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A polarization microscope was used to investigate in detail the main types of restructuring in 
dispersed drops of a nematic, under normal boundary conditions in an external electric field. The 
basis of this restructuring is the loss of stability of a point topological defect (hedgehog) at the 
center of the drop, and its transformation into another defect (ring) on the surface of the drop. 
Depending on the regime, which is set by the field frequencyf, two types of hedgehog-ring 
transformations are observed: in the conductivity regime (smallf) the hedgehog can initially 
move from the center to the surface of the drop and only then be jumpwise transformed into a ring; 
in the dielectric regime (largef) the hedge is transformed into a ring without moving from drop 
center. It is shown experimentally and theoretically that in the latter regime the critical electric 
field E, that causes the direct (hedgehog-ring) transition can have a nonmonotonic dependence 
on the drop diameter d. Namely, for small (d<d ,  ) drops it decreases with increase ofd, and for 
large ones ( d >  d, ) it increases with d. Here d ,  is the thickness of the domain wall, is connected 
with the strong director deformations localized near the equatorial plane of the drop, and can be 
roughly estimated as the electric coherent length. We show that elastic deformations connected 
mainly with this wall are responsible for the aforementioned singularities of E,. The reverse 
(ring-hedgehog) transition is effected in two stages: as the field is decreased the ring initially 
breaks away from the surface of the drop at a certain intensity Ed < E,, and then collapses into a 
point defect after reaching a critical value E,,,,, that decreases monotonically with increase of the 
drop diameter d. 

1. INTRODUCTION 

Drops of nematic liquid crystals (NLC) dispersed in 
isotropic (say, polymer) matrices have recently become the 
object of active research. They are of interest because of 
many nontrivial properties of the drops' and prospects of 
using materials prepared on their base for information dis- 

Such systems are in fact new objects in the physics 
and chemistry of colloids; their properties are much more 
complicated than those of traditional "liquid in liquid" sys- 
tems, since one phase, the NLC, is anisotropic in view of 
equal orientation of the long molecules-along the director 
n. 

An important property of NLC drops is that in the ab- 
sence of external orienting fields the equilibrium state corre- 
sponds to an inhomogeneous equilibrium n distribution de- 
termined by the balance of the anisotropic part of the surface 
energy and of the elastic energy of the orientational strains in 
the NLC. In particular, if the matrix contributes to a normal 
orientation of n on the surface, an equilibrium distribution 
exists in the drop, close to radially symmetric and containing 
at the center a topological point defect, i.e., a hedgehog9 

Owing to the anisotropy of the NLC, an external elec- 
tric field is capable of altering the molecule orientation and 
with it a number of system properties, such as the effective 
refractive index of the drops. It is just the latter which is used 
for information display (see, e.g., Refs. 2-8). Its timeliness 
notwithstanding, the character of the drop response to an 
external field has been little studied. In particular, there are 
few and, more importantly, quite contradictory data on the 
dependence of the drop-changing threshold intensity E, on 
the drop diameter d. It is shown thus in Refs. 3 and 4 that 

E, a l/d. In Ref. 7, on the contrary, a nonmonotonic E, ( d )  
dependence was observed: as E increases the drops initially 
transformed are small ( d  < 10pm) or large ( d  > IOpm), but 
the intermediate ones ( d z  10pm) retain a structure close to 
the initial one. Finally, an exactly opposite behavior is de- 
scribed in Ref. 8: the E, ( d )  dependence is likewise nonmon- 
otonic, but has a minimum rather than a maximum in the 
region of medium d ( -4 p m )  . 

The present paper is devoted to a study of the E, ( d )  
dependence and the possible factors that can influence its 
character, for NLC drops having positive anisotropy AE of 
the dielectric constant and A 0  of the conductivity, and dis- 
persed in a matrix that sets a normal orientation of the NLC 
molecules on the interface. The reason for the choice is that 
for alternative, tangential, boundary conditions the charac- 
ter of E, ( d )  depends on a random factor such as the degree 
of nonsphericity of the  drop^.^,^ We note in this connection 
that the just normally oriented drops were investigated in 
Refs. 4 and 7, but unfortunately the boundary conditions 
were not identified in Ref. 8. 

In a study of drops with normal molecule orientation it 
must be taken into account that effects both linear and qua- 
dratic in the field can contribute to their electrooptical re- 
~ p o n s e . ~  Among the linear, in particular, are the flexoelec- 
tric and surface-polarization effects. To simplify the 
experiments the drops were therefore subjected to only an 
alternating field of frequency higher than 1 kHz, at which 
there was no time for the director distortions due to the 
above linear mechanisms to d e v e l ~ ~ . ~ ~ ' ~  Individual apects of 
drop behavior in a dc field are the subject of Refs. 4 and 11. 

Our first problem was to elucidate the very character of 
the drop restructuring in an electric field, since all that has 
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been known by now is that the distribution of n is close to 
radially-symmetric in the absence of a field, while at E > E, 
it is axisymmetric with a disclination ring on the eq~ator .~. '  
The second problem was to determine the E, ( d )  depen- 
dences and compare them with the character of restructur- 
i n g ~  as functions of the applied-field frequency. 

2. EXPERIMENTAL PROCEDURE 

The matrix chosen to ensure normal boundary condi- 
tions was the silicone elastomer 
(CH, ) 3  SiO [ (CH, ),SiO]. Si(CH, ), (of "Pherac BER- 
LIN" manufacture). The dielectric constant E,, and the 
electric conductivity a, of the matrix, measured at room 
temperature and at an electric-field frequency f = 20 kHz, 
were respectively E,, = 3 and a, - 1.5.10 -- ' 1R 'm I. The 
investigated NLC was pentylcyanobiphenyl 
CH, (CH, ), (C,H4 ),CN, (5CB) with positive anisotropy 
of the dielectric constant AE = - E ,  , and electric conduc- 
tivity Aa = olI - a,. The subscripts 1) and 1 label compo- 
nents along and across the director. The measured average 
electric conductivity for 5CB was a- 3. l o 6  fl - 'm-  I, and 
the anisotropy of the dielectric constant was AE = 14.2 (Ref. 
12). We investigated 5CB drops of diameter from 3 to 30pm 
and dispersed in the elastomer. 

To determine the character of the drop restructuring by 
the field, we used two measurement-cell geometries that en- 
abled us to track the changes in two directions, normal and 
parallel to the field, i.e., in the equatorial and meridional 
sections of the drop. 

In the first case the film with dispersion was placed be- 
tween glass plates coated by a transparent conducting SnO, 
layer. The film thickness was fixed in the course of its prep- 
aration by teflon liners and ranged from 20 to 150pm. In the 
second geometry, the film was placed between the glass 
plates without a conducting coating, and the field was ap- 
plied in the horizontal plane with the aid of two rectangular 
electrodes. The gap between the electrodes was 100-200pm. 

A voltage of frequency from 1 to 20 kHz was applied to 
the cells from a GZ-56/1 low-frequency generator. The tex- 
ture changes were recorded with a polarization microscope 
at room temperature. The director distribution in the drops 
was established from the locations of the extinction branches 
and the variation of the interference colors, including the 
case when a quartz wedge was inserted (see, e.g., Ref. 9) .  

3. RESULTS OF EXPERIMENT 

As will be shown below, the character of the structural 
transformations in drops depends both on their diameter 
and on the applied-field frequency. A common property is 
that at a certain intensity, which we designate E,, the point 
defect in the drop vanishes and is replaced by a structure 
with an equatorial disclination ring and a defect-free almost 
homogeneous distribution of the director in the bulk of the 
drop. The initial radial structure is restored in the drop when 
the external field is removed. We describe below various 
drop-construction patterns produced when the field intensi- 
ty is changed. 

3.1. Structural transformation in drops 

Most information on the details of change of director 
orientation in drops is obtained with an experimental geome- 

try in which meridional sections of the drops are observed. 
The force lines of the field E are oriented in this case in the 
horizontal plane and, in addition, are inclined 45" to the Ni- 
col polarization directions. 

In the initial state, E = 0, the distribution of n in the 
drop has radial symmetry (Fig. l a )  with the possible excep- 
tion of a small region ( - 1 p m )  near the core of the point 
defect at the center of the drop.9 Such a structure is typical 
not only of large drops, but also of small ones 2-4 p m  in 
diameter. Note that we were unable to observe an effect de- 
scribed in Ref. 7, a change of the drop equilibrium structure 
from radially symmetric to axisymmetric as the size of the 
latter decreases. 

A feature of the radially symmetric distribution is that 
the extinction branches are arranged along the polarization 
directions of the Nicols, since by definition the extinction 
prisms are localized in those texture sections where n lies in 
the polarization plane of one of the Nicols. When E increases 
from 0 to E,, the molecules in the drops become reoriented 
along the field, as evidenced by the crowding of the extinc- 
tion branches towards the equator (Figs. l b  and lc ) .  The 
first to be reoriented are the molecules that are far from both 
the drop boundary and the equatorial plane. By virtue of the 
nonzero linkage, the orientation of n along the radius vectors 
is preserved on the surface. 

Since n lE  on the equatorial plane for all values of 
0 < E < E,, one can arbitrarily separate near this plane a 

FIG. 1. Textures and meridional structures of 5CB drop ( d  = 29 p m )  in 
an electric field hose intensity vector E lies in the plane of the figure and 
makes an angle 45" with the directions of the Nicol polarizations: ( a )  
radial structure, E = 0; (b )  appearance and ( c )  compression of a domain 
wall in the equatorial plane of the drop, E>O; ( d )  axisymmetric struc- 
ture, E > E L .  
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plane-parallel layer in which the director changes orienta- 
tion from its state n lE  at the center to the state nllE and the 
layer boundaries. This layer is a defect of the wall type. For 
large drops, obviously, the wall thickness d, is determined 
by the competition between only two contributions to the 
energy, dielectric and elastic. That is to say, one can expect 

where K is the mean value of the Frank elastic moduli. The 
d, a 1/E dependence for large (exceeding 8 p m )  drops is 
qualitatively confirmed also by experiment: When E is in- 
creased the wall thickness decreases, cf. Figs. lb  and lc. For 
small drops, the picture is on the whole similar, but is made 
more complicated by the influence of the near-surface orien- 
tation of the molecules. 

A point defect in the bulk of the drop, as already indi- 
cated, is preserved all the way to values E = E, . Its location, 
however, can depend on the frequency of the applied field. 
This fact, and also certain other details of the restructuring, 
can be well traced when the equatorial plane of the drop is 
observed, i.e., when E is oriented vertically, along the optical 
axis of the microscope (Fig. 2).  

As seen from Fig. 2, with increase of E the straight ex- 
tinction branches, corresponding to the radial structure 
(Fig. 2a), become bent, attesting to the onset, in the equator- 
ial plane, of not only transverse but also longitudinal bend- 
ing deformations (Fig. 2b), and in the drop as a whole-also 

FIG. 2. Textures and equatorial structures of 5CB drop ( d  = 25 p m )  in 
an electric field with vector E perpendicular to the plane of the figure: ( a )  
radial structure, E = 0; ( b )  twisting of extinction branches, E> 0, f = 20 
kHz; ( c )  axisymmetric structure, E> E,; ( d )  appearance equatorial dis- 
clination ring with decrease of field, E <  E, < E, . 

twist deformations. Their cause is apparently the formation 
of a wall near the drop's equator (see Figs. l b  and lc),  the 
geometry of which is similar to that of the hybrid-orientation 
NLC layers considered in Refs. 13 and 14. Longitudinal- 
bending deformations in hybrid layers, as follows from anal- 
ysis of the results of Ref. 13, are capable of lowering the 
elastic energy, and it is this which explains the twisting of the 
extinction branches. 

The onset of extinction-band twisting is accompanied 
by two different further drop-behavior patterns determined 
by the applied-field frequency. 

At frequencies f < 6 kHz, the point defect leaves the 
center of the drop on its equator if d > 8 p m  (Fig. 3) .  In 
smaller drops the defect remains at the center. At frequen- 
cies f > 6 kHz the defect remains at the center in drops of all 
sizes and for arbitrary E < E, (Figs. 2a-c). The size effect is 
manifested in the textures only by the fact that the twist is 
larger the larger d. 

For E = E,,  finally the point defect and the wall vanish 
near the equatorial plane of the drop, and then a disclination 
ring of strength ( - 1/2) is replaced by one of strength 
( + 1/2), Figs. Id and 2c. The behavior of the extinction 
branches attests to a practically complete reorientation of 
the molecules along the field (apart from a narrow spherical 
layer near the drop surface). 

When the field intensity is reduced, the principal role in 
the structural transformations is assumed by the disclination 
ring, located in the case of E > E, on the equator of the drop 
(Fig. 2c). At a definite value of Ed,  which is noticeably low- 
er than E,,  the ring breaks away from the drop surface, but 
remains in its equatorial plane (Figs. 4a and 4b). The radius 
r can be arbitrarily varied in the range d /4 < r, <d /2  to 
record some arbitrary value of E. (See Figs. 4c and 4d). 
When the radius is decreased to r,, z d  /4, the ring becomes 
unstable and collapses into a point defect at the center of the 
drop. The structure as a whole again becomes nearly radially 
symmetric. Note that the field intensity E,,,,, corresponding 
to reconstruction of the point defect, is substantially smaller 
than the value E, causing it to vanish. 

3.2. Dependences of &and E,,,, on the field frequency and 
on the diameter of the drops 

The results of determining the E, ( f ) dependences for 
the hedgehog-ring transition and E,,,,, ( f )  for the reverse 
transition (ring-hedgehog) at d = const are shown in Fig. 5. 
Figure 6 shows the dependences of E, (d )  and E,, , ,  (d)  at a 
field frequency f = 20 kHz. It can be seen that when the 
frequency is varied E, and E,,,,, behave similarly: when the 

FIG. 3. Texture and equatorial structure of 5CB drop ( d  = 2 6 p m )  prior 
to a transition ( E  < E, ) at a field frequency f = 2 kHz. 
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FIG. 4. Textures and structures of 5CB drops with decrease of field: ( a )  
and (b)-detachment of ring from surface, E =  Ed; ( c )  and (d)--de- 
crease of ring radius E< Ed [ ( a )  and (c)-meridional sections through 
drops, (b)  and (d)-equatorial]. 

frequency is lowered E, increases steeply, and Ec also in- 
creases. At low frequencies one observes the usual E,(d) 
behavior: when the field is increased the large drops are reor- 
iented first, and then the small ones (Fig. 5 ) .  The situation 
changes at f> 6 kHz and the E, ( d )  dependence becomes 

FIG. 5. Dependences ofE,  ( f )  ( O , 0 , 0 ,  A )  and E ,,,,, ( f  ) (0, W, 4 ,  A )  
for 5CB drops dispersed in a silicone elastomer; 0 , S d  = 3 p m ,  0,W- 
d = 8 pm,  O,+-d = 19pm, A, A-d = 30pm.  

FIG. 6.  Dependences ofE< ( d )  (0)  and E,,,, ( d )  (0) for 5CB drops, field 
frequency f = 20 MHz. 

nonmonotonic. For small drops, as before, E, a l /d ,  but for 
large ones (d  > 8 p m )  E, increases with d (Figs. 5 and 6) .  
E,,,,, has no singularities whatever and decreases monotoni- 
cally with increase of the drop diameter. 

4. DISCUSSION OF RESULTS 

In this section we attempt to examine the possible 
mechanism responsible for the forms of the E, Cf;d) and 
Ec,,,, g d )  dependences, with allowance for the data on the 
singularities of the structural transformations in drops. 

4.1. Frequency dependences of Ec and Ec,r,, 

As seen from Fig. 5 ,  lowering the frequency of the ap- 
plied field leads to a noticeable increase of E, under the con- 
dition d = const. Since the material constants of the NLC 
and of the matrix change little in the considered frequency 
range from 1 to 20 kHz, it is natural to assume that the main 
cause of the growth of E, can be the change of the local field 
E, acting in the volume of the drop. 

The value of E, is determined not only by the intensity 
Em inside the matrix, but also by the ratio of the dielectric 
constants of the liquid crystal ( E L  ) and the polymer ( E L  ) 
(see, e.g., Refs. 3 and 4): 

E, = Em 3&:, /(2&;, + E L  ), ( 1 )  

where E L  and EL depend in turn on the electric conductiv- 
ities a ,  and a,, on the dielectric constants E ,  and E ,  , and on 
the frequency f of the applied field, 

In the low-frequency limit ~f /2a& 1 ,  the value of E, is 
determined mainly by the ratio of the electric conductivities 
a ,  /ak  , and at high frequencies it is determined by E ,  / E ,  . 
For the systems investigated we have a m / a ,  ~ 5 . 1 0  ' ,  but 
E,/E, ~ 0 . 3 .  Consequently for a drop with constant diame- 
ter and for constant voltage applied to the cell electrodes, the 
value of E, is noticeably lower at low frequencies than at 
high ones. 

The critical frequency that determines the transition 
from the electric-conductivity to the dielectric regime can be 
estimated at& =:2a/~,  where a and E must be taken to mean 
the mean values for the system as a whole. As shown in Ref. 
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15, a good approximation in the calculation of a and E is the 
so-called logarithmic mean 

lgu = v,,lgu,, + v,lgu,, (3 )  

IgE = v, lgE,, + u, lgE, , (4)  

where Y,, and Y, are the volume fractions of the matrix and 
of the NLC, respectively. For the investigated mixtures we 
have Y, ~ 0 . 3  and we obtain as a result f, z 3 kHz, in good 
agreement with experiment. The observed E,( f )  depen- 
dences at constant d (Fig. 5) can thus be qualitatively attrib- 
uted to the variation of the ratios E ~ / E ;  with frequency. 
Similar arguments can be advanced also for E,,,, ( f ). 

4.2. Dependences of E, and Ec,r,, on the drop diameter 

The most unexpected of all the results shown in Figs. 5 
and 6 should be taken to be the anomalous variation of 
E, (d)  in the regions d > 8 pm and f > 6 kHz. A similar be- 
havior of E, (d)  was quite recently observed in Ref. 8, but 
the lack of data on the director distribution in the bulk and 
on the surface of the drops makes an analysis of the possible 
causes of the phenomena difficult. 

When the behavior of the drops in an external field is 
considered it is necessary in general, in addition to consider- 
ing the electrophysical and elastic effects, to recognize that 
the adhesion energy Won the NLC boundary is finite. For a 
large drop, with a radius exceeding the characteristic length 
(K / W )  'I2, the adhesion can be assumed to be strong and its 
contribution to the free energy can be neglected. For the 
boundary between 5CB and a silicone elastomer, as mea- 
sured in Refs. 10 and 16, W = 2.10 - J/m2 and drops with 
d>8 pm can be regarded as large enough, i.e., the surface 
energy can be neglected in first approximation when the 
anomalous course of the E, (d)  is considered. 

The problem of finding Ec (d)  reduces thus to a deter- 
mination of the balances of the elastic and dielectric mo- 
ments. One must emphasize in this connection the important 
fact that what takes place in fact at the point E = E, is not a 
transition from a radial to an axisymmetric structure, as as- 
sumed until recently in a number of but a more 
complicated transformation with participation of a domain 
wall in the equatorial region of the drop. The director lines, 
which converge in this region to a point defect (hedgehog) 
at the center of the drop, are rotated from the state nlE to 
nllE in a relatively narrow layer of thickness 
d, -,2(4?iK/AeE 2,  'I2. At the transition point itself a trans- 
formation takes place from a hedgehog into an annular dis- 
clination, inside of which the director n is already parallel to 
E. The disclination expands, destroys the domain wall, and 

goes to the equator to form an axisymmetric structure. In the 
absence of an exact solution for the n distribution, we shall 
make, in the theoretical analysis, maximum use of the char- 
acter of the restructurings considered above. The task of this 
analysis is to explain qualitatively the observed character of 
the E, (d )  dependences. 

Let 6 = 2r,/d, where r, is the radius of the disclination 
loop into which the point defect is converted. The free ener- 
gy connected with its onset, i.e., at nonzero 6< 1, is given by 

We consider first a hedgehog-ring transition at the cen- 
ter of the drop, before the hedgehog is displaced to the sur- 
face; this corresponds to the experiment at f > 6 kHz (Fig. 
3). Hereafter we refer to drops with d%d,  as large and those 
with d ~ d ,  as small. It follows from experiment as well as 
from dimensional estimate that in the region E S E , ,  d, 
amounts to - ( 1-5) pm. Let us make clear now the features 
of the E, ( d )  behavior for the two indicated drop types. 

Large drops. The distributions of n before and after the 
transition are shown in Figs. 7a and 7b, respectively, in the 
intersection with a vertical plane. Conditionally marked on 
the plot is a region I1 of thickness d,/2, in which the director 
is substantially deformed. Since d % d, , the drop contains in 
addition to region I1 also a region I in which nl(E (Fig. 7a). 
There is also on the periphery of the drop a region I11 like- 
wise of thickness d,/2; the distortions in it are due to the 
orienting ability of the drop surface rather than to the 
boundary conditions at the center as in region 11. Region I11 
will hereafter not be mentioned separately, since its contri- 
bution to F is similar to that of region 11. 

We examine now the changes of the free energy F that 
take place place in the course of the transition. At E = E, the 
hedgehog turns into a ring inside of which nIIE and centered 
on the drop axis. Outside the ring the distribution of n is 
compressed by a factor ( 1 - 6) - I, causing the term 
(dn/dp) * to be increased by ( 1 - 6) times, see Fig. 7b. 
The compression of the director lines, roughly speaking, 
does not influence the other terms containing no derivatives 
with respect top.  The corresponding contribution to F can 
therefore be estimated at 

where ((dn/dp) ') is the average over the region I1 prior to 
the transition, and the factor ( 1 - 6 2,  is indicative of the 
decrease of region I1 when the ring is produced. The other 
elastic contribution to F, due to the vanishing of the hedge- 

FIG. 7. Distribution of director n in a meridional section for large drops 
before ( a )  and during (b)  the transition. 
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hog and its replacement by the ring, can be written in the 
form 

wherep, is a geometric  ons st ant.^^" 
The dielectric contribution is accumulated for large 

drops mainly in an equatorial region I1 of volume n-d 'd,/4: 

1.',,,= (4cE2/32n) (r~~'>nd'd,. ( 1--2'). (8 

where (n:) is the mean value of the z-component of the di- 
rector in region 11. 

Small drops. In this case d<d, and there is no region I. 
The diameter d determines the scale of the deformations, 
which are unlike (8)  a volume-dependent; the dielectric 
contribution is therefore 

For the same reason ((an/+) 2, - l /d  ', and as a conse- 
quence the elastic term of type (6)  does not increase in pro- 
portion to d and can be neglected compared with term ( 7 )  
which is linear in d. 

On the basis of the foregoing considerations we can ob- 
tain the coefficients A ,  of expansion (5) .  We note before- 
hand, however, that in contrast to A, , which contains a small 
number of principal terms, the coefficient A, can consist of a 
large number of terms, including some caused by rather sub- 
tle effects that make no contributions to A, and A,  and have 
not been discussed above. For qualitative conclusions it is 
therefore more reliable to use A,,  and also those A, in which 
only the principal (dielectric) term is retained, and dispense 
entirely with A,. If lA, 16 ,>)A,{', the qualitative picture 
will be contained already in the expansion F = A, f + A, l  '. 
It must only be remembered that higher powers of 6 lead to 
an increase of F as 6- cc, , as shown in Fig. 8. 

Grouping in (6)-(9) terms of like power we obtain the 
coefficients off and 6' in the distribution (S), in which we 
now retain only the decisive terms. For small drops (the 
condition d<d, ) we have 

For large drops (the condition d>d, )  we obtain, with 
allowance for the form of d, - 1/E, 

FIG. 8. Free energy F ( { )  connected with formation of a disclination ring: 
curve 1 corresponds to large drops ( d s  d, ) and a field E < E, ; curve 2- 
small drops (d<d ,  ) and a field E < E, ; 3-drops of all sizes for E > E,. 
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The coefficients p > 0 and q > 0 can be easily obtained by 
comparing Eqs. ( 10) and ( 11) with (6)-(9).  

We turn now to the critical condition for the hedgehog- 
ring transition. The free energy F(6) has the form shown in 
Fig. 8, and F (0 )  = 0 prior to the transition. At the instant of 
the transition the system should overcome, in a fluctuating 
manner, the potential barrier F,, between the states with 
r, = 0 and r, > 0. Next, for the transition to begin, i.e., for 
the fluctuation mode to set in, and also to complete the tran- 
sition into an axisymmetric state, there should be produced 
between the latter state and the state with the hedgehog at 
the center a sufficient stress 

This means that on the semi-interval (0,1] the function F(5) 
has a sufficiently large negative minimum F(S,,, ) = r,A, 
which is reached at the point C,,, . Clearly, this point deter- 
mines the radius r, = l,,,, d /2 of the ring after the transi- 
tion: if l,,, < 1, the ring will stop on its way to the equator at 
the point 6 = l,,,,, , and if the smallest value is reached on the 
edge of the drop, then 6 = 1 and the ring coincides with the 
equator. It is in fact the last case, fmi ,  = 1, which is realized 
in experiment, therefore 

There are thus actually two transition conditions: 1) 
the presence in the F(6) dependence of sufficiently large 
negative values for 0 < p  < d /2, and 2)  ability of the system 
to surmount a certain potential barrier, the maximum height 
of which we denote by B. These conditions are written ana- 
lytically in the form 

FmGB, where F,,=A,2/41AzI. (15) 

Curve 1 of Fig. 8 corresponds to E < E,, since its maxi- 
mum inside the drop is larger than B; curve 2 also corre- 
sponds to E < E,, since it assumes its negative values outside 
the drop; curve 3 corresponds to E > E, . 

If it is assumed that B is determined by the fluctuation 
energy, then B a V where Vis the volume of the region in 
which n becomes reoriented. Since the transition of interest 
to us can be due to fluctuations of n located mainly in the 
equatorial plane, it follows that V c c  d ', meaning B = bd, 
where b = const. 

With the two conditions ( 14) and ( 15) on the transi- 
tion, it is obvious that E, will be determined by the condition 
that is more difficult to satisfy, i.e., for large values of E. We 
therefore find the E, (d)  dependence by assuming one of the 
conditions to be satisfied, finding E, from the other, and 
then verify a posteriori the satisfaction of the first. 

Let, for example, the condition (15) be satisfied for 
small drops at a certain d. We obtain then E, from condition 
( 14) and from Eq. ( 10) : 

i.e., E, a l/d. Then A :/4/A2 \a d and the condition (15) in 
the form bd>A : /4/A2 I, being satisfied for all d, is always 
satisfied so long as Eqs. (10) can be used for small drops. 
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Thus the model, just as the experiment, leads to the conclu- 
sion that E, a l/d for small drops. 

The situation changes for large drops, for if the relation 
E, a l/d holds the transition condition (15) is no longer 
satisfied for large drops. In fact, Fm is now determined from 
( 11 ), and it can be seen that Fm a d 5 .  Therefore the condi- 
tion ( 15), which takes for large d the form bd>,Fm a d 5 ,  is 
not satisfied for large d. To satisfy it we determine E, from 
condition ( 15), and then verify the satisfaction ofthe second 
transition condition ( 14). From ( 15 ) and ( 1 1 ) we get 

With this E, (d )  dependence, the condition ( 14) is satisfied 
all the better with increase of d: 

From the conditions ( 14) and ( 15) for the hedgehog- 
ring transition it follows thus that for small (d<d, ) drops we 
have E, a l/d and for large ones ( d  9 d, ) we have E, a d 
in qualitative agreement with experiment. 

We now dwell briefly on the considered situation at 
f < 6 kHz, when the hedgehog emerges to the surface of the 
drop before it turns into a ring (Fig. 3).  The qualitative dif- 
ference from the preceding picture is here the following. 
First, when the ring is produced the director in the drop 
section outside the ring is compressed along one direction of 
the drop, but the stresses decrease in the opposite direction. 
This makes, at the most, the term of (6)  which is linear in f 
insignificant. Second, owing to the overlap of regions I and 
I1 in the place where the hedgehog is localized on the sur- 
face, the deformations are here three-dimensional rather 
than planar. Therefore F is in this case similar to the expan- 
sion (5)  with coefficients (10) for small drops; this is why 
the E, (d)  is similar in this case to the E, a l/d dependence 
the hedge-ring transition in small drops. As for just why the 
hedgehog goes over to the drop surface prior to the transi- 
tion, the reason is apparently that the change of the charac- 
ter of the regime (dielectric or resistive) when the field fre- 
quency is changed. The actual mechanism is still unclear. 

The universality of the E,,,,, a l/d dependence of the 
critical field of the reverse ring-hedgehog transition for 
drops of all diameters, and the character of the ring behavior 
when the field intensity is lower, which were described 
above, can also be naturally explained in the framework of 
the premises on which Eqs. (10)-(15) are based. It is seen 
from Fig. 9 that the ring lies on the equator when the field 
intensity is lowered from E, to the value Ed at which the 
minimum of the F(f) curve arrives from the periphery 
(curves 1 and 2 of Fig. 9) to the surface of the drop (curve 
3) ;  at E,,,,, < E < E, the ring follows the position of the mini- 
mum of the F( f )  curve, and when the field lowers the poten- 
tial barrier Fm,,,, separating the states with ro > 0 and ro = 0 
is lowered. 

In the discussion of the direct hedgehog-ring transition 
we were interested in the F(f) curve far from its minimum, 
which is located behind the drop (Fig. 8).  For the reverse 
transition we can no longer discard the terms cubic in g, 
since the ring lies precisely at the F(6) minimum due to the 
term -6 ', Fig. 9. The quantities F,,,,, and F(fc ) can there- 
fore not be determined, since there is no information on the 
director distribution. We can assume, however, that no 

FIG. 9. Change of free energy F ( { ) ,  connected with restoration of a point 
defect in a drop from a ring: when the field decreases from E = E, to 
E = Ed the position of the energy minimum arrives from the periphery 
(curves 1,2)  to the surface of the drop (curve 3 ) .  The ring "rests" in this 
case on the equator (r, = d/2).  With further lowering of the field 
(E,,;, < E <  Ed)  the ring is detached from the drop surface and follows 
the position of the energy minimum (curve 4),  r, <d/2.  Finally at 
E = E,,,,, the ring collapses to form a hedgehog (curve 5) .  

strong fluctuations that throw the ring through a finite bar- 
rier can be produced in relatively weak fields E,,,,, , i.e., that 

and the critical curve 4 on Fig. 9 has actually the form of the 
curve 5. In this case the criterion of the ring-hedgehog tran- 
sition takes the form (18). Expanding F in powers of 
(fc  - f )  near the critical radius of the ring, we obtain 

(there are no linear terms, since (dF/df) ,, , ,< = 01, 
whence A ; = 0. The reverse transition in drops of arbitrary 
diameter is from a three-dimensionally deformed state, since 
the field E,,,,, is weak, d, >d, and the director deformations 
are substantial in the entire volume of the drop. The elastic 
A ;,, and dielectric A ;, contributions to the coefficient A ; 
have therefore the same dependence on d as for a direct tran- 
sition at small d, as can be easily seen from dimensionality 
considerations: A ;, a E 2d 3, A ;,, a Kd. It follows then from 
the condition A ; = 0 that E,,,,, cc l/d for drops of all sizes. 

5. CONCLUSION 

We determined and qualitatively described the main 
types of restructuring in nematic drops with normal bound- 
ary conditions in an alternating field. We determined the 
dependences, on the frequency of the applied field and on the 
drop diameter, of the critical intensities E, of the field caus- 
ing a point defect in a drop to vanish, and the field E,, , ,  at 
which this defect is restored. We have shown, first, that 
when the frequency is lower the fields E, and E,,,,, increase 
quite strongly. This can be attributed to the change of the 
effective value of the field, since it is determined at low fre- 
quencies mainly by the ratio of the specific electric conduc- 
tivities of the nematic and the matrix, and at high frequen- 
cies by the ratio of the dielectric constants. 

The second important result is observation of a non- 
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monotonic E, (d )  dependence: for small drops E, decreases 
with increase of d, and for large one it increases. In the ab- 
sence of exact solutions for the director distribution in the 
drops, solutions which can be obtained only with a comput- 
er, such a behavior can be understood by analyzing the ge- 
ometry of the director and taking into account the nontrivial 
nature of the criterion for the transition. It has turned out 
that this behavior can be due to singularities of the structure 
changes in drops, namely, to formation of a defect wall of 
thickness d, a / E  in the equatorial region. In large drops 
(d)d,) the basic director deformations before the transi- 
tion are concentrated in the wall; outside this area, nllE in 
the entire volume of the drop, with the exception of the nar- 
row surface areas the entire volume is deformed. The differ- 
ence in the transition geometry leads to a difference in the 
dependences of the elastic and dielectric contributions to the 
free energies of large and small drops, and hence to different 
forms of E, (d)  . 

In conclusion, we wish to emphasize the importance of 
a qualitative theory that explains the main feature of the 
behavior of the critical field for the hedgehog-ring transi- 
tion. This phenomenological theory demonstrate that these 
singularities cannot be determined by direct computer cal- 
culations, since such a calculation is incapable of taking into 
account nontrivial conditions of the transition. In fact, in 
computer calculations the critical condition for the transi- 
tion can be defined as equality of the elastic energies of the 
states before and after the transition. Therefore such an ef- 
fect as a smooth shift of the hedgehog from the center of the 
drop can be simulated with a computer, whereas a jumplike 
hedgehog-ring transformation connected with surmounting 
a finite potential barrier B cannot be simulated if the pro- 
gram does not contain beforehand a transition criterion of 
type (14) and (15). The latter cannot be obtained with a 
computer. 

A second aspect is connected with the obvious conclu- 
sion that a nonphenomenological treatment of the hedge- 

hog-ring transition (particularly, the determination of the 
quantities B, A, etc.) calls for going outside the framework 
of a description of defects with the aid of a director distribu- 
tion. In fact, the fluctuations connected with surmounting 
the barrier between two different topological defects can be 
determined by the change of the internal structure of the 
defects. Practical importance attaches thus to the problem of 
studying the transformations of defects in an electric field 
within the framework of the Landau-de Gennes theory, 
which so far has seemingly been only of academic interest." 
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