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In this paper we present a theoretical treatment of linear and nonlinear amplification of 
electromagnetic waves in a magnetized beam-plasma system of general form with transverse 
density variation. Analytical and numerical methods are used to calculate the field amplitude, 
conversion efficiency of beam energy into energy of radiation, and radiated power, as a function of 
beam current and the system geometry. 

1. INTRODUCTION 

It is well known that the regimes in which an electron 
beam interacts with a plasma, and the efficient electromag- 
netic radiation that accompanies this interaction, are to a 
considerable extent determined by the beam current and the 
geometry of the plasma-beam structure. From a practical 
point of view, beam-plasma structures of waveguiding type 
with transverse nonuniformity are especially promising, as 
indicated by the results of both t he~ re t i ca l~ .~  and experi- 

papers on high-power plasma microwave oscilla- 
tors based on relativistic electron beams. For this reason, the 
investigation of these devices has been pursued intensively in 
recent times. 

In this paper we present a theoretical treatment of lin- 
ear and nonlinear amplification of electromagnetic waves in 
a magnetized beam-plasma system of general form with 
transverse density variation. We give a detailed discussion of 
the case of cylindrical geometry, i.e., amplification in a cir- 
cular waveguide containing a thin hollow beam and a plasma 
with the same structure, and show that five different amplifi- 
cation regimes are possible, depending on the geometry of 
the structure and on the beam current. This is in agreement 
with the results of Ref. 2, in which the analogous geometry 
was investigated in linear approximation in connection with 
the initial-value problem for the case of low frequencies. We 
identify the ranges of beam current and electromagnetic 
wave frequency for which the regime of maximum amplifi- 
cation is realized, and determine values of these parameters 
that bound the amplification range in the waveguide. Using 
analytical and numerical methods, we investigate the field 
amplitude, conversion efficiency for beam energy into radi- 
ation, and radiated electromagnetic power as a function of 
the magnitude of the beam current and geometry of the sys- 
tem. We also classify the nonlinear amplification regimes. 

2. FUNDAMENTAL NONLINEAR EQUATIONS 

Let us consider a metal waveguide of arbitrary cross- 
section containing a thin beam and a plasma. In setting up 
boundary conditions for the problem of amplification of os- 
cillations fed to the input of such a waveguide, we describe 
the electromagnetic properties of the structure using the fol- 
lowing system of equations: 

dv ,  e 

dz m 

jb,=enbSb6 (r,--q) 1 u, ( z ,  t )  6 [ t - t  ( z ,  t o )  Idto, 
jpr=Sp6 (r l -rp)  jP. 

Here r, is the position in the transverse cross-section; r, and 
rp are the positions of the beam and plasma in the waveguide; 
Sb and Sp are the areas of their transverse cross-sections; A, 
is the transverse part of the Laplacian operator; 
$ = $(z,t,r, ) is the Hertz polarization potential;7 
E, = E, (z,t,r, ) is the longitudinal component of the electric 
field; and jbz and j,, are the perturbations of the beam and 
plasma currents respectively. In writing the system ( 1 ), we 
have assumed that the beam and plasma are completely mag- 
netized by an external magnetic field directed along the z- 
axis. 

For clarity, the first equation in system ( 1 ) is a result of 
transfer of Maxwell equations for the cylindrical magnetic 
waves of E-type. Next two equations are the characteristic 
system for Vlasov's equation, which describe an electron 
beam, and equation forj, is a result of linear equations for 
hydrodynamic for the plasma electrons. In general, system 
(1) is widely used for solving various problems in plasma 
and vacuum UHF  electronic^.^.' The polarization potential 
$ and electric field Ez reduce to zero at the metallic wall of 
the waveguide, and satisfy the condition of periodicity in the 
coordinate t: 

where T = 2r/w is the period of the electromagnetic oscilla- 
tions fed in at the waveguide input. The input of the wave- 
guide corresponds to the coordinate z = 0. Note that the 
plasma behavior implicit in Eqs. ( 1 ) corresponds to the lin- 
ear approximation. The validity of this approach will be jus- 
tified below. 

It is known that the oscillations that are amplified most 
efficiently in a beam plasma waveguide are those with longi- 
tudinal wave numbers of order w/u, where u is the velocity 
of the unperturbed beam. Then the Hertz polarization po- 
tential can be conveniently written in the form 
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$(z, t. r,) = l z  2 9. (r,)[ A. (z) erp (-iot+i ; z + C.C. . 
n=t " )  I 

Here, An (z) is a slowly-varying function (i.e., the character- 
istic length scale over which A ,  varies is smaller than u/w), 
and $, is a waveguide eigenfunction. We note that for trans- 
verse-nonuniform beam-plasma waveguides it is meaningful 
in principle to include all the terms of the infinite sum in (3) .  
Therefore, in contrast to the usual approach in the theory of 
transverse-uniform systems,3 in which one or several low- 
order terms of the series are taken into account, in this paper 
we will use an entirely different method. Let us briefly de- 
scribe its essential features. 

We first substitute the representation ( 3 ) into the first 
equation of the system ( 1 ) . After multiplying the resulting 
expression by p, (r, ) and integrating it over the transverse 
cross-section of the waveguide, we find the coefficients A,, in 
the form 

where 

Here t ' = t - z/u, S,  is the area of the transverse cross-sec- 
tion of the waveguide, lip, 1 1  is the norm of the eigenfunction, 
and 

is a pseudodifferential operator. Here, y = ( 1 - u2/c2) - 
and k,, is the transverse yave number. Using the slow vari- 
ation ofA, , let us expand D, in a series with respect to d /dz, 
and save only the first term in the expansion. Aka result, we 
have the following expression for the operator D, : 

1 o 1 
D, w .  1+2i- d), (7)  

which is valid under the following condition: 

where Sk, is the amplification coefficient, or in other words 
the inverse characteristic length over which A, changes. We 
note that inequality (8)  is easily satisfied both for high-den- 
sity and low-density beams, especially for frequencies that 
are not too high. 

In order to obtain nonlinear equations, we now substi- 
tute (3) and (4)  into the third and fourth equations of the 
system ( 1 ). Without taking time for some uncomplicated 
but tedious transformations, we immediately introduce the 
dimensionless variables 

0 u-U, g --Z, y=ot', =7, ( ~ = 2 y ~ ,  
u 

where R is a characteristic transverse size of the waveguide 
system, and write the transformed equations ( 1) in the fol- 
lowing form: 

The quantity 17, in Eqs. ( 10) has the sense of a detuning 
or deviation of the phase velocity of the plasma waves, which 
are as yet unperturbed by the beam, from the velocity u; the 
parameter a, is proportional to the beam current, and if is 
the coupling parameter. If the positions of the beam and 
plasma coincide, then we have h = 1. When the beam and 
plasma are sufficiently far separated in space, we have h -0. 

The geometric factors R,, R,, and G [see (9)  1 have 
their origk in the zeroth-order terms of the expansion of the 
operator D, (the number 1 in the curly brackets of Eq. ( 10) 
is a result of making these quantities dimensionless); their 
dependence on frequency w (or x) is a consequence of the 
nonlinear dispersion law for the beam and plasma waves. 
The functions 

are a result of taking into acEount the next terms in the series 
expansion of the operator D,. In the low-frequency region 
f, ,&, , and f, all vanish. 

The system of equations ( 10) contains all the necessary 
information on the electromagnetic processes in a wave- 
guide structure with transverse variation. In this case, the 
Hertz polarization potential is completely determined by the 
eigenfunctions 

(12) 
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and is given in terms of the perturbations of the charge den- 
sityp, of the beam and current density j, of the plasma using 
Eqs. (41, (7): 

Here 

Note that the first term on the right side of the equation 
for 7 in the system ( 10) is the part of the force exerted on the 
beam electrons by the field of the beam's Langmuir waves; 
the second term, as will be clear below, includes both the rest 
of the force exerted by the beam waves and the force exerted 
by the field of the electromagnetic plasma waves. It is conve- 
nient to carry out an additional "separation" of the fields. To 
do this, we use the third equation of the system to eliminate 
the derivative % / d l  and to rewrite the equation for 7 in the 
form 

As was shown in Ref. 3, the first and second terms on the 
right-hand side of the equation of motion ( 15) make up the 
total force exerted on the electron beam by the field of the 
beam Langmuir waves; the second term, which is due to the 
rotational nature of the beam wave, turns out to affect the 
amplification dynamics significantly only in the range of 
very high beam currents. Finally, the third term is the force 
exerted by the electromagnetic oscillations of the plasma. 
Incidentally, when the positions of the beam and plasma co- 
incide ( E  = If, = f, = f,), the first two terms reduce to 
zero, and [as is clear from Eq. ( 15) ] the third term acquires 
the meaning of a longitudinal electric field of the plasma 
waves, which are partially distorted due to the induced mod- 
ulation of the beam density. 

The system of equations (10) has a first integral. In 
order to find it we replace j, by a new quantity j: 

Since jp is the amplitude of the longitudinal current pertur- 
bations in the plasma, it also determines the amplitude of the 
longitudinal component of the field E, . Then the fifth equa- 
tion of the system ( l ) implies that the quantity j from ( 16) 
gives the transverse component of the electromagnetic field, 
which determines the energy flux of the plasma waves. Tak- 
ing into account ( 16), the first integral of the system ( 10) 
can be written in the form 

where the first term on the left side is the change in kinetic 
energy flux of the electrons in the beam, while the second 
and third terms are the fluxes of electromagnetic energy for 
the beam and plasma waves, respectively. 

Let us begin with the worst case, and assume that the 
electromagnetic radiation can be emitted only from the plas- 
ma. Then the conversion efficiency of beam kinetic energy 
into energy of electromagnetic radiation is determined by 
the following expression: 

wherej, =jIt=, 

3. CIRCULAR WAVEGUIDE WITH A THIN HOLLOW BEAM 
AND PLASMA 

Let us consider a circular metallic waveguide of radius 
R, for which p, = J, ( k,, r)  and k,, = p,, / R ,  where p,, are 
the roots of the zero-order Bessel function. Using the 
Knezer-Sommerfeld expres~ion,~ we evaluate the infinite 
sum in the geometric factors and write the quantities R, and 
R,, R,, and a in explicit form: 

' KO (xab) /IoJxab) -KO (XI 

= , Ko (xap)/~;(xap) -Ko(4/I0 (x) 
KO (zap) lIo.(xap) --KO (x)lIo (XI (20) 

K, (xub) /~,'(xa,) -KO (x) /Io (x) 

where I,, K, are Bessel functions of imaginary argument, 
a, = r,/R, a, = r , /R,  and r, and rp are radii of the thin 
hollow beam and plasma respectively. We also present the 
expressions for the coefficients @, and @, entering into Eq. 
13, which determine the transverse structure of the field in 
the waveguide: 

Here a = r/R, while r is the coordinate in the transverse 
cross section of the waveguide. 

The expressions for the functions f, ,& , f,, and also for 
the derivatives of @, and @, with respect to x,  are calculated 

244 Sov. Phys. JETP 74 (2), February 1992 Kuzelev et a/. 244 



Kz 

FIG. 1.  Dispersion curves in the w-k, plane. 

rather simply from Eqs. ( 19) and (21 ); however, due to 
their cumbersome form we do not present them here. As we 
already noted above, the functions f ,  (j = b,p,G) vanish at 
low frequencies. As the frequency o increases, the function 
f,, e.g., increases monotonically in absolute value, and for 
large w (or x)  it goes to a value f, I,,, -+ - 0.5. The func- 
tionsf, and f, behave analogously. Thus, inclusion of theJI 
does not cause any qualitative change in the process of beam- 
plasma interaction, and is important only quantitatively. 

However, in a real system, for which the beam and plas- 
ma have finite thickness, we havef, -+ - 1 as w -a,, which 
clearly leads to a qualitative change in the interaction dy- 
namics. Let us pause to consider this question in detail, 
thereby addressing the question of how well a theory de- 
signed for an infinitely thin beam and plasma can describe a 
real system with a beam and plasma of finite thickness. 

It is known that the only waves an infinitely thin plasma 
can support are surface waves, with a high-frequency disper- 
sion law w - (K, ) I f 2  (similar to waves in deep water1' ). The 
corresponding dispersion law is shown in Fig. 1 by the solid 
curve. For the case of a plasma of finite width, the dispersion 
curve is asymptotic to the plasma frequency (the dot in Fig. 
1 ) in this limit, and for w - w, the plasma oscillations turn 
out to be confined within the bulk of the finite-thickness 
plasma. Thus, there is a certain frequency at which the dis- 
persion curve of an infinitely thin plasma begins to dive de 
from that of a plasma of finite thickness, so that the theoreti- 
cal results given above will not correspond to the real situa- 
tion. However, if either of the resonance points 1 or 2 iri Fig. 
2 is located sufficiently far from the plasma frequency, i.e., 

this difference in dispersion curves will be unimportant. 
The numerical analysis we carried out of the dispersion 

curves for a thin plasma and a plasma with finite thickness 
(A, E 1 mm, r, = 0.9 cm, R = 1.8 cm) shows that the dis- 
persion curves at points 1 and 2 agree completely on an inter- 
val of plasma frequencies from 10- 10'' sec-' to 50.101° 
sec-' with y = 2, and inequality (22) is satisfied. We note 
only that if w,,, -a,, the field of the plasma oscillations is 

irrotational, and as we have already said, is completely 
"sealed" inside the plasma volume. This important change 
in the structure of the field is why we have f ,  -+ - 1, and 
leads to the disappearance of the rotational (radiative) 
terms in Eq. ( 10). This latter phenomenon in turn has a 
deleterious effect on the amplification; therefore, fulfillment 
of inequality (22) is a strict necessity. 

We have already noted that the theory constructed here 
treats the plasma in the linear approximation. Linear re- 
sponse of the plasma implies in turn that the plasma electron 
displacements in the longitudinal electric field are much 
smaller than the ~ave l eng th ,~  i.e., 

Assuming k, = w / u ,  and using the dimensionless variables 
(9) ,  let us write the criterion for linearity in the circular 
waveguide as follows: 

Specific values of A, for various amplification regimes are 
listed in Table 11. 

For further analysis of Eq. ( lo) ,  the parameter a,, 
which plays a significant role in determining the amplifica- 
tion mechanism, is conveniently expressed in terms of the 
ratio of the beam current j, to the limiting vacuum current jo 
of a thin hollow beam (Ref. 3) : 

For x 4 1 and large y, we have a, z y - 4J,/J0. 

4. LINEAR THEORY 

In the linear approximation, when we have 
j, a exp(iSk,z), it is easy to obtain the following dispersion 
equation from the system ( 10): 

FIG. 2. Curve for cutoff ( 1 )  and curve for maximum amplification (2)  
when a, = 0.5 (solid) and 0.8 (dashed); w, = 25.10" sec-' .  
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where 6 = (u/w) Sk, is the dimensionless amplification co- 
efficient. Note that in the low-frequency limit, where f,, f ,  , 
and f, are absent, an analogous dispersion equation was ob- 
tained and analyzed in Ref. 2. 

For further analysis, we rewrite the dispersion relation 
(26) in the form 

where the quantity 

sl,2=1/2~b~(l+fb) * ' I2  [ ~ b % ~ ( l + f ~ ) ~ + 4 a ~ ] " ~  (28) 

determines the spectrum of slow and fast beam waves; in the 
boundary value problem, the sign " + " corresponds to a 
slow wave. Let us investigate further the two types of reso- 
nance that are of most interest. The first is characterized by 
interactions of the wave-particle type, and takes place for 
up, = u (see point 1 on Fig. 1 ) , where up, is the phase veloc- 
ity of the plasma wave. In the variables (9)  this corresponds 
to a detuning 17, = 0. The second is characterized by a wave- 
wave type of interaction, and takes place for up, = v, (point 
2 in Fig. I ) ,  where u, is the phase velocity of the slow beam 
wave; in the variables (9) this corresponds to yo = - 6 , .  

Depending on the beam current J,, the coupling param- 
eter E, and the corresponding resonance condition (Fig. 1 ), 
five different regimes are possible for the amplification of 
oscillations in a waveguide with a thin hollow beam and plas- 
ma.2 In the limiting cases of low-current (J, < Jo ) and high- 
current ( J, > Jo ) beams, and also depending on the mutual 
positions of the plasma and the beam (5 - 1 or E < 1 ), the 
amplification coefficient can be explicitly found in the form 
of simple analytic e ~ ~ r e s s i o n s , ~  and is represented in the 
upper rows of Table I. 

For intermediate values of the current and coupling pa- 
rameter E, the solution to the dispersion relation has a rather 
cumbersome form, and is conveniently analyzed numerical- 
ly. We will carry out this analysis starting from the param- 
eters of a real experiment:" y = 2 (o = 8); R = 1.8 cm, 
r, = 0.9 (a, = 0.5). We will vary the plasma frequency and 
the position of the beam a,. 

In Fig. 2 we show a curve of maximum amplification in 
the variables (J,/J, ), x, and the curve for cutoff of the am- 
plification" when w, = 25. 101° sec '. The solid curves cor- 
respond to a, = 0.5, where the radii of the beam and plasma 
coincide (E = 1 ); curve 1 is the curve for cutoff (the amplifi- 
cation region is located to the left), while curve 2 is the curve 
for maximum amplification of the oscillations. For a, = 0.8, 
when the beam and plasma are separated in space, the region 
of amplification is bounded with respect to frequency, both 
above (on the right in Fig. 2)  and below (on the left in Fig. 2; 
see dotted curve No. 1 in Fig. 2) and the maximum amplifi- 
cation occurs roughly in the center of the diagram (the dot- 
ted curve 2).  The bounding of the region of amplification 
with frequency above and below is explained by the topology 
of the dispersion curves, whose qualitative form is shown in 
Ref. 2. We note that for r, < rp (here we investigate the case 

a, = 0.2), the curves for cutoff of the amplification have an 
analogous form, and therefore will not be shown here. 

As the plasma frequency increases, the cutoff and maxi- 
mum-amplification curves shift to the right. In this case, for 
a, = 0.8 the region of amplification becomes narrower with 
respect to frequency. Thus, for w, = 25. 101° sec - I, we have 
Jb/JOw1, Ax =x,,, -x,,, -1.6, and IIm~~,,, -0.05; for 
w, = 35.101° sec-' we have Jb/Jo-1, Ax-0.75, and 
)ImS),,, -0.013; for w, = 50. 10'' sec- ' we have Jb/Jo - 1, 
Ax-0.25, and 1 ImSI,,, -0.002. This is explained by the 
fact that the value of the resonance frequency a,,, increases 
with increasing plasma frequency w, as well (points 1 and 2 
in Fig. 1 are displaced upward). Consequently, the coupling 
coefficient E becomes exponentially small, the region of am- 
plification contracts, and the amplification coefficient de- 
creases. 

Conversely, for a, = 0.5 there is no lower frequency 
limit for amplification (more precisely, it is given by the 
expression x = 0);  therefore the region of amplification in- 
creases with increasing a,, and amplification of electromag- 
netic signals with rather wide frequency bandwidths be- 
comes possible. 

An interesting situation arises as the plasma frequency 
decreases. For example, at w, = 10.10" s e c  ' the straight 
line w = k,u no longer crosses the curve for characteristic 
plasma oscillations in the w, k, plane (see the dotted curve 
w = k,u in Fig. 1) .  In this case, only the curve 
w = k,u - 0, (0, = xa, ),which describes the spectrum of 
slow beam waves, participates in the "coupling" of the dis- 
persion curves. In reality, this "coupling" does occur for 
sufficiently dense beams, or starting with a certain threshold 
current. This fact is well-confirmed by Fig. 3, where we show 
the curve for cutoff of amplification when w, = 10.lO'O 
sec-' (the solid curve corresponds to a, = 0.5, the dotted 
curve to a, = 0.8). For a beam and plasma that are separat- 
ed in space (a, = 0.8), there is a frequency bound on the 
range of amplification from below in this case as well; how- 
ever, this boundary exists only for values of the current 
J, / J,> 5, and therefore does not appear in Fig. 3. We note 
that this current threshold for the regime of plasma wave 
amplification was treated in Ref. 12 for the case of a trans- 
versely uniform beam-plasma waveguide. 

5. NONLINEAR AMPLIFICATION DYNAMICS IN A 
WAVEGUIDE 

The system of nonlinear equations (15) was analyzed 
numerically for the following boundary conditions: 

and the following values of the fixed parameters: y = 2 
( o =  8), rp =0.9 (ap =0.5), R = 1.8 cm, wp = 2 5  10" 
secp', and w = 7.78. 101° secp ' (x  = 2.7), which corre- 
spond to a real experimental situation." In this case, the 
remaining free parameters are the quantities a, and Jb/Jo. 

Let us analyze how nonlinear stabilization.of the five 
different amplification mechanisms comes about as a func- 
tion of the beam current, its position, and the resonance con- 
ditions corresponding to Table I. In the following section, 
some of the regimes listed in the table will be investigated 
analytically. 
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FIG. 3. Curve for cutoff of amplification when a, = 0.5 (solid curve) and 
0.8 (dashed curve), for o, = 10.10" s e c 1 .  

Let us consider the case of a low-current beam with 
I, = 0.1 (where I, = J,/J, ). If the positions of the beam 
and plasma coincide, i.e., a, = 0.5, so that Zi = 1, then the 
single-particle Cherenkov effect occurs regardless of the res- 
onance  condition^,'^ as stated in columns 1.1 and 1.2 of Ta- 
ble I. In this case, the quantities li, 1 and bl are the same 
order of magnitude; after saturation they exhibit quite regu- 
lar oscillations, a characteristic of the well-known mecha- 

nism of nonlinear stabilization, i.e., trapping of beam elec- 
trons by the plasma wave field.I4 

When the beam and plasma are separated in space 
( a ,  = 0.8 and Z=0.15), the region of zero detuning 
(vO = 0 )  lies outside the amplification region (see Fig. 2 
and column 1.3 of Table I ) .  Stability is possible for 
v0 =: - 8 ,  (column 1.4 in Table I ) ,  and exact equality im- 
plies a regime of maximum amplification. The characteristic 
behavior of li, 1 and bl (less regular oscillation after satura- 
tion) and the electrons becoming turbulent in the phase 
plane is indicative of amplification taking place in the regime 
of the collective Cherenkov effect; here the nonlinear stabili- 
zation is also determined by a well-known mechanism, i.e., 
trapping of the electrons by the field of the slow beam wave,3 
i.e., "breaking" of the latter. 

Let us turn to a discussion of the high-current electron 
beam. For the case a, = 0.5 (6 = I ) ,  and a beam current 
that varies between I, = 2 and I, = 5 (column 1.5 in Table 
I), there is a sharp decrease in the quantity VI, which deter- 
mines the transverse component of the field, compared to 
li, I. The latter is explained by the restructuring of the polar- 
ization of the plasma waves15 and conversion of the radiative 
regime to a nonradiative regime, for which the instability is 
of the well-known "negative mass" type3 and is characteris- 
tic of a medium with negative dielectric permittivity. The 
primary fraction of beam kinetic energy in this case goes into 
excitation of longitudinal potential oscillations in the beam, 
which explains the decrease in the conversion efficiency of 

TABLE 11. 

a,=0,2 I I I I I 

z m x ,  cm 61 45 45 
(rb=0,36 cm) Po, k w  23 23 23 Pmax, MW 27 141 274 

Pb. GW 0,12 172 
J,=%38 kA K ~ x  0.22 3 5  0,228 

L P  0,02 0.05 0,OT 

Zmor, cm 
(rb=O,9 cm) 

29 17 14 
Po, kW 12 12 12 
Pmax, MW Ju=5,52 kA 72 307 535 
Pb. GW 0,28 1,4 
Km,, 

2,s 
0.26 0,22 4 1 9  

AP 0,05 0.13 0.18 

(r,=1,44 cm) 

Jo=17.2 kA 

(r,=1,17 cm) 

Ju=8,88 kA 

:mar, cm 
Po, kW 
Pmaz, MW 
Pb. GW 

Kmax 

A, 
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Po, kW 
Pmar, MW 
Pb, GW 
Kmax 

AP 
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42 
@ 
108 
0,444 
0.24 
0,05 

27 
40 
458 
2,22 
0,206 
0 , l f  

23 
40 
935 
4,44 
0,21 
0.17 

22 
40 
1989 
8,88 
0,22 
0.28 

18 
40 
875 
22,2 
0,04 
0,24 



beam energy into energy of radiation. The latter is quite ap- 
parent from Table 11. In Fig. 4a we show the dynamics of the 
transverse structure of the electromagnetic field in the wave- 
guide (see Eq. 13) for a, = 0.5 and various values of the 
beam current. 

The case where both amplification mechanisms, i.e., the 
negative-mass and collective Cherenkov regimes, are real- 
ized is well illustrated in Fig. 5, which shows the spatial 
dynamics of the quantities li, 1 and 11 for a, = 0.65 and 
I, = 5 (column 1.6 in Table I ) .  In the high-current regime, 
it is the relativistic collective Cherenkov effect that is re- 
sponsible for the "soliton-like" behavior of li, 1 and bl; the 

FIG. 5. Spatial dynamics of the quantities li,J ( 1 )  and LJ (2)  for 
a, = 0.65 and I ,  = 5. 

FIG. 4. Transverse structure of waveguide field. a-a, = 0.5: 
I ,  =0.5 [ { = 4 0 ( 1 ) , 6 0  ( 2 ) ,  100 ( 3 ) l ; I b  = 1 [ { = 4 0 ( 1 ) ,  80 
( 2 ) ,  140 ( 3 ) ] ,  I ,  = 5  [ {= 150 ( I ) ,  250 (Z), 400 (3)l; b- 
a, = 0.8: I ,  = 0.5 [<=  50 ( I ) ,  100 ( 2 ) ,  150 ( 3 ) ] ;  I,, = 1 
[ {= 100 ( I ) ,  150 ( 2 ) ,  350 ( 3 ) ] ,  I ,  = 3 [ ~ = 4 . 5 , { = 8 0  ( I ) ,  
120 ( 2 ) ,  160 ( 3 ) ]  

fact that li, 1 exceeds ljl by more than a factor of two is an 
indication that the system is operating in the negative-mass 
regime as well. 

Finally, for a, = 0.8 (iZz0.06), the mechanism that 
operates in the high-current region is the relativistic collec- 
tive Cherenkov effect (column 1.8 in Table I ) .  The soliton- 
like character of the solution is easy to see in Fig. 6, where we 
show the spatial dynamics of the quantities li, 1 and bl for 
I, = 3. In contrast to the previous case, here we have 
Ij, 1 5 PI, which is characteristic of the purely radiative re- 
gime. This solution was first obtained in Ref. 16 for the ex- 
ample of a simpler beam-plasma structure. We note that our 
numerical investigation of this latter case was for x = 4.5, 
corresponding to maximum amplification, since, as is clear 
from Fig. 2, there is a zone of stability at frequency x = 2.7 
for currents I, 2 1.2. The dynamics of the transverse struc- 
ture of the field at a, = 0.8 are shown in Fig. 4b for various 
values of the beam current. 

More detailed results of our numerical calculations as a 
function of radius and beam current are listed in Table 11. 
Here z,,, is the optimum amplification length, Po and P,,, 
are the input and output electromagnetic radiative powers, 
respectively (P,,, = PI ,=,, ,, ), P, is the beam power, 
K,,, is the maximum conversion efficiency of beam energy 
into electromagnetic radiative energy, and AP is the linearity 
parameter of the plasma. We remind the reader that these 
calculations were carried out for values of the fixed param- 
eters given above, with the exception of the two latter cases 
in the low-frequency part of the table, where the value of the 
frequency x is specified separately. We also note that the 
sharp decreases in the energy conversion efficiency K,,, for 
a, = 0.2,1, = 2, anda, = 0.8, I, = 1.0, are due to the close- 
ness of these points to the curve for cutoff of the amplifica- 
tion. 
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6. COORDINATE AND MOMENTUM EXPANSIONS IN THE 
THEORY OF TRANSVERSE-NONUNIFORM AMPLIFIERS 

It is known that in the regimes where the "negative- 
mass" and "collective Cherenkov" types of instabilities are 
present (for both the high-current and low-current regimes) 
the nonlinear plasma-beam interaction can be treated ana- 
ly t i~a l ly . '~ , '~  Using the methods we developed in Refs. 17, 
18, i.e., expanding along the trajectories and momenta of the 
electrons, we give a similar analytic treatment here. 

Let us introduce the electron momentum 

Using Eq. ( 16), we rewrite Eq. ( 10) in the form 

In Eqs. (3 1 ), for simplicity in later expressions we discard 
the functions f,, f,, and f,, which, as we mentioned above, 
give only rather small quantitative corrections. 

We write the coordinates and momentum of an electron 
in the f ~ r m ' ~ . ' ~  

~=(p),~,+'/,(a(E) e x p  (-iy,) + c.c.), 
(32) 

where W({) describes the constant displacement of an elec- 
tron, j its oscillations, (p) the average momentum, and 
a({) the momentum oscillations. Substituting the represen- 
tation (32) into the system (31) and integrating over yo 
using the theory of residues, we obtain the following system 
of equations: 

FIG. 6. Spatial dynamics of the quantities ii, 1 ( 1 ) and bl (2)  for a, = 0.8 
and I, = 3. 

Here A = a/a. 
Let us consider the amplification regime for which 

J,)J,, ( a b 2 ) 1 ) ,  z =  l , andvO = O  (column 1.5inTable 
I ) ,  where a "negative-mass" type of stabilization mechanism 
is realized. In this case, the overall slowing of the beam is 
unimportant ( W = 0)  and the stabilization mechanism is 
determined by complete modulation of the relativistic beam 
with respect to m ~ m e n t u m . ~  The system of equations (33) 
simplifies considerably, and has the form 

Eliminating p from the last two equations and assuming 
adj/d(%j, since a ) d  /d( I - a (S (  = aa, ' I 2  9 1, we have 

The electron beam is completely modulated in momentum 
when the denominator in the first term of system (34) van- 
ishes i.e., alA ),,, = (p) =. 1. From this we have the follow- 
ing expression for the maximum current amplitude 
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and an expression for the conversion efficiency of beam ener- 
gy into radiative energy 

Thus, e.g., for I, = 5 we have Kmax -0.08, whereas the re- 
sults of numerical calculations as shown in Table I1 give 
Kmax -0.1. 

For the case where the negative-mass regime coexists 
with the collective Cherenkov regime (column 1.6 in Table 
I )  and, as before, j, %jo, we have i ? ~  1, but 
yo = - S, =: - abc [see Eq. (28)l .  In this case, Eq. (33) 
goes over to the form 

and has the following solution for the maximum current am- 
plitude blmax and energy conversion efficiency Kmax : 

Let us now discuss the nonlinear theory of amplifica- 
tion in the "collective Cherenkov" regime, where the cou- 
pling parameter is 

In this case, the nonlinear stabilization is determined by two 
effects: overall braking of the beam, and the relativistic de- 
pendence of the plasma oscillations of the electron beam on 
their ampl i t~de . '~  The first mechanism is decisive for a low- 
current beam (J, <J, ), while the second dominates for a 
high-current beam (J, 9 J, ). Both saturation mechanisms 
are lumped together under the general term "nonlinear fre- 
quency shift,"19 and are described mathematically by cubic 
nonlinearities. 

Expanding the denominators in the first two equations 
of the system (33) through cubic terms, and taking into ac- 
count the inequality (40), we obtain the following system of 
nonlinear equations: 

For the case of a low-current beam (column 1.4 in 
Table I )  when j, a,, (a,d 4 1, 7, z - a, the satura- 
tion is determined by the overall slowing of the electron 
beam, and Eq. (41 ) reduces to the form 

The solution to the system of equations (42) can be 
written in terms of elliptic functions, and has the form 
ti= bl,p = lpl): 

and the amplification length over which a maximum ofjand 
p is reached is determined by the expression 

The maximum energy conversion efficiency of the beam into 
radiative energy is determined by the expressions 

K = (2aaub'") '" z 
mat 

and for a, = 0.8,1b = 0.1 is about -0.22; numerical calcu- 
lations give 0.23. 

We note that for the case where the field is switched on 
adiabatically, when for { = 0 we have j, = 0, the solution 
(43) takes a particularly simple form: 

2 

j' = jkX pz = b P,. 
ch [ (2aab'"lo)"E] 

. (47) 
ch[ (%ab'"/(I) "f, ] ' 

The criterion for legitimacy of the expansion of the denomi- 
nators in the system (33) reduces to the inequality 
i?1/4(cab'12)3/441, for the case of a low-current beam, 
which is fulfilled unconditionally. 

In the range of high values of the electron beam current 
(column 1.8 of Table I ) ,  where we have J, ) J, (a,d% 1 
and 7, = - a, T) , beam slowing can be ignored ( W = 0), 
and Eqs. (41 ) have the form 

The structure of the solutions to Eqs. (48) is completely 
analogous to Eq. (43), with the sole difference that 

Ub(12 ' 
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while the conversion efficiency for beam energy into radi- 
ation is determined by the expressions 

In the case under discussion here, the criterion of applicabili- 
ty of Eq. (41 ), which contains only the cubic nonlinearity, 
reduces to the inequality 4 1.  

All the analytic results we have obtained are summar- 
ized in Table I. We note that for the case of the single-parti- 
cle Cherenkov effect it is impossible to obtain an analytic 
solution; however, we can make approximate  estimate^,^ 
which are also included in Table I. 

Let us note once more that Table I1 contains character- 
istic results of numerical calculations for plasma amplifiers 
with real experimental parameters.20 

Thus, the results of this paper imply that the use of 
beam-plasma waveguides with transverse density variation 
can lead to the creation of amplifier structures with gigawatt 
power capability. 

" By the "maximum amplification curve" we mean the geometric locus of 
points corresponding to the maximum amplification coefficient. 
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