :  

should not have singularities of the point-of-inflection type, 
i.e., points where the second derivative f " changes sign. The 
value a = 1 is not appropriate as a matching point, because 
according to (7)  the derivative f " (s, 1 ) z ~ / 2  is close to zero. 
In what follows, we use the point a = 2 as a matching point, 
at which this latter problem does not arise. Then for 

E = 0.01, we find the following numerical values for the coef- 
ficients in (8) :  b, = 0.936, b, = 0.208, 6 ,  = - 0.079. 

In contrast to the discrete model (Sec. 2), in this case 
the hierarchy has no structureless (zero) level. That is, in 
this model of cooperative relaxation with a continuous label 
n, rapid elastic relaxation can be described only by including 
additional degrees of freedom in the many-particle system. 
This is especially important when we take the limit p -- w , 
which models the complete freezing-in of the SR. In the 
discrete model this corresponds to 

i.e., the relaxation takes place without participation of the 
structural degrees of freedom corresponding to the labels 
n = 1,2,3 ,..., and is incomplete: q ( t+  w ) = p#O. 

Two facts must be emphasized. First of all, the direct 
transition in the recursion relations ( 1 )-(3) to a continuous 
label n [in particular, the transition to differential equations 
for the rates k, in ( 1)  ] is unsatisfactory. Actually, accord- 
ing to ( 1 ) and (2) ,  the function 

does not coincide with (7)  for any n. Secondly, the function 
(8)  is not the analytic continuation of the discrete sum (5) .  
In fact, the exact analytic continuation of the sum (5)  is 
implemented by using the integral representation for the in- 
complete Riemann zeta function: 

where r (s) is the gamma function. For small n (0  < n < 1 ) 
the following expansion is valid: 

Z (s, n )  = n (-i)"'g (rn+2)nm, 

where f(s) is the standard Riemann zeta function. Accord- 
ing to ( 1 1 ) and ( 12), the value of the derivative at n = 0 is 
f '(s,n) z f ( 2 )  = ( 1/6)?. Therefore, in using ( 11 ) the 
spectrum p ( k )  would have a discontinuity at k = k, [see 
(911. 

This comparison shows that while the function (7) ,  (8)  
we have constructed agrees with the postulates of the model 
given in Ref. 1 (see also Ref. 3), and also with the require- 
ment of continuity of the distribution density p ( k )  over the 
entire region of allowed values of the relaxation rate k, it is 
not the approximation ( 1 1 ) . Introduction of the modified 
function (7)  and (8) lets us successfully avoid a deficiency 
of the discrete model of Ref. 1, i.e., nonergodicity a s p  -- w , 
connected with the fact that the zero level of the hierarchy 
n = 0 does not contain the cooperative effects. However, in 
this case the approximation still has some arbitrariness, con- 
nected with the value of the exponent in the expansion (8).  
Our analysis shows that the expansion proposed here in half- 
integer powers is satisfactory. 

Thus, we have obtained an interpolation function for 
the modified incomplete Riemann function entering into Eq. 
(5)  for the relaxation rates, in which the label n now runs 
over all positive values; this function is shown in Fig. 1 for 
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a = 2. We should note: ( 1 ) the high quality of this interpola- 
tion, i.e., its agreement with the discrete sum (5)  at the cor- 
responding points; (2 )  the existence of a linear region 5 
a In n for 1 <n <n ,  = exp E - I  [this is the condition that 
expression (7)  be expandable in a series: E In n $1 ] ; ( 3 )  sat- 
uration of the function c(s,n) for n > n, : 

t ( s ) =  lim 5(s, n) = (s, a) IC. C+e--I, L(1) = CO. (13) 
n-m 

The latter property is equivalent to the existence of a 
minimum relaxation rate in the system 
[i=.k,exp( -PC) <k,]:  

k,,, = lim k,=ko exp I-& (s) 1 
n-m 

which is the lower bound &the spectrum g,(k). Consequent- 
ly, the integration in the first relation (6) is in practice car- 
ried out from k,,, to k, (k,,, ~ k ~ k , ) .  

This procedure for going to a continuum of hierarchy 
levels leads to the following expression for the relaxation 
rates: 

Thus, the approach discussed in the next sections for de- 
scribing glassy SR based on Eqs. (4), ( 9 ) ,  and (15) is an 
interpolation scheme, which can be used over the entire re- 
gion of variation of the relaxation rate. 

4. SHAPE OFTHE RATE SPECTRUM FOR STRUCTURAL 
RELAXATION IN A MODEL WITH A CONTINUOUS 
DISTRIBUTION OF HIERARCHY LEVELS 

We note several distinctive features of the resulting 
spectral density g,(k). First of all, near the upper boundary 

FIG. 1. Continuous interpolation of the incomplete Riemann zeta 
function {(s,n) ( a )  and its derivative{ '(s,n) (b )  based on Eqs. ( 7 )  
and ( 8 )  for& = 0.01 andamatchingpoint a = 2 (4 (s , l )  = 1.065): 
I)  approximation ( 7 ) ,  2) approximation (8) ;  the dots are the dis- 
crete representation ( 5 ) .  ( c )  shows the behavior of the function 
<(s,n) over a logarithmically wide region of variation of n 
(n ,  = 2.203. lo4, E = 0.1); ( d )  shows results of matching for the 
spectrump(k) (9)  (1nA = 1 0 , p  = 1):  I )  approximation (7) ,  2 )  
approximation ( 8) .  

of this spectrum (k - k, ,n < 1 ) the function g, (k )  continu- 
ously goes to zero [ p ( k  = k, = 0]  according to the follow- 
ing law: 

Second, we have q ( k  = k, ) -,2.67N(R 2k,p) - ' at the 
matchingpoint n = 2. Third, fork,, < k g  k, ( 1 <n < n, ) the 
spectrum is well approximated by the expression 

cp (k) IC. N (Ly) -'A-"n'+@=NA-"nlyk.. (17) 

Fourth, near the accumulation point k = k,,, the spectral 
distribution p (  k)  goes smoothly to zero (see below). 

Because of its method of construction, the modified 
model of SR given in this paper does not contain any struc- 
tureless hierarchical level, i.e., relaxation in which very 
small n contribute (n < 1, In R - co ) remains structural and 
cooperative. 

These properties are illustrated by the results of a calcu- 
lation of the spectra p ( k )  of rates of cooperative relaxation 
based on relations (9)  and ( 15) as a function of the model 
parameters In R andp  (Fig. 2 ) .  Obviously, the quantity l d ,  
which is uniquely linked with the probability p for forming 
an average glassy defect (Sec. 2) ,  plays the role of a charac- 
teristic parameter for a glassy many-particle system with 
structural nonequilibrium properties. Then since a wide 
(narrow) statistical distribution w, (3)  corresponds to 
small (large) values of the parameter In 1, we can conclude 
that the spectra in Fig. 2a correspond to a regime of weak 
structural nonequilibrium character, while those in Fig. 2b 
correspond to a regime of strong structural nonequilibrium 
character. By changing the cooperativeness parameter ,u for 
these plots, we change the fractional exponent 
a = I/( 1 + p) defined in Ref. 1. 

The transition from a regime of weak to one of strong 
nonequilibrium character is shown in Fig. 2c, from which we 
conclude that in the first case the spectral density p ( k )  is 
essentially different from zero in a region of values k z  k,, 
and is symmetric in the limit In ,I-+ co (Fig. 2a), while for 
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FIG. 2. Normalized calculated spectra p ( k )  [Eqs. (9) and (15)] for 
E = 0.01 and various values of the parameters: a) InA = 100, p = 0.5 ( I ) ,  
0.75 (2), 1.0 (3), 1.25 (4),  1.5 (5 ) ;  b) 1nA = 0 . 5 , ~  = 0.5 ( I ) ,  1.75 ( 2 ) ,  
1.0 (3), 0.75 (4),0.5 (5); c ) p = 0 . 5 ,  InA = 100 ( I ) ,  20 (2). 4 (3),0.8 
( 4 ) ,  0.16 (5).  

the case of a strongly nonequilibrium system the spectrum is 
concentrated near values of k z  k,,, and is always strongly 
asymmetric (Fig. 2b). Thus, in this model of cooperative 
glassy relaxation, representations with weak and strong non- 
equilibrium character arise naturally, and the corresponding 
regimes of relaxation admit a further quantitative analysis 
(see Sec. 5 and below). 

Rather than discussing the nonequilibrium character at 
the quantitative level, it is useful to compare the results 
shown in Fig. 2 with model p ( k )  distributions found in the 
literature: the Kohlrausch law5 (a = 0.5, p = 1) 

the Davidson-Cole distribution6 

sin (nu) 
( k ~ - 1 )  -", k r > l  

cpoc ( k )  = 
0. k r < l  

and the distribution function for relaxation rates in two-level 
systems (TLS) in glasses7 

The quantity 7- coincides with the fractional-exponential re- 
laxation introduced in Ref. 1 (here we have corrected a mis- 
print that appears there) : 

1 l n h  - = ~(lf P)i*'(T) . 
'c 

The results of comparing the spectrum p( k )  calculated ac- 
cording to (9)  with the model distributions (18)-(20) are 
shown in Fig. 3. The distributions ( 18) and ( 19) differ from 
zero for arbitrarily large relaxation rates, while their asymp- 
totic forms as k- cu coincide [ p ( k )  cc k - " + "' 1; as (4)  
shows, this leads to an unphysical divergence of all the mo- 
ments of the spectra ( 18) and ( 19), starting with the first. In 
addition, the real physical system can possess only a bound- 
ed spectrum of relaxation rates (i.e., there exists an upper 
bound k, ). The presence of a power-law "tail" in the Kohl- 
rausch distribution ( 18) is associated with the considerable 
decrease in the maximum of the spectrum compared with 
that calculated using (9)  (Fig. 2, curves I and 2). The sharp 
cutoff in the spectrum ( 19) in the region of small rates (Fig. 
3, curve 3 )  leads to a considerable disagreement with the 
spectra (9)  and ( 18). Obviously, the model TLS spectrum 
(20) cannot lead to fractional-exponential relaxation (Fig. 
3, curve 4). Thus, our comparison of the relaxation spectra 
shown in Fig. 3 demonstrates the advantage of an approach 
based on representations involving hierarchically con- 
strained structural relaxation. 

An interesting feature of this model of SR is the possi- 
bility of obtaining sharply asymmetric spectra p ( k )  that are 
displaced toward the point k = k,, for systems that, ac- 
cording to the classification given above, correspond to the 
case of weak nonequilibrium character (In A > 1 ) . These 
quasiequilibrium spectra arise for large increases in the co- 
operativeness parameter p ,  or, which is equivalent, for de- 
creases in the fractional exponent a (Fig. 4) .  An analysis 
similar to that carried out in Ref. 1 shows that this quasi- 
nonequilibrium character for large p (Fig. 4, curve 5) leads 
to a structural relaxation q ( t )  (curve 4) which possesses 
fractional-exponential behavior only after a sufficiently 
large time t > t ,  = ~ / p k  has passed (kgk ,  for p >  I ) ,  

FIG. 3. Normalized spectra of relaxation rates calculated using various 
expressions: ( I ) :  Eq. (9),  (2): Eq. (18), (3): Eq. (19), (4):  Eq. (20). 
Here a = 0.5, ,u = 1, In A = 0.16. 
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FIG. 4. Normalized calculated spectra p ( k )  [expressions (9)  to (15) ] FIG. 5. Phase diagram for the model of cooperative relaxation: ( I ) :  
f o r ~ = 0 . 0 1  andln/Z= 10: (I):,u=O.3, (2) :0 .6 ,  ( 3 ) :  1.0, (4):3.0,  ( 5 ) :  kor=O.l ,  (2) :0 .3 ,  (3) :0 .5 ,  ( 4 ) :  1.0, ( 5 ) :  2.0, (6): 5.0, (7):20.0, ( 8 ) :  
9.0. 100;expC= 1.781. 

when the basic processes of exponential relaxation have 
practically ended [q(t) < 1 1. In this case, the Kohlrausch 
relaxation time T (2 1 ) satisfies the condition k, T < 1, i.e., the 
characteristic rate r ' lies outside the spectrum q ( k ) .  How- 
ever, this paradox is only apparent: the condition q <  l for 
t >  t, can be satisfied only by the fractional exponent 
exp [ - ( t  /r) (a<O. 1 ) with very small T, i.e., in the pres- 
ent case of a weakly nonequilibrium system the quantity T is 
a fictitious relaxation time whose origin is determined by the 
fact that for 0 < t < to the relaxation is exponential with a 
rate close to k, . 

It must be emphasized that this situation is completely 
analogous to that studied in Ref. 4, where the model struc- 
tural relaxation function q ( t )  used possessed three regimes 
of temporal behavior [in this case the crossover time to is 
identically equal to the quantity T,, in Ref. 4, Eq. (6a) 1. 
However, there is a significant difference between the ap- 
proach used in Ref. 4 to describe glassy relaxation based on 
modeling of q ( t )  and the approach of this paper [modeling 
the spectrum q ( k ) ] :  our analysis of the continuous ana- 
logue of relation (4) ,  taking ( 15) into account, leads to the 
presence of a preexponential factor in the Kohlrausch re- 
gime of behavior for q ( t )  [compare with Ref. 4, Eq. (6b) ] : 

As a consequence of this, the behavior of q(  k) at the lower 
boundary of the spectrum near the accumulation point 
k = k,, is smoother than in Ref. 4, that is, 
q ( k  = k,, ) = 0. In particular, there is no delta-function 
singularity p ( k )  a 6 ( k -  k,,). However, in the case 
In il <p ( p / ~ )  - the width of the spectrum A is very small: 
A/k,,, < 1, which corresponds to the replacement of Eq. 
(15b) by kmin for n ~ n , .  

It is convenient to classify the spectral singularities of 
structurally nonequilibrium systems (Figs. 2 and 3 )  based 
on the phase diagram of a model of isothermal cooperative 
relaxation. The latter is obtained if we consider the param- 
eter k, T to be arbitrary and express In A as a function of p 
from Eq. (21): 

In k=exp C(k0~)-'/"y (l+p)-(t+i/u). (23) 

In this case, to each spectrum q ( k )  there corresponds a 
point on the plane ( l n i l y )  (Fig. 5).  Fixed values of 

k , ~  = const correspond to isolines on the phase diagram of 
the model (Fig. 5 ) . The level curve k, T = 1 is a separatrix, 
i.e., it separates regions of the phase space with weak 
( k o r  < 1) and strong ( k , ~  > 1 ) structural nonequilibrium 
character. For p 1 the separatrix goes to its limiting value 
lnil = expC, i.e., the region lying above the line In il = expC 
always corresponds to weakly-nonequilibrium systems. The 
relaxation-time approximation (Sec. 2)  corresponds to the 
limit lnil 1; in this case, T - significantly exceeds the upper 
boundary of the spectrum k, (k, < I ) ,  and the regime of 
Kohlrausch relaxation is unrealized in practice. 

From the data of Fig. 5 it is clear that the criterion In 
il < 1 for the regime of strongly nonequilibrium systems is 
not always precise. In particular, for p < 1 cooperative ef- 
fects do not play a significant role, and even for small values 
of ln A the many-particle system turns out to be only weakly 
out of equilibrium. According to (23), the separatrix in the 
region of small p behaves as In il z p  expC; therefore, the 
criterion for strong equilibrium character in this case is the 
inequality In <p expC< 1. 

5. ASYMMETRY OF THE q(k) SPECTRA AND ITS 
CONNECTION WITH THE STRUCTURAL NONEQUlLlBRlUM 
PARAMETER 

Using the relations (9)  and (15) derived above for 
p ( k ) ,  let us investigate the moments, and also the position of 
the maximum and width of the spectrum of rates for isother- 
mal SR in glasses. The general expression for the moments of 
the spectral density has the form ( I  = 0,1,2, ... ) : 

=Nkoi 1 dn expi-n in k-p16 (s, n) I =Nkoi (Z,+Z,+I,). 
0 

Here it is convenient to break up the integral into integrals 
I , ,  I,, and I, with limits [O, 11, [ l,n, 1, and [n, , co ] respec- 
tively. For In il $1 the primary contribution to the moments 
is given by the region of integration n < 1; therefore, the inte- 
grals I, and I,  can be neglected, while the integral I ,  has the 
form 
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where u = In A + plb, , u = 1/2 (In A )  "2plb, , and erf(x) 
is the error function. 

In the limit where 

holds, we retain only the principal terms in (25), e.g., terms 
of order exp( - v )  cc A - ' are neglected, and obtain 

( k') = k,' (1-n"u+2u2), (27) 

i.e., in a system with weak structural nonequilibrium charac- 
ter all the moments are close to k A, which is a consequence 
of the narrowness of the distribution w, in this case (Fig. 2a 
and Sec. 4).  In particular, the expression for the dispersion 
of the distribution of rates takes the form 

In the opposite case of a system with strong structural non- 
equilibrium character (In A ( 1 ), the principal contribution 
to the moments (24) comes from the integrals I, and I,. In 
fact, the integral I, in this case is estimated to be 

which is a small quantity (Nk ;I3 zkminA -" ')  when the 
normalization N in (24) is taken into account. We assume 
here that the inequality n, ' <ln A 4 1 is fulfilled. Then Eqs. 
( 15) and (24) lead to the following expressions for the inte- 
grals I ,  , I2 : 

where E, (x)  is the exponential integral. For the first mo- 
ments of the spectral density p ( k )  whenp = 1 we have 

2 
(k) = Nk.  lb:[1 - (I+b,)erp(-b,)] 

+ exp (4) [-2C-ln In h 

- In C+E, (C) 1 1% k In h(-ln In h )  k., (32) 

For the case p # 1, the behavior of the moments (32) and 
(33) is changed in the following way: the double-logarithm 
asymptotic form in (32) and the second term in the curly 
brackets of (33) are replaced by the constant (pl - 1 ) - I, 
I = 1,2. In this case, it is significant that in all the cases given 
here the dispersion of the distribution p ( k )  is 

i.e., it is proportional to the structural nonequilibrium pa- 
rameter. All of this is in agreement with numerical calcula- 
tions of the relaxation rate spectra (Figs. 2 and 3, Sec. 4).  

The expressions for the maximum and width of the 
spectrum p ( k )  in the limiting cases of systems with weak 
and strong structural nonequilibrium character can be ob- 
tained using the representations (9)  and ( 15). Under the 
condition In A %max( l ,p2) ,  the maximum of the function 
p ( k )  (where k ,  is the position of the maximum) lies in a 
region of relaxation rates close to the upper boundary of the 
spectrum k, (k, z k, ), i.e., in the regions of small n we have 
for these quantities 

The width of the spectrum A at half-maximum is determined 
by the roots of the equation p ( k )  = (1/2)p( k, ), which is 
conveniently written in the form 

exp [ ( ~ - - r ) ~ ]  =hx, x= (n In h)'", 
(37) 

r=pbi ( 2  In h)-'h<l, h z  (8e)Ih=4,66. 

The expansion (37) in the small parameter x z 2  - 2r2, 
where k is either of the solutions to the equation 
hx = exp(x2) (x, -- 1.37, x2 z0.225), gives 

By comparing the relations (27) for the first moment 
( I =  1)  ofthespectrump(k) [ fo r lnA~max(1 ,p2 )  wecan 
neglect the third term in brackets in (27) because u < 1 ] with 
the coordinates of the maximum (35), we obtain the weak 
inequality (k ) < k,,, [more precisely, (k,,, - (k ) )/k, z 
0.2pb1 (In A )  - 'I2) 1, i.e., the asymmetry of the narrow dis- 
tribution of SR rates for weak nonequilibrium systems (Fig. 
2a) is insignificant even in the presence of the "tail" extend- 
ing toward small k. 

In order to compare the width of the spectrum (38) 
with the dispersion (28), it is necessary to take into account 
the following: (a )  according to (37), we have 
x ,  - x2 z 1.15; (b)  the role of the width of the spectrum is 
played not by the dispersion itself but by the quantity 

Thus, we obtain (A-A,)/k,--0.06 pb, ( lnA)-"241,  
i.e., with good accuracy both quantities are the same, which 
is completely natural in the case of a system with weak struc- 
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tural nonequilibrium character. In this case, the resulting 
spectrum (Fig. 2a) is symmetric, and can be well approxi- 
mated by a Gaussian distribution. 

Analogous calculations for the opposite case In A 4 1, 
p > 1, which corresponds to a strongly nonequilibrium sys- 
tem in the region of glass formation (Fig. 2b) lead to the 
following relations: 

Obviously, the rate k, is small compared to k,, i.e., the max- 
imum of p ( k )  corresponds to the region of large n (Fig. 2b). 
In place of (37) the defining equation in this case is the 
following: 

As a result, for the width of the spectrum A we obtain 

Taking the ratio of the first moment (32) and the coordinate 
maximum (39) for the case p z 1, 

we see that the asymmetry of the distribution q,( k)  becomes 
very significant: although we have (k ), k, 4 k, in a strongly 
nonequilibrium system, one is several times larger than the 
other. Analogous calculations for the case p > 1 lead to the 
relation (k )/k,,, a (In A )  These conclusions regard- 
ing the role of asymmetry are also confirmed by comparing 
Eqs. (34) and (42): for p - 1 and In A <  1, the dispersion o 
turns out to be considerably larger than the width of the 
spectrum A (u>)A), which is possible only for a strongly 
asymmetric probability distribution (Figs. 2b and 2c). 

The calculated functions (38) and (42) allow us to ob- 
tain an interpolation of the width A of the spectrum of rates 
for SR as a function of the structural nonequilibrium param- 
eter In A over the entire range of variation of the latter (Fig. 
6) .  As the departure from equilibrium increases (In A de- 
creases), the quantity A initially increases monotonically, 
which corresponds to a shift in the maximum k, of the spec- 
trum from the upper boundary k, (Fig. 2c), and then for the 
case of a large departure from equilibrium (In A < 1) it 
gradually falls to zero. In this case the spectral density p ( k )  
gets closer and closer to the lower boundary of the spectrum 
k z k,,, . 

Depending on the nonequilibrium parameter ln A, for a 
system far from equilibrium the position of the maximum 
(39) and the width of the spectrum (42) are proportional to 
one another (with a coefficient of proportionality depending 
only on p ) .  Analogous proportionality relations obtain for 
the case of weak nonequilibrium systems between the quan- 
tities k, - k, [see (35) 1 and A from (38). It is these rela- 
tions that allow us to treat In A as the measure of the struc- 
tural nonequilibrium character. 

FIG. 6. Width of the spectrum of structural relaxation rates A as a func- 
tion of the parameter In /1 calculated according to various expressions: 
( I ) :  Eq. (42), (2): Eq. (38)  (p  = 0.5).  

Thus, from the point of view of statistics, the density 
distribution p ( k )  of SR rates in a strongly nonequilibrium 
(glassy) system is not self-averaging, i.e., its first and second 
moments differ considerably from the most probable value 
and width of the spectrum, respectively. Consequently, for a 
complete description of the relaxation spectra of such sys- 
tems it is necessary to know either all the moments or an 
interpolation formula for p ( k )  over the entire range of vari- 
ation of k. 

6. THE CONNECTION BETWEEN THE SHAPE OFTHE 
RELAXATION RATE SPECTRUM AND THE STRUCTURAL 
TEMPERATURE OF GLASS FORMATION FOR THE SYSTEM 

In conclusion, let us discuss the question of the mutual 
relation of the statistical and thermodynamic characteristics 
of structural nonequilibrium behavior in glass-forming li- 
quids. The shape of the p ( k )  spectrum we discussed above 
for the rates of isothermal SR is determined by the thermal 
"prehistory" of the sample, which we can describe within 
the framework of the thermodynamic two-temperature the- 
ory of glass formation (see, e.g., Refs. 2,8,9) by introducing 
a representation for the structural temperature 8, i.e., the 
effective temperature of a reservoir of glass structural de- 
grees of freedom. In this case, the inequality 19 > T, where Tis 
the temperature of the lattice heat bath, characterizes the 
degree of heating of the atomic network of the glass-forming 
system. This approach is analogous to the phenomenological 
concept of a fictitious temperature Tf (Ref. lo) ,  which, 
however, can be defined only with respect to a certain specif- 
ic property of the glass, such as density, compressibility, or 
coefficient of thermal expansion. 

The following is a possible definition of the structural 
temperature 8 in terms of the shape of the spectrum p ( k ) .  
Let us assume that the probability distribution w, for the 
relaxing regions of the glass based on the hierarchy levels 
with index n is power-law-like and depends on the degree of 
nonequilibrium character 8 - Tin the following way [com- 
pare with Eq. (3)  ] : 

Relation (44) can contain an unknown numerical factor 
(const). For an equilibrium system (8 - T), within the 
framework of the discrete model for SR we have w, = a,, , 
and the relaxation function q ( t )  (4)  is exponential (Sec. 2). 

314 Sov. Phys. JETP 74 (2), February 1992 Volchek eta/. 314 



In the general case, the width of the corresponding spectrum 
of relaxation rates q, (k )  has two limiting regimes of behavior 
(Sec. 5 and Fig. 6).  For the case of weak nonequilibrium 
behavior ( 8 > T ) ,  based on (38) and (44) we obtain 

A =  (lu h)-'"={ln [@I(@-T)] ) " ' ,  (45) 

i.e., a square-root dependence is found for the nonequilibri- 
um width of the spectrum. For systems far from equilibrium, 
where the primary contribution to the density p ( k )  is given 
by subsystems with large values of n, according to (42) we 
have for the width of the spectrum 

Based on the data given in Fig. 6, we can conclude that in 
both cases (45) and (46) the thermodynamic parameter for 
the structural nonequilibrium character 8 - Tcan turn out 
to be quite large. Thus, within the framework of this model 
of cooperative SR it is easy to make use of the characteristic 
region of values of the heating parameter 
0< (8 - T)/8<0.1 to 0.2, values that are attained for the 
rates ordinarily used in cooling a melt in the region of glass 
formation in order to obtain insulating and semiconducting 
glasses.3 It is noteworthy that the characteristic time (21 ) in 
the fractional exponential of isothermal SR in a model with 
hierarchically constrained dynamics also depends on the 
thermodynamic heating parameter of the atomic network: 

In particular, it follows from this that in the case of an equi- 
librium system ( T  = 8 )  there is no Kohlrausch relaxation 
regime (T = 0),  which agrees with the data in Sec. 4. 

Another possible way to define the structural tempera- 
ture B differs from the one presented above only by replacing 
the difference 8 - T by the difference in inverse values 
1/63 - 1/T, which in principle does not change the charac- 
ter ofthe functions obtained above. In both cases, departures 
of the system from structural equilibrium can be interpreted 
as transitions to higher levels of the hierarchy. Therefore, 
the higher the degree of excitation, the more the structural 
temperature will differ from the temperature of the heat 
bath. Then the isothermal relaxation of the atomic structure 
obeys the equation 

which is its form coincides with the solution to the equation 
of Tula and Narayanaswamy for T = const (Refs. 8-10). 

7. CONCLUSION 

We have discussed structural relaxation in disordered 
condensed systems with strong interactions, i.e., glasses and 
glass-forming liquids. Starting from the postulate of a reser- 
voir of structural degrees of freedom with hierarchical struc- 
ture, we have proposed a model that allows us to describe 
systems with both weak and strong structural nonequilibri- 
um character within the framework of single approach, to 
investigate their asymptotic behavior at large times, and to 
study the transition to a regime of nonequilibrium relaxa- 
tion. Our model satisfies all the criteria for glass relaxation 
with hierarchically constrained dynamics,' and is charac- 
terized by a continuous distribution of relaxation rates p ( k )  
that is bounded from above (k,) and from below (k,,, ). 

Based on our analysis of this model, we have shown that 
relaxing systems can be classified both in terms of their sta- 
tistical properties (the degree of structural nonequilibrium 
character In A) and dynamic properties (the cooperative- 
ness parameterp) . We have investigated the behavior of the 
p ( k )  spectrum in detail and have obtained analytic expres- 
sions for its moments as well as the position of its maximum 
and width; our data from numerical calculations of p ( k )  for 
various values of the parameters In A and p agree very well 
with the analytic results. Within the framework of the ap- 
proach developed here, we have found a quantitative crite- 
rion for the departure from structural equilibrium of glass- 
forming systems based on the phase plane of the model in the 
variables (In A, p ) ,  according to the values of the product 
k, r: regions where k, r > 1 are found to be far from equilibri- 
um, while those with k,r < 1 are found to have weak non- 
equilibrium character. 

We have shown that the non-self-averaging behavior of 
the system is a consequence of asymmetry in the spectrum of 
relaxation rates, a consequence of which is that the first mo- 
ment and dispersion of the distribution density p ( k )  differ 
significantly from the most probable value of the relaxation 
rate and the width of the spectrum, respectively. 

It must be emphasized that this model of cooperative 
SR does not presuppose the disruption of ergodicity in the 
glass-forming state (in this connection compare with Refs. 
11 and 12); the glass relaxation for asymptotically long 
times corresponds to ergodic behavior, for which there is no 
residual nonequilibrium character. It is important, however, 
that the limiting attainable time for experimental observa- 
tion is not always asymptotically large from the point of view 
of SR. Within the framework of this model, this is associated 
with the fact that as a function of the parameters In A and p 
the spectral density p ( k )  can turn out to be a very wide 
distribution of relaxation rates, which extends over many 
decades. If in this case the inverse maximum observation 
time t ; ' falls within the region of the maximum of the spec- 
trum q,(k), then such a system for all attainable times 
(0  < t < t, ) behaves as a nonergodic system with consider- 
able residual ( frozen-in) structural nonequilibrium charac- 
ter. As shown above, this nonergodic behavior must differ 
from the quasinonergodic behavior characteristic of weakly 
nonequilibrium systems for large values of the cooperative- 
ness parameter p. In such systems, a regime of nonexponen- 
tial relaxation arises only after exponentially long times, and 
the use of the fractional-exponential approximation for all 
time intervals leads to unphysical values of the Kohlrausch 
relaxation time r when the shift in the relaxation regime (see 
Ref. 4 )  is taken into account. 

In view of these comments, and the relations we have 
identified between the statistical and thermodynamic pa- 
rameters of the structural nonequilibrium character, we can 
conclude that our model of cooperative SR can provide a 
theoretical scheme within the two-temperature description 
of the processes of glass formation that is realistic enough to 
interpret and quantitatively analyze experimental data on 
the glassy relaxation of real systems in the glass-forming 
temperature region. 
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