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In this paper the author shows that the presence of a condensate of a nonideal Bose gas interacting 
with phonons leads to the appearance of an additional phonon mode and to the renormalization of 
the spectra of the boson and phonon subsystems. Allowing for the nonideality of the Bose gas 
makes it possible to explain the experimental data on the sound velocity in high- Tc materials. 

Experimental data suggests that the sound velocity in 
high-Tc materials increases as the temperature of the sample 
decreases.' On the other hand, the standard BCS theory pre- 
dicts "softening" of phonon modes. One of the alternative 
high-temperature superconductivity theories currently de- 
veloped is the bipolaron model.2 A characteristic feature of 
this model is that polarons in high-Tc materials couple into 
bipolarons (a  bipolaron is a bound state of two polarons), 
which at low concentrations are bosons. Superconductivity 
in this model appears when a Bose condensate of bipolarons 
emerges. 

The present article attempts to explain the experimen- 
tal data on the sound velocity from the standpoint of the 
bipolaron model. For an ideal boson gas this problem was 
solved in Ref. 3. Here it is assumed that the phonons in a 
crystal interact with the nonideal boson gas of bipolarons. 
Such a system is described by the following Hamiltonian: 

where bp and b ,f are the operators of annihilation and cre- 
ation of bosons with momentum p, dp and d ,f are similar 
operators for phonons, x, is the boson-phonon coupling 
constant, V and p the volume and chemical potential of the 
system, w, the phonon frequency, m the boson mass (the 
bipolaron mass). At a temperature T lower than the critical 
temperature there appears a Bose condensate, which can be 
isolated by setting bo = b ,+ = [No ( T )  ] with No ( T )  the 
number of bosons in the condensate. As a result the Hamilto- 
nian assumes the form 

1 +-- 2 p p ( b p + b - p + + b - p b p ) ]  + H, ,  (2) 

with no = No ( T)/V the condensate density, pp  = n0v(p), 
and E~ = p2/2m + ,up. Boson interactions are not consid- 

ered in what follows and, therefore, the respective term is 
dropped. 

The presence of a condensate leads to mixing of boson 
and phonon operators in the third term within the square 
brackets in Eq. (2).  Reduction of the quadratic form H2 to 
diagonal form requires introducing new operators b ' and d ' 
that are linear combinations of the old operators: 

Although the explicit form of matrix C can be obtained 
in the diagonalization process, it will be of no use to us here. 
One can easily show that, say, operator b ' differs from opera- 
tor b by a quantity proportional to x,. When calculating 
correction terms proportional to H :  cc x2, allowing for the 
difference between b ' and b in the interaction Hamiltonian 
leads to excessive accuracy. 

Thus, as a result of diagonalization we obtain the Ham- - 
iltonian that describes the new excitations, 

H = [ E ,  (p) b,~+b,~+E2(p)dp~+dpf1 + H , ,  

with the spectrum 

Equation (5)  implies that the above reasoning is valid for 
wp (E,  + pp  ) > 4ni 1 x, 12, since, otherwise, imaginary fre- 
quencies appear and the system becomes unstable. This con- 
dition does not generally mean that the coupling constant xp 
is small and, hence, according to Eq. (5),  the Bogolyubov 
spectrum of the interacting bosons and the phonon spectrum 
may undergo a strong modification. 

The interaction with the boson condensate also leads to 
mixing of the phonon and boson variables, which means that 
both types of excitation are related to lattice-deformation 
transfer. Hence, at temperatures below the critical there ap- 
pears an additional acoustic mode. 

Note that polariton theory also encounters the problem 
of diagonalizing a similar quadratic Hamiltonian: diagonali- 
zation leads to the appearance of two new branches of ele- 
mentary excitations with a spectrum similar to (5).  The 
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FIG. 1 .  The temperature dependence of the sound velocity calculated via 
Eq. (8)  for different values of the parameters q, = ms2/T, and 
q" = no (O)v(O)/T,: curve 1, q, = 1 and q, = 0.1; curve 2,q, = 0.5 and 
q,, = 0 (an ideal Bose gas); and curve 3, q, = 0.5 and q, = 0.1. 

main difference is that in our case the mixing of the initial 
variables occurs only in the presence of a boson condensate. 

Equation ( 5 )  suggests that the corrections to the energy 
at small values of the coupling constant x are proportional to 
x2 and, hence, second-order quantum corrections in x must 
also be taken into account. Let us do this for the phonon 
spectrum, since we are interested in the sound velocity. For 
the sake of simplicity we will call the excitations with a spec- 
trum Ep = E, ( p )  bosons and those with the spectrum 
Clp = E, ( p )  phonons. Then the correction to the phonon 
energy in second-order perturbation theory is 

where Ip,a) is the initial state containing a single phonon 
with momentum p  and energy Clp and a system of bosons 
whose state is characterized by variable a and energy E,, and 
Im) an intermediate state with energy E, . The angle brack- 
ets ( (  ...)) stand for the ordinary averaging over the statisti- 
cal ensemble of bosons. Standard calculations lead to an 
expression similar to the one obtained in the random-phase 
approximation: 

with f, = ( ( a ; a , ) )  = [exp( - E , / T )  - 11 -'. As a re- 
sult, allowing for the correction to the phonon spectrum ( 5 )  
necessited by the interaction with the condensate at small 
values of x, one can easily find that 

FIG. 2. The experimental data on the temperature dependence of the 
sound velocity in Y-Ba-Cu-O: curve 1 ,  the data of Ref. 1; curve 2, the 
data of Bhattacharya et al. 

The first term in Eq. (8)  is proportional to the conden- 
sate density no ( T ) ,  which explains the reduction in the 
sound velocity s = dw(p) /dp  as the temperature grows. To 
estimate this contribution, we ignore the nonideality of the 
Bose gas, which leads to the following expression for the 
correction to the sound velocity: 

As no(T) 
-=- 1xI2 x, X ' .  s ms3 P 

Since no ( T )  is proportional to 1 - ( T /  Tc ) 3'2, it becomes 
obvious that the sound velocity increase in cooling is related 
to the increase in the condensate's density. The second term 
within the braces in ( 8 )  also contributes to the correction to 
the sound velocity, and this contribution may become pri- 
mary at T -  Tc .  The results of numerical calculations are 
depicted in Fig. 1, and Fig. 2 presents the characteristic ex- 
perimental curves taken from Refs. 1. Comparison shows 
that the experimental data on the sound velocity in high- T, 
materials can be explained on the basis of the local-pair theo- 
ry. 

Thus, exact allowance for the interaction of phonons 
with a boson condensate leads to a modification of both the 
phonon spectrum and the boson spectrum and to observable 
effects of the type of increase in the sound velocity in cooling 
and the appearance of an additional acoustic mode. 

The author is grateful to A. S. Alexandrov, A. B. Krebs, 
and A. B. Khmelinin for their interest in his work and for 
useful remarks. 
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