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A cubic susceptibility tensor describing all nonlinear optical phenomena within a one-photon 
absorption line is derived for a gas of atoms with a hyperfine level structure. This tensor is valid 
for either degenerate or nondegenerate four-wave mixing. It thus becomes possible to study the 
effect of the hyperfine structure and of the nuclear spin on self-diffraction, phase conjugation, and 
the self-effects of steady-state light waves in resonance with a common one-photon transition. 
Those amplitude properties and polarization properties of these nonlinear phenomena which 
stem exclusively from the hyperfine structure and the nuclear spin are determined. It thus 
becomes possible to experimentally identify transitions in terms of the electron angular 
momentum and the total angular momentum with allowance for the nuclear spin. It also becomes 
possible to select optimum conditions for optical image transmission and optical information 
processing. In several nonlinear phenomena involving degenerate four-wave mixing and the self- 
effects of light waves, a deviation from resonance with the hyperfine sublevels does not eliminate 
the effects of either the hyperfine structure itself or the nuclear spin, because of the resonance at 
zero frequency. 

Experimental studies of self-diffraction and phase con- 
jugation of steady-state light waves on resonant one-photon 
transitions have been carried out in monatomic gases1-' and 
also in mixed gaseous media containing active atoms along 
with a buffer g a ~ . ~ - ' ~  Experiments on self-diffraction and 
phase conjugation in the steady state in molecular gases and 
solids are cited in reviews14x15 and  book^.'^-'' The theoreti- 
cal work on these nonlinear phenomena has often been car- 
ried out in the scalar version, without consideration of the 
vector nature of the electric field of the steady-state light 
waves and without consideration of the degeneracy of the 
resonant These factors have, on the other 
hand, been taken into account in several ~ t u d i e s . * ~ - ~ ~  A mod- 
el description of the resonant gas medium has been used in 
calculating polarization characteristics. The phase conjuga- 
tion of steady-state light waves with linear and circular po- 
larizations was studied theoretically in Ref. 27 by a quan- 
tum-mechanical approach. The very simple relaxation 
model used there introduces three characteristic constants 
in the equation for the density matrix of the moving gas 
atoms. The most comprehensive descriptions of these non- 
linear phenomena, incorporating depolarizing elastic colli- 
sions and transitions of atoms to lower levels as a result of 
spontaneous emission in higher levels, were given in Refs. 
28-30 and 7. 

In all these papers, however, the theoretical discussion 
concerned gas atoms with a zero nuclear spin or a two-level 
model of an atom with a nonzero nuclear spin. For this rea- 
son, the results derived there are not suitable for describing 
those aspects of the behavior of self-diffraction and phase 
conjugation within a one-photon absorption line of the atom 
which stem exclusively from the hyperfine structure of the 
resonant levels. In contrast, the overwhelming majority of 
experiments on four-wave mixing have been carried out in 
gases of atoms with a nonzero nuclear spin. We thus see the 
need for a rigorous theory of self-diffraction and phase con- 
jugation of steady-state light waves in which the hyperfine 

structure components of the resonant levels are taken into 
account. 

In the present paper we analyze self-diffraction and 
phase conjugation of steady-state light waves of arbitrary 
polarization in a gas of atoms with a hyperfine level structure 
under some general assumptions. The degeneracy of the res- 
onant levels, the thermal motion, the transition of atoms to a 
lower level as a result of radiative decay of the excited state, 
the linear absorption, and the changes caused in the refrac- 
tive indices for the light waves by the presence of a buffer gas 
are all taken into account simultaneously. The intensities of 
the light waves are assumed to be low enough that saturation 
can be ignored, and we can use a perturbation theory. This 
theory is valid for both degenerate and nondegenerate four- 
wave mixing of light waves which are in resonance with the 
same one-photon transition of the atom. 

To maintain a common approach in studying all the 
nonlinear phenomena which occur within a one-photon ab- 
sorption line, we first calculate the cubic susceptibility ten- 
sor of a gas which includes resonant atoms with a hyperfine 
level structure as well as various impurities. The compo- 
nents of this tensor contain a triple resonance at frequencies 
of the incident waves and differences between these frequen- 
cies. A characteristic feature of this tensor is that it consists 
of two parts. One part stems from transitions of atoms to a 
lower level as a result of spontaneous decay of the excited 
state. This part of the tensor is substantially affected by the 
type of atomic transition and by the nuclear spin. In several 
cases, it dominates the nonlinear phenomena under consi- 
deration here. 

Analysis of the cubic susceptibility tensor found here 
leads to several conclusions of general physical interest. The 
most important one is that the amplitude and polarization 
characteristics of self-diffraction, phase conjugation, and 
the nonlinear effects of light waves differ in their dependence 
on the hyperfine structure, the nuclear spin, and the degree 
of Doppler broadening. In several cases they are manifested 
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in different ways in the cases of degenerate and nondegener- 
ate four-wave mixing. When the Doppler width is small in 
comparison with the distance between components of the 
hyperfine structure in both resonant levels, only one hyper- 
fine sublevel of the lower level and one of the upper level 
participate in each nonlinear phenomenon in the resonant 
situation. As a result, the calculations are simplified consid- 
erably, and the behavior emerges fairly clearly. 

If the Doppler width is instead greater than the distance 
between the hyperfine components, in one or both levels, 
then several components of the hyperfine structure of one 
level participate in the physical process, even exactly in reso- 
nance at the frequency of the transition between two "hyper- 
fine" sublevels. This situation seriously complicates the cal- 
culations, sometimes necessitating numerical methods. In 
the limiting case of large detuning from the resonances with 
hyperfine sublevels, either at the frequencies of the incident 
waves or at differences between them, the cubic susceptibil- 
ity tensor derived here is the same as that for atoms with a 
zero nuclear spin. This assertion breaks down for several 
nonlinear phenomena which fall in the general category of 
degenerate four-wave mixing and self-effects of light waves, 
because of the resonance at zero frequency. It is impossible 
in principle to describe nonlinear phenomena of this sort 
within a one-photon absorption line on the basis of the model 
of a two-level atom without consideration of the hyperfine 
structure. 

We will use the cubic susceptibility tensor derived here 
along with Maxwell's equations to calculate the interference 
electric field which describes self-diffraction, phase conjuga- 
tion, and nonlinear effects when an arbitrary number of 
steady-state light waves are incident on a gas, for the case in 
which these waves are in resonance with the same one-pho- 
ton transition. In the case of the self-diffraction of two light 
waves, we derive those amplitude and polarization charac- 
teristics which stem entirely from the hyperfine level struc- 
ture and the nuclear spin. With this information, it becomes 
possible to identify the transitions JaFa -JbFb in terms of 
the electron angular momentum (Ja ,Jb ) and the total angu- 
lar momentum (Fa ,Fb ), thereby distinguishing transitions 
Fa = F- Fb = F  + 1 from transitions Fa = F  + 1 - Fb = F 
for all possible values of F, Ja ,  and Jb allowed by the selec- 
tion rules. Corresponding relationships hold in the self-dif- 
fraction of three waves, when three or more light waves are 
incident on a gas. This information can be used to identify 
the transitions and also in optical information processing. 

In the self-diffraction of counterpropagating waves, the 
case of most interest is phase conjugation in which the ampli- 
tude and polarization properties of the conjugate wave are 
governed exclusively by the hyperfine structure and the nu- 
clear spin. Through a generalization of an experimental pro- 
cedure used in phase c~njugation,*~.*~ we find a method for 
identifying the transitions JaFa -JbFb which yields the 
greatest amount of information for homogeneously broad- 
ened transitions, in the case in which transitions of atoms to 
a lower level as the result of the spontaneous decay of an 
excited state become a fundamental feature. It then becomes 
possible to experimentally distinguish transitions with a 
change in angular momentum Fa = F- Fb = F  + 1 from 
transitions Fa = F  + 1 -. Fb = F. In several cases it also be- 
comes possible to determine the ratio of relaxation con- 

stants. The distinctive amplitude and polarization proper- 
ties which stem from the hyperfine structure and the nuclear 
spin are also seen in the case of the coupled waves which arise 
when four light waves, counterpropagating in pairs, are inci- 
dent on a gas. 

A general and important conclusion which is reached 
for all the nonlinear phenomena discussed here is that, de- 
spite the much greater complexity of the equations due to the 
hyperfine structure and the nuclear spin, there are still limit- 
ing cases, with strictly established values of the characteris- 
tic parameters, for which the amplitude and polarization 
properties of self-diffraction, phase conjugation, and self- 
effects of light waves can be described by simple equations 
which can easily be tested experimentally. 

1. CUBIC SUSCEPTIBILITY TENSOR FOR ONE-PHOTON 
TRANSITIONS 

We consider a gas of active atoms with nonzero nuclear 
spin. Each energy level of the atoms for J>I ( J <  I )  is split 
into 21 + 1 ( W + 1 ) components with energies3' 
E F = E + i i A F ,  where f i A F = ( 1 / 2 ) A C + B C ( C + 1 ) ,  
C =  F ( F +  1 )  - J ( J +  1 )  - I ( I +  I ) ,  and E  is the energy 
of the atom if the nuclear spin is ignored. The quantity ??A, is 
the hyperfine interaction energy; A  and B are constants of 
the magnetic and quadrupole level splitting; and F, J, and I 
are the quantum numbers of the total angular momentum 
(F  = J + I), the electron angular momentum J, and the nu- 
clear spin I. The state of an active atom in a hyperfine suble- 
vel with an energy EF is characterized by the quantum 
numbers J, I ,  and F  and by the projection M, of the total 
angular momentum F onto the quantization axis. 

Some arbitrary number no of steady-state plane waves 
is incident on this gas. The waves have frequencies on,  wave 
vectors k, , and complex amplitudes a, with n = 1 ,..., n o .  As 
a result of the nonlinear interaction of the incident waves 
with the active atoms, new waves form in the gas. The total 
electric field of all the light waves is 

where the terms with n = 1 ,  ..., no represent incident waves, 
while those with n = no + 1 ,  no + 2  ,..., describe the new 
waves and nonlinear corrections to the incident waves. 
These corrections characterize nonlinear-effects of these 
waves. The frequencies of the waves in ( 1 ) may be the same, 
or they may take on different values near the frequency of the 
same one-photon transition of the active atom. The complex 
amplitudes a, with n = 1 ,  2, ..., either remain constant or 
vary slowly as functions of the coordinates. 

The interaction of the active atoms with resonant waves 
( 1 ) is described by a quantum-mechanical equation for the 
density matrix p in the FMF representation in the resonant 
approximation: 

228 Sov. Phys. JETP 74 (2), February 1992 A. I. Alekseev 228 



Here dFbMFhSFaMF,is the matrix element of the electric dipole 
. . 

moment operator d; y,, is the half-width of the spectral line 
of the resonant transition; fiy, and fiy, are the homogeneous 
widths of the lower ( E ,  ) and upper ( E ,  ) resonant levels; 
y is the probability for the spontaneous emission of a photon 
&a,, by an isolated atom; d,, is the reduced dipole moment 
of the resonant atomic transition J, + J,; f ( v )  is a Maxwell 
distribution; v  is the velocity of the atom; u is the most prob- 
able velocity; and N, ( N , )  is the steady-state density of the 
atoms in level E, ( E ,  ) when all the hyperfine sublevels are 
taken into account, at E = 0. The quantities y, and y,  stem 
from radiative decay and inelastic atomic collisions. The 
term containing y  in ( 4 )  describes transition of atoms to the 
lower level E, as the result of spontaneous emission in the 
upper level E,. The terms in ( 3 )  and ( 4 )  which contain N,, 
N,, and f ( v )  incorporate a Boltzmann distribution of atoms 
among levels and a Maxwellian velocity distribution in sta- 
tistical equilibrium, before the field ( 1 ) is turned on. 

Equations ( 2 ) - ( 4 )  have been solved by perturbation 
theory in the cubic approximation in field ( 1 ). As a result, 
the vector 

which represents the dielectric polarization of the gas, can be 
written as the sum of a linear term PL and a nonlinear term 
PNL: 

P ( r ,  t )  = P L  ( r ,  t )  +PK' (r, t )  , 
The linear term is 

P L ( , t ) =  X X ( O , , ,  k n ) a n e r p [ i ( k n r - o . t ) ] + c .  c., 

where 

Nub / ~ F , F ~  l2 
K (un 3 kn)  = - -,-- \ L P ~ F ,  ( O n )  f (0) dv, ( 5 )  ,, JA(L1 + 1 )  u 

and 

The nonlinear term is 

Here 

x i l k r  ( ~ ~ + ~ r n - ~ p ;  On, O m ,  - u p )  

( 3 )  
(7) 

and the coefficients are given by 

~n',l;='!~ ( Q Y ; + Q ~ ' ~ " : )  +1/3 ( Q C , , - Q ~ ~ ) ,  

( 2 )  
xnrnp='I.a ( Q~(;:-Q,::) +'/2 (Q,!,kk+Qg!,). 

( Q ~ ~ ~ - Q ~ ( ~ ~ ~ + Q ~ I ~ - Q ~ : ~ ) .  

Here 

Q W )  ,,,. !. - Nabfr-3 (91 + ! 1-I 5 dvf (v)  

( 8 )  
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Here x = 0, 1, 2; and a repeated vector index or a repeated 
tensor index (ij,k,l) implies summation, in which these in- 
dices take on the values x ,  y, z, to characterize the vectors 
and tensors in the Cartesian coordinate system with axes x ,  
y, z. The quantities anj,  a,,, and a,, are projections of the 
vectors a, ,  a,, and a, onto the Cartesian axes. The notation 
used for the 6j symbols and for the reduced dipole moment 
(dFg0 ) of the atomic transition J,F, - JbFb is the same as 
used in Ref. 32. 

In general, the nonlinear phenomena of four-wave mix- 
ing and self-effects of waves can be described conveniently 
by means of a cubic susceptibility tensor.33 This tensor is 
given by 

1 

PiNL(., t )= jXiikr (t-t', t-t", t-tff')Ei(r, t') 

X Ek(r, tu)E1 (r, t"') dt' dtN dt"', (9)  

where the tensor in an isotropic gas is symmetric under the 
interchange of any pair of the indices j, k, I when there is a 
simultaneous interchange of t  ', t ", and t ". Substituting the 
electric field ( 1 ) into (9 ) ,  and using the notation 

for the cubic susceptibility tensor, we find a general expres- 
sion which relates the nonlinear dielectric polarization of the 
gas (a  vector) to the cubic susceptibility (a tensor) in the 
presence of steady-state plane waves: 

The terms in ( 11 ) describe all possible nonlinear phe- 
nomena which fall in the category of four-wave mixing and 
self-effects. If the frequencies w,,  w,, and o,, their sums, 
and their differences are not resonant, all the nonlinear phe- 
nomena embodied in ( 11 ) are equivalent. In a resonant situ- 
ation, in contrast, the individual terms in ( 1 1 ) which con- 
tain the greatest number of resonances become the leading 
terms. They describe the specific nonlinear phenomenon 
which is characterized by this largest number of resonances. 

This specific nonlinear phenomenon emerges as a prominent 
phenomenon, in comparison with which the other phenome- 
na appear weak. In this case the nonresonant,terms and also 
the terms with smaller numbers of resonances create a back- 
ground against which the main nonlinear phenomenon un- 
folds. In addition, all the terms of lower order contribute to 
interference effects. If we are interested in only the main 
nonlinear phenomenon, without interference effects, then 
we should omit the nonresonant terms from the general 
expression ( 11). We should also omit the terms with a num- 
ber of resonances smaller than that in the leading terms. 

In this problem, the frequencies w, , w,  , and w, are in 
resonance with the one-photon transitions J, F, - Jb Fb, 
with fixed J, and Jb and with all possible values of F, and Fb.  
The differences between these frequencies may vanish. In 
calculating the (vector) nonlinear dielectric polarization in 
(6),  we thus retained only those terms which have a triple 
resonance. Among the three resonances, one occurs at a zero 
frequency, while the two others occur at frequencies from 
the set w,,  w, , w,. The terms which have a triple resonance 
of this sort are contained in the second sum in the general 
expression ( 11 ) . The first sum is a small correction in the 
problem at hand and can be omitted, as can the small correc- 
tions in the second sum in ( 1 1 ). It follows from a compari- 
son of expression (6)  with general expression ( 11 ) that the 
quantity in (7)  is the part of the cubic susceptibility tensor 
[see ( 10) ] which we are seeking: the part which describes 
four-wave mixing and nonlinear effects of waves in the case 
in which there is a triple resonance, at zero frequency and at 
frequencies which are in resonance with one-photon transi- 
tions J,F, - JbFb with various Fa's and Fb's. The tensor (7 )  
without the terms containing y can also be found from the 
cubic susceptibility tensor of Ref. 34, if depolarizing colli- 
sions are ignored in the latter, and if the terms with the speci- 
fied triple resonance are retained. 

Since some small corrections were omitted in the calcu- 
lation of (6) ,  the tensor (7)  does not have the full inter- 
change symmetry of the general cubic susceptibility tensor 
( 10). It merely satisfies the relation 

In the cubic susceptibility tensors ( 7 )  and (10)-(121, 
we have retained only the frequency arguments; for brevity, 
the other arguments (k, , k, , and k, ) have been omitted. 
The dependence of the tensors (7)  and ( lo)-( 12) on the 
wave vectors results from the Doppler effect, as in the case of 
the linear dielectric susceptibility (5 ) . 

The terms in (6)  which have identical indices 
n = m = p describe the nonlinear effect of an incident wave. 
This effect was studied in Ref. 35 for atoms with a zero nu- 
clear spin (I = O), for the case with depolarizing elastic 
collisions. To find a physical interpretation of the other 
terms in the sum in (6),  we write this sum out explicitly: 

( 3 )  
+xnmpap' (anam) I exp {i[ (k,+ km--k,)r 

(13) 
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It follows that the nonlinear effect of two waves on the 
passage of a third reduces to the induction of diffraction 
gratings in the gas. The third wave passes through these grat- 
ings and is scattered (Refs. 16 and 36, for example). With 
n = p or m = p, each of the incident waves undergoes inde- 
pendent diffractive scattering by the diffraction grating in- 
duced by the same two waves. This self-diffraction of light 
waves occurs both during copropagation of these waves and 
during counterpropagation, accompanied by phase conjuga- 
tion. Consequently, the cubic susceptibility tensor in (7)  de- 
scribes the self-effects, self-diffraction, and phase conjuga- 
tion of light waves in the cases of both degenerate 
0, = W, = mp and nondegenerate w, #a, #wP 
(w, = O, #up ) four-wave mixing in a gas containing active 
atoms with a nonzero nuclear spin. 

If the Doppler width k, u is small in comparison with 
the distance between hyperfine sublevels in the upper and 
lower levels, and if the frequencies W, with n = 1,2, ... of the 
light waves in ( 1 ) are close to the frequency wFA of the 
transition between two hyperfine sublevels, i.e., if 

(14) 

then only the two resonant hyperfine sublevels EFo and EFb 
participate in forming the nonlinear phenomena. For these 
sublevels, our basic expression, ( 8),  becomes 

(15) 

where 

The dependence of Qi$ on the type of transition 
Ja Fa - Jb Fb between hyperfine sublevels is of fundamental 
importance, since for certain values of the total angular mo- 
menta Fa and Fb, corresponding to the selection rules, this 
dependence leads to the equality Xizp = 0, for a11 possible 
values of Ja and Jb,  as can be seen from the formula 

where 

For the transitions Fa = F- Fb = F + 1 and 
Fa = F +  1-Fb = F  wefind 

For the transitions Fa = F- Fb = F we find 

For transitions J,Fa -+ JbFb between hyperfine sublev- 
els which involve a change in the total angular momentum, 
Fa - Fb (transitions of the types 1 -, 0,O - 1, and 1 + 1 ), we 
thus havex:dp = 0. In such cases we can, according to ( 13), 
choose the polarizations of the incident waves so that no 
diffraction gratings are induced, and no self-diffraction or 
phase conjugation occurs. Moreover, no nonlinear effects of 
the incident waves occur on these transitions. Transitions 
JaFa - JbFb which involve a change in the total angular mo- 
mentum 1 -0, o-+ 1, and 1 -+ 1 can occur for all electron an- 
gular momenta Ja and Jb allowed by the selection rules 
Ja - J b  = 0 , + 1 .  

For atoms with zero nuclear spin, it was found in Refs. 
37 and 27-30 that self-diffraction and phase conjugation do 
not occur for certain polarizations of the incident waves in 
the case of transitions Ja - Jb involving low electron angular 
momenta, 1 - 0, 0-+ 1, and 1 + 1. The special role played by 
transitions accompanied by changes 1 - 0,O- 1, and 1 - 1 in 
the electron angular momentum, in the absence of hyperfine 
structure, has been pointed out in studies of the intensity and 
polarization of the output of gas lasers38239 and of nonlinear 
effects of light waves.35 In this connection, expression ( 16) 
indicates that transitions JaFa - JbFb involving the changes 
1 -0,O- 1, and 1 - 1 in the total angular momentum play a 
special role for all possible values of Ja and Jb in the case of 
atoms which do have hyperfine structure. 

If the Doppler width k,  u is considerably smaller than 
the distance between hyperfine sublevels of the lower level 
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E,, but greater than that of the upper level E,, then two or 
more hyperfine sublevels of the upper level Eb will contrib- 
ute to the formation of the nonlinear phenomenon, despite 
the strict resonance w, = oFpa. The effect will be to greatly 
complicate a quantitative calculation of all the nonlinear ef- 
fects described by (7)  and (8). However, when the distances 
between the hyperfine sublevels in the lower level are much 
greater than those in the upper level, one can realize some 
special atomic-excitation regimes in which the frequencies 
w, ( n  = 1,2 ,..., no ) of the incident waves [see ( 1 ) 1 are in 
resonance with the frequency of the transition 
J, = J+ J, = J + 1 between the hyperfine sublevel EFm of 
the lower level with the smallest total angular momentum, 
Fa = I J - I I, and the upper level E, : 

In this case, only one hyperfine sublevel EFb of the upper 
level-that with the smallest total angular momentum, 
Fb = (J + 1 - I I-participates in the formation of the non- 
linear phenomena, because of the selection rules. Corre- 
spondingly, for the transition J, = J + 1 -+ J,, = J and for 
the sublevel EFa with the maximum angular momentum, 
Fa = J + 1 + I, only the one sublevel EFh of the upper level 
which has the largest total angular momentum, F, = J + I ,  
participates in excitation regime ( 17), because of the selec- 
tion rules. Consequently, for these minimum or maximum 
total angular momenta Fa and Fb, only the two sublevels EFa 
and EFh are involved in excitation regime ( 17). Equations 
( 15) and ( 16) thus remain valid, regardless of the magni- 
tude of the Doppler broadening in comparison with the dis- 
tance between the hyperfine sublevels of the upper level. 

We wish to stress that far from all three resonances at 
the hyperfine sublevels, 

we can make the replacements wFR0 -+wba, wFx: -0, and 

*FP~ 
-0 in (8). We can then sum over all the hyperfine 

sublevels of the upper and lower levels, regardless of the nu- 
clear spin I. As a result of this summation, expression (8)  
becomes 

where 

The tensor (7) ,  combined with ( 18), describes the nonlinear 
phenomena without consideration of the nuclear spin I for 
transitions which are homogeneously and inhomogeneously 
broadened. This assertion does not apply to the nonlinear 
phenomena of degenerate four-wave mixing and nonlinear 
effects of the light waves, in which cases the inequalities 
max(Iw, - a p \ ,  Ik, -kplu))(AFa(,  (AFh( do not hold. In 
this case, no two-level model of the atom which ignores the 
hyperfine structure of the resonant levels is valid. 

2. APPLICATION TO ATOMS WITH A ZERO NUCLEAR SPIN 

Assuming the nuclear spin to be zero in our basic equa- 
tion (8 ), we obtain ( 18). The cubic susceptibility tensor (7),  
with ( 18), therefore describes all the nonlinear phenomena 
which occur within the one-photon absorption line in the 
important case of atoms which lack a hyperfine structure, 
for the very simple model of irreversible relaxation, in (2)- 
(4),  which uses the three constants y,, y,, and y,. 

To circumvent some mathematical difficulties in Eqs. 
(2)-(4), we omit the terms which stem from depolarizing 
elastic collisions. A generally accepted model for such colli- 
sions is described in Refs. 40 and 41. For atoms with a zero 
nuclear spin, however, we can retain the contribution of de- 
polarizing elastic collisions in (2)-(4). As a result, we find 
expressions (7)  and (18), with the substitutions 

Here 7'::) and A::) are the half-width and collisional shift of 
the spectral line, and y?) (yr') are the relaxation constants 
for the population ( x  = 0) , the orientation ( x  = 1 ) , and the 
alignment ( x  = 2) of an atom in level E, (E, ). 

The cubic susceptibility tensor in (7),  along with ( 18) 
and (19), generalizes the results of Ref. 30 to the case of 
nondegenerate four-wave mixing in a gas of atoms with a 
hyperfine structure. With k, = k, = kp = k, this tensor be- 
comes the tensor which was found in Ref. 35 to charact'erize 
nonlinear optical activity, if we symmetrize the latter tensor 
with respect to the indices j and I ,  and if we also introduce a 
factor of 3, in accordance with the definition of the cubic 
susceptibility tensor adopted here, (9).  Moreover, without 
the term containing y, the tensor in (7 ) ,  with ( 18) and ( 19 1, 
can be found from the general expression for the cubic sus- 
ceptibility tensor of atoms with a zero nuclear spin from Ref. 
42, if in the latter expression we retain the terms with a triple 
resonance. Of the three resonances, one is at zero frequency, 
while the two others are at frequencies from the set w, , a,, 
and wp . 

When depolarizing elastic collisions occur, the charac- 
teristic parameterxi:p of cubic susceptibility tensor (7) ,  for 
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atoms with a zero nuclear spin, is given by the following 
expression in the case of both degenerate and nondegenerate 
four-wave mixing: 

where 

For CLg'(w, - w , )  with x = 1 and 2, we have made the 
substitutions ( 19). The dependence on the type of transition 
Ja - Jb is incorporated in the difference C L i '  ( w ,  - w, ) 
- C LL' ( w ,  - o, ) . For transitions with small electron an- 
gular momenta, and for J, = 0- Jb = 1 ,  this difference is 

( 1 ) -  ( 2 )  ( 2 )  
= ( t / 9 )  (y ,  y,, ) L:') ((I) , , -(J)~) [ I t ,  ( w - w ~ )  

for Ja = 1 - Jh = 0 ,  

for J,  = 1 + Jh = 1 ,  and 

We see that, for transitions Ja - Jb involving a change in 
electron angular momentum 1 +0,0-+ 1, or 1 -. 1, the quanti- 
ty (20) is nonzero only by virtue of depolarizing elastic colli- 
sions, which lead to the inequality yL1) # yy'  (y:" # yL2'). 
In such transitions (for certain polarizations of the incident 
waves), the diffraction gratings, the self-diffraction, and the 
phase conjugation are collision-induced phenomena, in ac- 
cordance with the assertions in Refs. 37 and 28-30 for atoms 
with a zero nuclear spin. In this case the nonlinear effects of 
the light waves are also collision-induced.35 In other transi- 
tions Ja +Jb ,  there is no such strong dependence on 
ybl) - yL2) (yL1) - y a ) ) .  For Ja = f -Jh = +, for example, 
we have 

3. INTERFERENCE FIELD IN THE CASE OF A ONE-PHOTON 
RESONANCE 

The propagation of the light waves in (1)  in a given 
resonant medium is described by means of Maxwell's equa- 
tions 

1 d 2  4n a2 
rotrotE + -- coE = - -F; 3 P, diu (gOE+4nP) =O. 

C~ d t 2  

where E ,  ( w ,  ) is the dielectric constant, which corresponds 
to nonresonant levels of the active atoms and also of the 
impurity atoms of the buffer gas. The vector P incorporates 
the nonlinear effects of the incident waves and the excitation 
of new waves. The effect of the operator 2, is defined in ( 2 2 ) .  

If the angles between the propagation directions of the 
incident waves are small, the interference field E  = E ( r , t ) ,  
represented previously as in ( 1 ), can conveniently be broken 
up into two parts. The first part, E"' ( r , t ) ,  contains the same 
modes as at the entrance to the gas. The second part, 
E'2'(r , t ) ,  includes new waves, which are a consequence of 
the interaction of the incident waves with the active atoms: 

E (r, t )  =E(') (r, t )  +E("(r, t ) ,  ( 2 3 )  

E") (r, t)=z bf exp[i(sfr-Q,t) I + c.c.. ( 2 5 )  
f 

where Of = w ,  $ om - a,, and the subscript f takes on 
certain integer values, at which the subscript n, m, and p 
independently take on all possible values from the set of 
numbers 1 ,..., no, except in the case m = p for arbitrary n or 
the case n = p for arbitrary m, which are contained in ( 2 4 ) .  
The amplitudes of the waves and the relationship between 
the frequencies and the wave vectors in (24) and ( 2 5 )  can be 
found by solving Maxwell's equations ( 2  1 ) . 

To simplify the equations, we choose the relationship 
between on and k ,  for the waves in ( 2 4 )  to be 
w ~ E ' ( w , , ~ ,  ) = k ; c 2 .  We also introduce some notation for 
the absorption coefficient: a, = w 2 ~ "  ( w , , k ,  ) /2k ,c2 .  Here 
E ' ( w ,  ,k, ) and E" (a ,  ,k ,  ) are the real and imaginary parts of 
the dielectric constant: 

where the resonant term 4 ~ x ( w ,  ,k, ) is given in (5) .  We are 
not detracting from the generality of this discussion by tak- 
ing this approach, since in this case the nonlinear corrections 
to the wave amplitude and phase are included in the complex 
amplitude b ,  = b ,  ( r )  . In addition, in solving Maxwell's 
equations, ( 2  1 ) , we use the approximation of slowly varying 
amplitudes. Under this approximation we can ignore the 
second derivatives of these amplitudes with respect to the 
coordinates. From Maxwell's equations, ( 2  1 ), we then find 
a system of coupled equations for the amplitudes of the 
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waves in (24), which are propagating in directions separated 
by a small angle: 

Here n = 1, 2, ..., no. The prime on the summation sign 
means that there is no term with m = n. The first term in 
square brackets in (26) describes the self-effect of an indi- 
vidual incident wave. The other terms describe the nonlinear 
interaction and the exchange of energy between this incident 
wave and the other incident waves. The quantity E"'(r,t) 
thus describes the propagation of the incident waves, and all 
nonlinear corrections to these waves are taken into account. 

In particular, when one wave, with a frequency w, and a 
wave vector k, , is incident on the gas, Eqs. (26) become the 
single nonlinear equation 

where the quantities Q I;: with x = 0, 1, and 2 are given by 
(8),  ( 15), and (18), depending on the conditions of the 
problem. 

It follows from (27) that the hyperfine level structure 
has an important effect on the amplitude and nonlinear po- 
larization effects of the light wave; an analysis of those ef- 
fects, however, is rather complicated. In the particular case 
in which w, is in resonance with the frequency wFRa of a 
transition between two hyperfine sublevels, ( 14) or ( 17), we 
can apply the results of Ref. 35. Those results were derived 
for atoms with a zero nuclear spin. In order to make use of 
those results, we need to ignore depolarizing elastic colli- 
sions and make the substitutions 

thereby incorporating the presence of a nuclear spin. 
To determine the amplitudes bf and the wave vectors sf 

of the new waves in (25 ), we solve Maxwell's equations (2 1 ) 
by perturbation theory, assuming that we can ignore the 
nonlinear depletion (or intensification) of the incident 
waves. In other words, we assume that incident waves with 
frequencies a , ,  wave vectors k, , and complex amplitudes a, 
with n = 1, ..., no are propagating linearly through the gas, 
with a dispersion law o i ~ ' ( w ,  ,k, ) = k ;c2 and an absorp- 
tion coefficient a, = W ~ E "  (w, ,kn )/2knc2. We also assume 
that the angle between the propagation directions of the inci- 
dent waves is on the order of a milliradian, so we can ignore 
the term with sfPNL. From Eqs. (21) we then find the fol- 
lowing equation for the unknown quantities: 

where 

and where each value of the index f corresponds to a specific 
set of values of n, nz, and p. 

Equation (28) describes the excitation of new waves as 
the result of a four-wave mixing of the incident waves with 
the active atoms within the one-photon absorption line. The 
projection b3 of the amplitude bf of a new wave onto the 
Cartesian axis i at the point r = sfLf/sf at the exit from the 
gas becomes 

bft=6G(Q,, s f )  an (0) a,, (0) a,* (0) 

where 

Here a, (0) is the amplitude of the incident wave at the 
boundary point r = 0 at the entrance to the gas, 1, is the 
complex unit polarization vector of the incident wave, and 
Lf is the optical path length, which is the absolute value of 
the vector Lf = sfLf/sf. The vector 1, does not vary inside 
the gas; it retains the value with which it entered the gas. The 
quantity qf contains the absorption coefficients only for the 
incident waves. By virtue of the factor G(a f  ,sf ), the intensi- 
ty of the new wave in (29) reaches a maximum when this 
wave is propagating in the direction corresponding to the 
phase-matching condition sf = Kf. 

The new waves in (29) may be thought of as the result 
of Raman scattering of the light or as the result of diffractive 
scattering by the induced gratings described by the terms in 
sum ( 13). In the latter case, the new waves in (29) represent 
the waves of the first order of diffraction. 

4. SELF-DIFFRACTION OF NEARLY PARALLEL INCIDENT 
WAVES 

We assume that two light waves as in ( 1 ), with no = 2, 
are incident on a gas. The interference field in (23) then 
contains four waves. Of them, the two with the frequencies 
o, and w,, the wave vectors k, and k,, and the complex 
amplitudes b, and b, describe the propagation of the inci- 
dent waves, (24), in the active zone of the gas. The nonlinear 
effects of the waves and the interaction between them are 
taken into account. Two other waves described by (25) with 
f = 3 and 4 are the waves of the first order of diffraction, 
with frequencies R, and R,, wave vectors s, and s,, and 
amplitudes b, and b,. For the latter we find, using (7)  and 
(291, 
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where 

Here 1 ,  and 1, are complex unit polarization vectors of the 
diffracted waves. The quantities which appear in G ( n ,  ,s, ) 
and G (  0, ,s, ) are 

The waves of the first order of diffraction in a gas have 
been studied in many places (e.g., Refs. 14-1 8) ,  where they 
have been used primarily for optical image transmission and 
optical signal processing. The effect of the hyperfine level 
structure on the properties of these waves either has not been 
studied in detail or has been ignored altogether. We will ac- 
cordingly take a look at certain effects in which the influence 
of the hyperfine structure can be seen particularly clearly. 

If the first incident wave is polarized linearly and the 
second circularly, the diffracted wave with amplitude ( 3 0 )  
is elliptically polarized, while the other wave, with ampli- 
tude ( 3 1 ) ,  is circularly polarized, with the same rotation 
direction for the electric vector as in the incident circularly 
polarized wave. If, on the other hand, the second incident 
wave is linearly polarized, and the first circularly, the dif- 

fracted wave with amplitude ( 3  1 ) is elliptically polarized, 
while the polarization of the wave ( 3 0 )  is the same as that of 
the first incident wave. The ratio of the axes of the polariza- 
tion ellipse and the direction in which the electric vector 
rotates are strong functions of the hyperfine structure of the 
resonant levels in this case. 

We direct the z axis along the vector k,, and we assume 
that the first incident wave is linearly polarized ( 1 ,  = 1,  ). 
We assume that the second wave is circularly polarized with 
a right-hand polarization: 1, = ( 1 ,  + i1, ,) /21'2,  where 1, 
and 1, are unit vectors along the Cartesian axes x and y. 
Under the inequality ( 1 4 )  or ( 1 7 ) ,  along with the conditions 

the ratio of the projections (b , ,  and b, , )  of amplitude ( 3 0 )  
onto the Cartesian axes y and x is, for both homogeneously 
and inhomogeneously broadened transitions, 

where 

C,=3 (C'2' -C"') /2  (C'0'+2C'2'), 
C'"'=D'".'+I'(F,, 1.; Fb, J b ) n ( X ) ,  x=O, 1, 2. 

The coefficient r is 

For transitions Ja Fa - JbFb involving a change in the total 
angular momentum Fa = F- Fb = F + 1 and Fa = F + 1 
- + F b  = F, for all possible changes in the electron angular 
momentum, Ja = J+ Jb = J + 1 ,  Ja = J + 1 -. J ,  = J, and 
Ja = J -  Jb = J, we find 

For transitions F, = F-. Fb = F, for all possible Ja = J -  Jb = J + 1 ,  J ,  = J + 1 - Jb = J, and J, = J -  Jb = J, these quanti- 
ties take a different form: 

' / , ( F - l ) ( F + 2 )  [ 2 F ( F + 1 )  ( 2 F + I ) - r ( F ,  1,; F,  Jb)  ( 2 F ' ' Z F - 1 )  
C ,  = 

F ( F + I )  (2F+1)  (3P-I-3F-1)- I'(F, J,; F,  Jb) (3F4+6F3-2FZ-5F+3) ' 
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According to (33), the elliptically polarized wave (30) 
has right-hand polarization in the case C, < 0 and left-hand 
polarization in the case C, > 0. The ratio of the axes of the 
polarization ellipse is / C, I. By virtue of (34), the deforma- 
tion of the polarization ellipse and the rotation direction of 
the electric vector of the diffracted wave depend strongly on 
the type of transition Ja F, - J, Fb and also on the nuclear 
spin, except in the case of transitions involving a change in 
total angular momentum F, -Fb of the types 0- 1, 1-0, 
and 1 - 1, in which case the polarization ellipse degenerates 
into a line segment along the x axis. In a dense gas, with 
y<  ya + y,, we can ignore the quantity in (34) in the expres- 
sion for C'"' with x = 0, 1, and 2. For transitions 
Fa - Fb = + 1 (Fa + Fb > 1)  and Fa = F, = 9 ,  the ellipti- 
cal polarization is then right-handed, while for F, - Fb = 0 
(Fa > 1) it is left-handed. In a low-density gas, with 
y 5 ya + y,, the nature of the elliptical polarization is deter- 
mined by the quantity in (34). 

Assume that the incident waves are linearly polarized 
and that their polarization vectors 1, and 1, form an arbi- 
trary angle $. The diffracted waves (30) and (3  1 ) are then 
also linearized polarized, and their polarization vectors 1, 
and 1, form angles $, and $4, respectively, with the vector 
1,. The positive direction for all angles is clockwise, if we 
look along the vector k ,  . In this case, when inequality ( 14) 
or (17) holds, along with (32), the angles $, $,, and $4 

between the polarization planes of the waves involved in the 
self-diffraction, are related by 

ctg $,=ctg 9+3 (C'P'-C'")/ (2C'o'+3C"'+C'2') sin $ cos 10. 

For transitions Ja F, - JbFb involving a change in the 
total angular momentum 0- 1, 1 - 0, or 1 - 1, we have 
$, = 0 and $, = $. For other transitions, the polarization 
behavior is less obvious, except in the case y< y, + y,, in 
which the angle $, is negative for Fa - F, = + 1 
(Fa + F, > 1) and F, = F, = 9 ,  while it is positive for 
Fa -Fb = O ( F ,  > l ) . I f y S y ,  + yb,thenwemustuse(34) 
in calculating $, and $, . 

As an example we consider a gas containing a vapor of 
copper atoms with a nuclear spin I = 3/2 and a resonant 
transition 2P&, -2D,,,, for which we have Ja = + and 
J,  = 4. For simplicity we choose $ = ~ / 4 .  If we set 
y/( ya + y, ) = 0, then the angle $, for transitions 
J,F, - J,F, involving a change in total angular momentum 
1-+2 (2- 1), 2-3 (3-2), or 3-4 is negative and equal to 
- 19"26', - 23"23', and - 24"46', respectively. For transi- 

tions which do not involve a change in the total angular mo- 

mentum, 2 + 2 and 3 -+ 3, the angle $, is positive and equal to 
13"14' and 15"57'. When the parameter y/(ya + y, ) reaches 
its maximum value of unity, as the total angular momentum 
changes Fa = 1 -+ Fb = 2, Fa = 2 -- Fb = 3, and Fa = 3 - F, = 4 the angle $, becomes - 6"23', - 2"22', and 
- 45", respectively. If there is no change in total angular 
momentum (2+ 2 and 3 - 3), we find the angle $, to be 
lT29'and 15"42'. ForF, = 2-Fb = 1 and Fa = 3-Fb = 2, 
the angle $, takes on different values: - 1Y14' and 
- 23'20'. It thus becomes possible to experimentally distin- 

guish the transitions Fa = 1 -Fb = 2 and F, = 2+Fb = 3 
from F, = 2 - F, = 1 and Fa = 3 -+ Fb = 2. The strong de- 
pendence of $, on y/( ya + y, ) shows that in a low-density 
gas with y-ya + yb the influx of atoms to the lower level 
due to the spontaneous decay of the excited state is extreme- 
ly important. 

Using (33), (35), and (36), we can experimentally 
identify transitions JaFa -+ J, Fb when I and y/( ya + y, ) 

are known. If J, , Jb ,  Fa, Fb , and I are known instead, these 
expressions are useful for determining y/( y, + y, 1. 

When three light waves of the form ( 1 ), with no = 3, 
are incident on a gas, self-diffraction of the three waves oc- 
curs. Self-diffraction of each pair of waves of the set of three 
incident waves also occurs, independently. The diffracted 
waves which arise in the process are spatially separated, be- 
cause they are propagating in different directions. Spatial 
separation of these waves would also be promoted by the 
introduction of a suitable buffer gas, to change the refractive 
indices and to simultaneously satisfy the dispersion law 
fl?&'(fl,-,sf) = s?c2 and the phase-matching condition 
sf = Kf for one selected diffracted wave. As a result, this 
wave is amplified, while the other diffracted waves are sup- 
pressed.36 This circumstance allows us to treat the self-dif- 
fraction of two and three waves separately when a set of a 
large number of waves of the form ( 1 ) is incident on a gas. 

The amplitudes of interference field (25) in the case of 
the self-diffraction of three waves is given by general formula 
(29). In expanded form, these amplitudes are 

(39) 
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where waves are then described by (37)-(39), in which the quanti- 
ties a, (0)  and a, (0) are replaced in accordance with 

The quantities G(flf,sf) with f = 1,2, 3 contain qf and Kf in 
the form 

Polarization spectroscopy using the diffracted waves 
(37)-(39) is more versatile than a self-diffraction of two 
waves, because of the greater diversity of behavior. From 
this behavior we single out the most characteristic features 
on which the hyperfine structure of the resonant levels has a 
strong effect. For example, assume that all three incident 
waves are linearly polarized, and that the polarization vec- 
tors 1, and 1, are orthogonal to 1,. We thus have 
Ill, = 1,1, = 0 and 1,1, f 0. The diffracted wave with ampli- 
tude (37) is then polarized in the same plane as the first 
incident wave, and its intensity I ( s ,  ) at the exit from the gas 
is 

where I, is the intensity of the incident wave at the entrance 
to the gas. By virtue of the hyperfine structure of the 
resonant levels and the nuclear spin strongly influence the 
diffraction efficiency in the transmission of optical images 
and optical information, particularly under conditions ( 14) 
or (17), when (16) holds. 

Another characteristic aspect of the behavior arises 
when the angles at which the incident waves converge are 
small, under the inequality 

In this case we can set xi:! = in (37) for homogeneous- 
ly and inhomogeneously broadened transitions. If the sec- 
ond and third incident waves are assumed to be circularly 
polarized with polarization vectors 1, = 1; in this case, we 
find the following expression for b, in (37): 

The polarization vector 1, here is arbitrary, while the ampli- 
tude b, may vary significantly, depending on the type of 
transition J,F, - JbFb, because of the term x::!. Other dif- 
fracted waves behave analogously when the polarizations of 
the incident waves are chosen correspondingly. 

5. SELF-DIFFRACTION OF COUNTERPROPAGATING LIGHT 
WAVES; PHASE CONJUGATION 

Let us consider the self-diffraction of three incident 
waves of the form ( 1 ) with no = 3, for the case in which two 
reference waves, with k, and k ,  are propagating in opposite 
directions, at an angle slightly different from T, while the 
wave vector k, of the signal wave makes a small angle, on the 
order of a milliradian, with k, (Refs. 14-18 and 36). We 
assume that the first, second, and third waves enter the gas at 
the boundary points r = 0, r = r, , and r = r, . The diffracted 

(with similar replacements for the complex-conjugate quan- 
tities). Here a, (a,) is the absorption coefficient, and L, 
( L ,  ) is the optical path length of the incident wave in the 
active zone of the gas. 

Of the three diffracted waves, we will study in detail the 
one which is propagating opposite the signal wave. Its elec- 
tric field ENL(r,t), at the point r = s, L /s, , at the exit from 
the gas, can be written as follows, according to (39) and 
(40) : 

ENL(r,  t )  =SR exp[ i(s,r-Q,t) ] + c. c., (41 

where 

and L is the optical path length of wave (41) in the gas. 
We restrict the discussion below to degenerate four- 

wave mixing w, = w, = w, = w under the equalities 
k ,  + k, = 0 and fl, = w. In this case the diffracted wave in 
(41), which is propagating in the optimum direction, 
s, = - k,, becomes the conjugate of the signal wave, as in 
other gaseous and solid media.'"18 In this case, however, the 
coefficient 7 for reflection into the conjugate wave depends 
strongly on the type of transition between the hyperfine sub- 
levels and on the polarizations of the incident waves, as fol- 
lows from the relations 

INL=q13, 
q=(2n2a2/ak3~3)2ZlZ2~ S 1' [ i -exp ( -2aL)  I2exp ( -2aL) ,  

u = ~ ~ E "  (a ,  kl) /2klcZ, ul=az=as=u, L,=L3=L, 

where I ,  ( I ,  ), I , ,  and I NL are the intensities of the reference 
wave, the signal wave, and the conjugate wave. 

For linearly polarized waves in the case 1, = 1, = 1, or 
1,1, = 1,1, = 0 and 1,1, #O, the diffracted wave in (41 ) is 
the exact conjugate of the wavefront of the signal wave, in 
accordance with the results of Ref. 17, which were derived 
for phase conjugation without an analysis of the contribu- 
tion of the hyperfine level structure. The latter structure af- 
fects only the intensity of this conjugate wave. 

For homogeneously broadened transitions, 

and for circularly polarized reference waves, 1; = l:, we 
find, by virtue of the equality X I : :  =XI:: in (41 ), 

In this case, therefore, complete phase conjugation, in the 
spatial and polarization senses, of a signal wave of arbitrary 
polarization 1, is thus achieved, as in Refs. 43, 44, and 47. 
Those previous studies ignored the hyperfine structure and 
the homogeneously broadened nature of the resonant transi- 
tion. 
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An important dependence of the conjugate wave (41 ) 
on the hyperfine structure of the resonant levels arises for 
linearly polarized incident waves under resonance condi- 
tions ( 14) or ( 17).  Following the experiments of Ref. 24, we 
choose the polarization planes for the incident waves in such 
a way that the polarization vectors 1,  and 1, of the reference 
waves make an angle of 28, while the angle between the po- 
larization vector l,, of the signal wave and the bisector of the 
angle between the vectors 1 ,  and 1, has an arbitrary value 8, : 

11=1, cos 0-1, sin 0, lZ=1, cos 0+1, sin 0, 

1,=1, cos 0,+1, sin 0,. 

The Cartesian axis z is parallel to k, ,  while the x axis is 
directed along the bisector of the angle between the vectors 
1,  and 1,. The angles are positive when they are measured 
from the x axis toward they axis. 

Under the assumptions which we have adopted here, 
the intensity I corresponding to the projection 1, ENL of the 
electric field of the conjugate wave (41 ) onto the polariza- 
tion vector 1, , of the signal wave is a function of these angles. 
It is given by 

where 

In a dense gas, with y 4 y a  + y,, the terms in ( 4 3 )  
which contain y can be ignored. Using ( 4 3 ) ,  we can easily 
determine that value 8 6'' of the angle 8, for which the inten- 
sity I (8 ,8  60 ' )  vanishes [1(0,8 :'') = 0 ]  at 8 = 0, for both 
homogeneously and inhomogeneously broadened transi- 
tions. As a result we find that the equality 1 ( 0 , 8 ~ ' ' )  = 0 
holds for only atomic transitions JaFa - JbFb which satisfy 
the inequality D (,' - D ( I '  ( 0 ,  and the angle 8 60' is given by 

cos' 0,'0'-2F(F+2) / (6Fql2F+5) ,  ( 4 4 )  

forFa =F-F,  = F +  1 ,  Fa = F +  1-Fb = F  and 

for Fa = 1/2-F, = 1/2. 
Experimentally, it is useful to study, along with ( 4 4 )  

and ( 4 5 ) ,  the ratio I(O,BC)/I(O,?r/2) as a function of the 
angle 8, : 

For transitions Ja Fa - JbFb, for which a different in- 
equality holds, D (2' - D " ' ) O ,  we should choose that value 
8"' of the angle 8 for which the specified intensity 
1 ( 8  "',8, ) vanishes [ I ( 8  " ' ,0) = 0 ]  at 8, = 0. This case oc- 
curs on transitions Fa = F-F, = F ( F >  +) under a differ- 
ent condition, because of the different arrangement of polar- 
ization planes: 

I(0,O) ( 2 F - 1 ) 2 ( 2 F + 3 ) v ( F - l )  (F+2) 
I 

IJO, n / 2 )  ( 3 F 2 + 3 F - i ~  ( (W-I) (ZF+3) 

Expressions (44) - (46)  can be used to experimentally 
identify transitions Ja Fa - J,  F, , on the basis of the change in 
the total angular momentum, Fa -F,. The reason is that 
there is a mutually one-to-one correspondence between F 
and 8 Lo' (and also between F and 8 'O'). For example, cor- 
responding to transitions with a change in total angular mo- 
mentum0- 1 ( L O ) ,  1-2 ( 2 - I ) ,  2-3 ( 3 - 2 ) ,  and 3-4 
( 4 - 3 )  are angles 86'' equal to 90", 59"17', 56"40f, and 
55"49'. Correspondingly, angles 8 ''' of 90°, 64"07', 61°52', 
and 61°05' correspond to transitions without a change in the 
total angular momentum ( 1 - 1,2 - 2,3 - 3, and 4 - 4 ) .  For 
half-integer values of the total angular momenta, the transi- 
tions+-+,+-'( , T++),+-+(+-+),and$-+($-+) 
correspond to angles 8 6'' of 45", 63"26', 57"34', and 56"09', 
while transitions + -+, + -4, and + -4 correspond to an- 
gles 8 ('' of 67"33', 62"401, and 61°24'. 

In a low-density gas, with y 5 ya + y,, the terms in 
( 4 3 )  with a factor of y become important, and the expres- 
sions for 8 F', 8 "', I(0,8,  )/I(O,57/2), and I(O,O)/I(O,?r/2) 
take a simple form for homogeneously broadened transi- 
tions, ( 4 2 ) .  For such transitions, we have 

By virtue of ( 4 3 )  and ( 4 7 ) ,  we can replace ( 4 4 )  and 
( 4 5 )  by 

If the right side of this equation is negative, then we should 
use 

according to ( 4 3 )  and ( 4 7 ) .  
For transitions Ja Fa - J,  Fb with any possible change in 

the electron angular momentum ( J a  = J+ J,  = J + 1 ,  
Ja = J +  1-J, = J, and Ja = J -J ,  = J ) ,  relation ( 4 8 )  
with Fa =F-F,  = F +  1 and Fa = F +  1-F, = F  be- 
comes 
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-I' (Fa, Ja; Fb, Jb) (4F2 

+8F+5)] [ (F+1) (2F+1) (W+3) (6F2+12F+5) 

-F(F . ,  1.; Fb, Jb) (12F4 

Relation (49) takes the following form in the case 
Fa = F-Fb = F ( F > + ) :  

According to (48), the transition Fa = + - F, = + 
with J a = J + J b = J + l ,  J a = J + l - J , = J ,  and 
Ja = J- J, = J can be written in a special way: 

cos' 0,("= [6-r('/r, Ja; 'I2, J b ) ]  /4[3-r ( ' j e ,  I=; '12, J b ) ]  . 

In the region 3 < r(+,Ja;f  ,Jb ) < 6 we find from (49) 

c o ~ ~ 0 ~ = [ 6 - I '  ( I ,  J ;  I J )  I I a ' 2  J 7 (52) 

The last equation can hold only if the arrival of atoms in the 
lower level Ea due to spontaneous emission from the upper 
level Eb dominates. 

Let us apply (48)-(52) to the homogeneously broad- 
ened resonant transition 2P ::: -+ 2D5,, of copper atoms with 
I = Ja = 5 and J, = 3 in an extremely low-density gas, with 
y/( ya + yb ) = 1. Corresponding to transitions F, - Fb 
with a change in total angular momentum 0- 1, 1 - 2,2 - 3, 
and 3 -4 are angles 0 SO' of 90", 71°30', 78"301, and 45", re- 
spectively. Corresponding to transitions 2 -+ 1 and 3 - 2, on 
the other hand, are the angles 8:' = 5Y26' and 
f? p' = 56"42'. Corresponding to transitions without a 
change in the total angular momentum (1  -* 1, 2 6 2 ,  and 
3 -3) are angles f? 'O' of 90", 64"48', and 62"4'. 

The experiments of Ref. 24 used copper vapor at a tem- 
perature T =  1800 K and light waves with a wavelength 
/2=510.5 nm in resonance with the transition 
2P:,, - 2D5,, . The measurements yielded 8 F' = 53". Ac- 
cording to (48), the value 8:" = 53" is reached on the ho- 
mogeneously broadened transition Fa = 3 - F, = 4 at 
y/(ya + y,) ~ 3 .  In the experiments of Ref. 24, however, 
inhomogeneously broadened transitions were studied. Con- 
sequently, to calculate 8:' we need to know not only the 
value of y / (  ya + y, ) but also the number of hyperfine sub- 
levels in the lower and upper levels which lie within the 
Doppler width. That information was not given in Ref. 24. 

6. EQUATIONS FOR COUPLED WAVES 

The hyperfine level structure and the nuclear spin also 
have strong effects on the self-diffraction of four incident 
waves of the type in ( 1 ), with no = 4, if these waves have 

identical frequencies w, = w, = w, = a, = w (k, = k, 
= k, = k, = k) and are propagating in opposite directions 

in pairs: 

where the waves with k, and k, serve as reference waves, 
while those with k, and k, are the signal waves. This spec- 
troscopic scheme is one of the most promising for hologra- 
phy, as has been pointed out in numerous studies, which are 
covered in and books.".'8 In particular, studies 
of this sort have been carried out in the steady state in a gas 
containing sodium  vapor.'^^ In those studies, the optical im- 
age transmission, energy transfer, and other questions were 
examined without consideration of a hyperfine structure. 
We will therefore point out some new possibilities which 
arise when the hyperfine structure is taken into account. 

Under conditions (53), the nonlinear interaction of the 
first, second, and third incident waves generates a new wave, 
which propagates in the k, direction. The nonlinear interac- 
tion of the first, second, and fourth incident waves gives rise 
to a new wave, with k,. If we assume that the intensities of 
the first and second waves are high in comparison with those 
of the third and fourth, then the amplitudes of the weak 
waves are described by the following system of coupled 
equations, according to Maxwell's equations, (2  1 ) : 

Here the amplitudes b, and b, of the strong reference waves 
are given quantities, and the degree of coupling of the weak 
signal waves depends on the type of resonant transition and 
on the polarizations of the incident waves. 

The contribution of the hyperfine structure of the reso- 
nant levels to the propagation of the waves with the ampli- 
tudes b, and b, is optimum for linearly polarized incident 
waves with polarization vectors 1, = I , ,  1, = l,, and 
Ill3 = 0, for which Eqs. (54) and (55) become 

(k, Vlk+tr,) b3= ( 2 i ~ l o ~ l k c ~ ) ~ : ~ ~  (blb2) blq, (56) 

(k, V l k f a , )  b,= (2inm2/kcZ) X!i: (blb2) b3'. (57) 

Let us assume that the frequency w of the incident 
waves is in resonance with a transition between two hyper- 
fine sublevels, ( 14) or ( 17). According to ( 16), the third 
and fourth waves then propagate independently when the 
total angular momentum 1 -0,O- 1, and 1 - 1 for the reso- 
nant transitions Ja Fa - J, F, changes. For other transitions, 
the propagation of one of these signal waves is coupled with 
the propagation of the other, and in each case the propaga- 
tion depends strongly on the type of transition and on the 
nuclear spin. For homogeneously broadened transitions 
(42), for example, we have 

where the dependence on the type of transition J,F, + JbFb 
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and on the nuclear spin I is incorporated in the difference 
C',' - C ( I ) ,  as can be easily verified experimentally with 
the help of (34). 

If all four waves are polarized in a common plane, then 
Eqs. (56) and (57) with the replacements 

follow from (54) and (55). 
Finally, for circularly polarized waves with 1, = 1: and 

I, = I:, in the case of homogeneously broadened transitions 
(42), we again find Eqs. (56) and (57) from (54) and (55), 
with the replacements 

( 3 )  ( 1 )  ( 3 )  ( J )  (1) ( 3 )  

Xi24 X124 + Xi21 7 X123 +Xi23 +xi23 . (59) 

In the last two cases, i.e., (58) and (59), the effect of the 
hyperfine level structure is quite different from that in (56) 
and (57), because of the terms added to XI:: and xi::. 

7. DISCUSSION 

When four or more light waves are incident on a gas, 
various types of four-wave mixing occur, involving one new 
wave and any three of the incident waves. Certain types of 
four-wave mixing involve an incident wave twice and consti- 
tute a self-diffraction of two waves. Corresponding to the 
various types of four-wave mixing there are various types of 
self-diffraction of either two or three waves. Each process 
proceeds independently. The diffracted waves which arise 
are spatially separated by virtue of the phase matching and 
are described by Eqs. (30), (31), and (37)-(39), with the 
appropriate changes in indices. If, among a large number of 
incident waves, there are two which are propagating in op- 
posite directions, then along with the self-diffraction of 
waves making small angles with each other there are inde- 
pendent self-diffraction processes of various types, accom- 
panied by the formation of conjugate waves. The latter are 
described by (41 ) , with altered indices of the incident waves. 

Several features of the effect of the hyperfine level struc- 
ture and of the nuclear spin on the self-diffraction and phase 
conjugation within the one-photon absorption line funda- 
mentally distinguish these processes from the self-diffrac- 
tion and phase conjugation which involve forbidden transi- 
tions between hyperfine sublevels of two atomic levels. For 
example, in the case of coherent anti-Stokes scattering of 
light,",45 two pump waves with frequencies w, and w, 
( a ,  > a,) satisfy the condition for Raman resonance, 
o, - w, zw,,, on a forbidden transition with a frequency 
o,,. They induce a diffraction grating in the medium; the 
wave with frequency w, is scattered by this grating. Raman 
spectroscopy'7 uses, along with two pump waves with fre- 
quencies w, and w, (w, - w, zw,, ), a third test wave at a 
nonresonant frequency w,. This third wave undergoes dif- 
fractive scattering by the periodic structure induced by the 
two pump waves. Several  experiment^^^ have revealed a self- 
diffraction of waves with frequencies w, and w, at resonance 
with the frequencies wca and w,, of adjacent transitions 
Ea -+ Ec and Ea + E, having a common lower level E, and 
two different upper levels, E, and E, (Ec > E, ), which form 
a forbidden transition with a frequency w,, z w, - w, . An 
example of phase conjugation using a forbidden transition is 

Doppler-free coherent spectro~copy,~~ in which two pump 
waves, with the same frequency w, = w, = w, are propagat- 
ing in opposite directions (k ,  + k, = 0)  and satisfy the two- 
photon resonance w, + w, =acb ,  while the test wave, with 
w, = w, is propagating at a small angle from the wave vector 
k, . In none of these cases of self-diffraction and phase conju- 
gation involving a forbidden transition is the resonance at 
the zero frequency involved. In no case does the arrival of 
atoms to the lower level due to the spontaneous decay of the 
excited state contribute. As was shown in Ref. 34, the hyper- 
fine structure is reflected in the amplitude and polarization 
behavior in a completely different way in these cases. The 
effect of this hyperfine structure always fades away when the 
detuning from the resonance involving the hyperfine sublev- 
els becomes sufficiently large, in contrast with the cases of 
self-diffraction and phase conjugation within a one-photon 
absorption line, in which this effect often persists. 
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