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We consider exact solutions of the quasi-hydrodynamical equations which describe periodic fast 
magnetosonic waves propagating in a non-isothermal plasma ( T, ) Ti ) at an arbitrary angle (not 
too close to n-/2) to the external magnetic field. In our considerations we use an effective potential 
depending on a single parameter. We find the conditions for which the ion dispersion cannot stop 
the nonlinear steepening of the wave and for which there appears an internal rotational 
discontinuity in its structure. We compare the results with the observations of low-frequency 
waves in the region in front of the bow shock wave of planets and comets. 

1. INTRODUCTION 

Nonlinear waves in low-density laboratory and cosmic 
plasmas have been well studied.' The main efforts have been 
aimed at collisionless shock waves2,' and  soliton^."^ Far 
less attention has been paid to finite amplitude periodic 
waves which are usually considered only as part of the shock 
wave structure (oscillatory precursor or oscillations behind 
the front) .'-I0 

However, periodic waves in a low-density plasma are of 
interest by themselves. To a large degree this interest is due 
to the waves with a frequency of about 0. lw, (w, is the pro- 
ton gyrofrequency) observed in the upstream region from 
the bow shock wave of planets and comets. These low-fre- 
quency waves (LFW) have a right-handed polarization in 
the frame fixed to the solar wind and usually propagate at 
small angles to the magnetic field. This kind of wave, ob- 
served in the Earth's magnetosphere," was studied in detail 
in Ref. 12. Later, similar waves were observed in the vicinity 
of other planets, and also of comets. Particularly valuable 
information was obtained using high-resolution apparatus 
in studying the Giacobini-Zinner comet.I3 

The measurements have shown that in the neighbor- 
hood of the Giacobini-Zinner comet the spectral density of 
the noise has a maximum in the region of periods of the order 
of lo2 S, corresponding to waves of this kind. An extremely 
high positive correlation between the magnitude of the mag- 
netic field and the plasma density is observed where these 
waves have a maximum amplitude. This makes it possible to 
assume that the waves considered are fast magnetosonic 
waves and that they play an important role in the dynamics 
of the turbulent plasma near the bow shock wave of the com- 
et. 

Earlier studies had already revealed two kinds of low- 
frequency wavex5 quasiharmonic waves and a sequence of 
pulses with a strong nonlinear distortion of their shape. Both 
kinds of wave are close in frequency and amplitude to the 
perturbations of the magnetic field [ AB '/B = 0( 1 ) ] but 
differ greatly in shape. The first ones are almost monochro- 
matic and in the case of a quasilongitudinal propagation the 
absolute magnitude of the magnetic field and hence the plas- 
ma density is practically unchanged in them. For waves of 
the second kind, the so-called shocklets, a strong nonlinear 
steepening of the leading front of the pulse and a consider- 

able compression of the plasma [ Ap/p = 0( 1 ) ] indepen- 
dent of the propagation direction are characteristic. In the 
region preceding the front there is as a rule a high-frequency 
precursor with a frequency of the order of mi. 

Very similar kinds of LFW have been observed in the 
vicinity of the Giacobini-Zinner comet.I3 A change from 
quasimonochromatic waves to shocklets occurred in that 
case when the apparatus approached the comet. A study of 
the shocklets showed that there are no jumps in density, like 
shock waves, in their structure. The sudden change of the 
magnetic field at the leading front of the shocklet is a rota- 
tional discontinuity which is a component of its structure 
complementing the angle of rotation of AB in the plane per- 
pendicular to the propagation direction of the wave to 360". 

According to contemporary ideas'4315 the LFW are 
generated in the Earth's magnetosphere thanks to cyclotron 
resonance with ion beams reflected from the bow shock 
wave. In the vicinity of comets the ion currents generating 
LFW are formed when gas currents emerging from the com- 
et head are photoionized. The group velocity of the waves 
are somewhat higher than the Alfvtn velocity so that they 
are carried away by the solar wind. The amplitude of the 
wave is established due to a balance between the energy in- 
flux obtained from the ions and the energy transfer to the 
region of smaller wavelengths thanks to the nonlinear stee- 
pening with subsequent dissipation due to cyclotron absorp- 
tion.I6 The simplest model of such a wave is a finite ampli- 
tude periodic wave propagating in a plasma without ion 
currents and without dissipation. 

We consider in the present paper, in the framework of 
the single-fluid hydrodynamics of a plasma consisting of 
cold ions and hot electrons, traveling periodic fast magneto- 
sonic (FMS) waves. We assume that the angles at which the 
waves propagate relative to the magnetic field are not too 
close to n-/2 so that the dispersion is determined by the fact 
that the ion Larmor radius is finite. We carry out our analy- 
sis using an effective potential, and the wave amplitude is 
then determined by a parameter proportional to the energy 
flux of the wave in a frame fixed to it. We find the conditions 
under which there appears a rotational discontinuity in the 
structure of the wave. The results are compared with the 
observed LFW and also with numerical  calculation^^^ and 
with the results of a study of model equations obtained using 
a modification of the nonlinear Schrodinger equation.I7 

48 Sov. Phys. JETP 74 (I), January 1992 0038-5646/92/010048-05$05.00 @ 1992 American Institute of Physics 48 



2. BASIC EQUATIONS 

We shall start from the quasihydrodynamical equa- 
tions18 which describe a collisionless plasma consisting of 
cold ions and isothermal electrons ( Ti < T, = const) : 

dp/d t+~VV=O,  

pdV/d t+Vp+[B [VB] ]  /4n=0, 

Vp+Ne ( E +  [V,B]  / c )  =0,  

VB=O, c [VE]=dB/d t ,  

c [  V B ]  =4nNe ( V - V , ) ,  

where Nis the electron and ion density,p the plasma density, 
p the plasma pressure, E and B the electric field and magnet- 
ic induction field strengths, and V and V, the hydrodynamic 
velocities of the whole plasma and of the electron compo- 
nent. The electron inertia has been neglected in Eqs. ( 1 ) to 
( 5 )  and we used the assumption that the plasma is quasineu- 
tral and also that all characteristic velocities are small com- 
pared with the electron thermal velocity and the frequencies 
are low compared with the ion cyclotron frequency. The 
equation of state has, in agreement with the assumption that 
the electrons are isothermal, the formp/N = const. 

We shall look for the exact solutions of Eqs. ( 1 )  to ( 5 )  
describing stationary one-dimensional periodic or solitary 
waves propagating in the laboratory frame along the x axis 
withavelocity u = { - u,O,O) ( u  > 0 ) .  We change to a frame 
fixed to the wave. In that frame the unperturbed values of the 
variables are equal to 

p=po;  p=po, V=V,= {u ,  0, 0 ) ,  Euo=O; Ez0=-u/cBo sin 0 ;  

B,= {Bo cos 0 ,  Bo sin 0 ,  0 ) .  ( 6 )  
Using ( 3 )  to eliminate V, and assuming that the infinitesi- 
mal dissipation is resistive and does not change the plasma 
momentum we get 

dB,ldx=4npe (VJ,+cE,)  /m,cB,, 

dB,/dx=-4npe ( V,B,-cE,) /micB,, 

Bz=Bo cos 0 ,  E,=O, E,=-u/cBo sin 0 ,  

p Vx=pou, 

pV,V,-B,(B,-Bo sin 0 )  /8n=0,  

pV,V,-B,B,/8n=O, 

p - P O +  pV2-pou2+ (B,Z+B,2-Bo%inZ 0 )  /8n= 

pV,( V,Z+ V,2+ V z z )  12-pOu3/2+pV, In 
+ C  (E$,-E,B,) /4n-uBOz s inV/4n=S.  

Equations ( 10) to ( 14) express the conservation of the 
fluxes of matter, of the three momentum components, and of 
the energy of the plasma. We introduced in them constant 
terms which reduce these fluxes to zero in the equilibrium 
state ( 6 ) .  

The only parameter in ( 7 )  to ( 1 4 )  which does not de- 
pend on the unperturbed state ( 6 )  is thus the energy flux Sof 
the wave. This parameter determines the amplitude of the 
wave by analogy with the total energy in the case of a me- 
chanical oscillator. Since there is no energy flux in the limit- 
ing case of linear waves, the wave amplitude must tend to 
zero as S-. 0.  

Introducing the dimensionless variables 

and eliminating the transverse components of the velocity 
and the magnetic field we get from ( 7 )  to ( 1 4 )  

nv=i ,  ( 1 6 )  

( u - I )  (1-1/M2u)+ (b,2+b,"sin2 0 )  /2MA"o, ( 1 7 )  
v2- l+bZ2 cos2 0/MA4+ (by-sin 0)' cosZ0/MA" 

-2 ( ln  v ) / M Z + 2  (b,-sin 0 )  sin €)/MA2=-2e,  ( 1 8 )  
b,(v-cos2 @/MA2)  - ( I  -cos2 0 / M A 2 )  =db,/dg. ( 1 9 )  

Here 6 is a dimensionless Lagrangian coordinate: 

d / d ~ = ~ A d / d x ,  A = V A ~  COS OIuui 

and we also introduced the dimensionless parameters 

Substituting ( 2 0 )  into ( 17) and ( 19) and using ( 18) we find 

where 

U=' / ,  (u-cos2 0/MAz)2[byZ-~in2 0+2MA2 (u-1)  (I-1/M2u) 1 ,  

( 2 4 )  
while the by dependence of v is determined implicitly by the 
relations 

b,=b'-MA2(u-cosz 0 / M A z ) 2 [ 2  (1-cos2 8/MA2) sin 01 -' 
-[ (v-1)cos2 0-MA2u ln (u )  ] / [ M 2 v ( l - c o s 2  0/MA2)sin 01, 

( 2 5 )  
bW=sin @+(MAZ-cos2 0 ) / 2  sin  EM,'/[ (MA2-cos2 @)s in  01. 

Equations ( 1 7 )  to ( 2 0 )  are thus reduced to the equation of 
motion ( 2 3 )  and the energy integral ( 2 2 )  in a field with an 
effective potential U ( b y  ). We note that this formulation of 
the problem differs from the one used in Refs. 7  to 9  since in 
those papers the effective potential depends on two param- 
eters, by and 6 , .  

3. EFFECTIVE POTENTIAL AND DIFFERENT KINDS OF WAVE 

We start our considerations with linear waves for which 
Ib,, - sin8 1 < 1 .  Expanding ( 2 4 )  in a series in the vicinity of 
the point b, = sin9 we get 

where 

According to ( 2 7 )  this kind of potential determines periodic 
waves with an amplitude which tends to zero as E + O  pro- 
vided A > 0 ,  C < 0 .  In the ( M  ' ,M f ,  ) plane this condition 
determines four regions where periodic waves exist (Fig. 1 ) : 
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FIG. 1. Regions in the ( M  ,M 2, plane where the fast ( I ) ,  intermediate 
( 2 , 3 ) ,  and slow (4) waves exist. The hatched part of region 1, determined 
by the inequality Mi,,  < M i  < M cos 8, corresponds to FMS waves with 
an internal rotational discontinuity ( 8  = 18"). 

Changing to dimensional quantities one checks easily that 
the inequalities 1 to 4 are equivalent to the following inequal- 
i t ies:l .u>VF;2.u<VAcos 8<Vs;3. V,<V,cos 8<u ;4 .  
u < VsL, where 

are the velocities of the fast ( V,) and the slow ( VsL ) sound. 
The effective potential thus enables us to describe all known 
kinds of low-frequency electromagnetic waves: fast ( 1 ) , 
slow (4) ,  and intermediate in the case V, > VAcos 8 (2)  
and V, < VA cos 8 (3),  respectively. The sign of E in (28) 
then corresponds to the sign of the dispersion of the wave. 
Indeed, for positive dispersion the group velocity of the wave 
is larger than the phase velocity in the frame fixed to the 
wave and the energy is carried away against the flow of the 
plasma current, i.e., E > 0. The signs of E determined from 
(28) agree with the well known form of the dispersion 
curves for waves of the kinds 1 to 4. 

In the remaining part of the ( M  ',Mi ) plane in Fig. 1 
there are no periodic waves. One can show that this is the 
region where solitary waves exist. Below we restrict our- 
selves to considering nonlinear fast magnetosonic waves (re- 
gion 1).  

4. NONLINEAR FMS WAVES 

We consider the change in the profile of the FMS waves 
described by the effective potential (24) when the parameter 
E increases. One must in this case take into account that the 
by dependence of v given by Eqs. (25) and (26) is not single- 
valued. Differentiating by with respect to v we find 

In the general case there are therefore three values of v corre- 
sponding to a single value of by (Fig. 2) and the potential 
(24) has three branches. One can avoid this ambiguity by 

FIG. 2. The b, dependence of v ,  determined by Eqs. (25) and (26). 

using (25) to change in (22) from the by variable to the v 
variable: 

and to use (25) and (26) to express by in terms of v. How- 
ever, one must bear in mind that the Jacobian (29) of the 
transformation of the variables vanishes for v = cos28/Mf, 
and for v = 1/M and when v has one of these values Eqs. 
(30) and ( 3 1 ) may have solutions which do not satisfy Eqs. 
(22) and (24). 

Let E take on values which are so small that the inequali- 
ty v > max(cos28/Mi, 1/M) is satisfied during the whole of 
the wave period. In that case by is within the limits of one 
branch of the potential U(by ), and db, /dv does not vanish. 
The forms of the potentials U(by ) and W(v) for that case 
and the solution of Eq. (22) are shown in Fig. 3 [ b I is found 
from (17) and the sign of b, from (20)l.  The waves are 
right-handedly elliptically polarized, and for small 8 circu- 
larly, the compression of the plasma is small for quasilongi- 
tudinal propagation, and MA cos8 < M, but the perturbation 
of the magnetic field may be appreciable. 

When E increases the deviations of the plasma velocity 

FIG. 3. The effective potentials U(b, ) ( a )  and W ( v )  (h)  and the profile 
of a quasiharmonic wave for E < E,, ( M  f ,  = 3, M = 10,B = 5', E = 0.13) 
(c). 
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FIG. 4. The effective potentials U(b,,) (a) and W(u) (b) and the profile 
of a wave with mixed polarization for E > E,, , M i  <Mi,, 
(M: = 1.4, ~ ~ = 9 ,  e=sq E = o . o ~ )  ( c ) .  

from its equilibrium value v = 1 increase and, starting from 
some value E = E,, the minimum value of the velocity urnin 
satisfies the inequality urn, < max (cos26 /MA, 1/M). We 
first consider the case 

The potentials U(by ) W(u), and the profiles of n = l/v, by, 
and b, are shown in Fig. 4. One shows easily that the solu- 
tions satisfy also Eq. (22) and the half-period of the wave 
corresponds here to the motion of the material point in Fig. 
4a from point a to point b along the upper branch of the 
potential and from the point b to the point c on the lower 
branch. The continuity of b, at the point b when it changes 
from one branch to another is, according to (20), guaran- 
teed by the simultaneous change of the signs of 
v - cos26/M: and dby/dg [we note that W(v) has no sin- 
gularities at all at the point v = cos26/M: ]. The effective 

FIG. 5. The effective potentials U(b,) (a) and W(v) (b)  and the profile 
of a wave with an internal rotational discontinuity for E>E,,, 
M : , , ~ M : < M c o ~ ~ ~  ( ~ : , = 2 ,  M ~ = ~ o ,  e=50, E = o . I )  ( c ) .  

potentials describe in that case an unpolarized wave with a 
continuous profile and a significant compression of the plas- 
ma. 

The inequality (32) is satisfied only in a small part of 
the region satisfying the condition 1/M < cos26 /M T, in the 
( M  ',Mi ) plane (Fig. 1 ). In the remaining part of that re- 
gion the inequality v,,, < 1/M is satisfied when E is larger 
than the critical value E,, and the potentials U(by) and 
W(v) have the form shown in Fig. 5. There are in that case 
no periodic waves with a continuous profile. This is particu- 
larly clear from Fig. 5a; we shall show below that b, is con- 
tinuous in the point b if one changes in that point from one 
branch of the potential U(by ) to another, but a finite motion 
of the effective material point along the line bcd is impossible 
because the by dependence of U is not single valued. 

We shall seek for Eqs. ( 17) to (20) discontinuous solu- 
tions satisfying them everywhere except at the discontinuity 
and also satisfying the appropriate conditions at the discon- 
tinuity. The solution shown in Fig. 5c corrsponding to the 
motion from the point a to the point b on the ab branch in 
Fig. 5a and returning from b to a along the same branch 
satisfies these requirements. It satisfies Eq. (22), and hence 
Eqs. ( 17) to (20), everywhere, except at the point b. Ac- 
cording to (20), b, has a discontinuity at the point b, chang- 
ing its sign, while the component by is continuous so that the 
absolute magnitude of the magnetic field is also continuous. 
Finally, from the relation v = cos26/M3, which is satisfied 
in the point b we get, returning to dimensional variables and 
using (9 )  and ( lo ) ,  Vxb = B x / ( 4 ~ p b  ) 'I2 where Vxb and p, 
are the plasma velocity and density at the point b. The dis- 
continuity at the point b is thus rotational. The solution is 
thus a right-hand polarized wave with an appreciable com- 
pression of the plasma, and it includes the case of quasilongi- 
tudinal propagation. Its structure includes an internal rota- 
tional discontinuity rotating the tangential component of 
the magnetic field through not more than 180". 

In conclusion we consider the case 1/M> cos20 /M . 
In that case it is impossible to introduce at E > E,, an internal 
rotational discontinuity which "does not admit" an effective 
mass at the point v = 1/M. In that case there are therefore no 
periodic waves with E > E,, . 

5. DISCUSSION OF THE RESULTS AND CONCLUSION 

We have considered how the form of the nonlinear peri- 
odic FMS wave depends on four dimensionless parameters: 
the Alfvtn (MA ) and sound (M)  Mach numbers, the angle 6 
between the propagation direction of the wave and the exter- 
nal magnetic field, and the parameter E which is proportion- 
al to the energy flux of the wave in the reference frame fixed 
to it and which is determined by the wave amplitude. The 
main results are the following: 

1. When E < E,, (M f ,  ,M  2,6) the profile of the magnetic 
field of the wave is quasiharmonic and the wave is polarized 
elliptically, and for small 6 circularly. The compression of 
the plasma is small, especially for small 6, but the perturba- 
tion of the magnetic field may be considerable. 

2. When E > E,, the shape of the wave depends on Mf, , 
M 2, and 6. If M: <Mi,,  ( M  ',6) the compression of the 
plasma lies within the range M f ,  /cos26 <p/p, < M. The po- 
larization of the wave is mixed and the profile of the magnet- 
ic field differs appreciably from harmonic. 
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3. In the range of parameter values 
M f,,, < M f ,  < M cos28 the ion dispersion cannot compen- 
sate for the nonlinear steepening of the wave, and a rota- 
tional discontinuity appears in its structure. This discontin- 
uity occurs there where the wave velocity relative to the 
plasma is equal to the local Alfvkn velocity. The maximum 
compression of the plasma, p/po = M f ,  /cos28, is reached at 
the same point. Only the z component of the magnetic field 
has a discontinuity, so that the angle of rotation of the mag- 
netic field component orthogonal to the propagation direc- 
tion is not more than 180". The wave is right-handedly polar- 
ized and part of the total rotation of the transverse 
component of the magnetic field occurs in this case at the 
discontinuity just mentioned. The plasma density at the dis- 
continuity is continuous, but has a vertex. The characteristic 
wave frequency is, as in the preceding two cases, of the order 
ofO.10, for Mf, - 1. 

4. There are no periodic solutions for E >  E,, in the 
M i  > M cos28 case. This puts a restriction on the plasma 
parameter p at which observation of the waves considered 
here is possible: 0 = 2M /M < 2 cos48 /M f ,  . 

Even though the model is obviously crude attention is 
called to the similarity of the waves considered and the LFW 
in the vicinity of the Earth and of comets. The properties of 
the quasiperiodic waves are practically the same as the prop- 
erties of the waves considered for E < E,, . The transition from 
LFW of this kind to shocklets downstream in the solar wind 
can be connected in a natural way with the increase of the 
energy flux of the wave due to the interaction with the ion 
current and to its exceeding the critical value. This explana- 
tion of the change in the shape of the LFW does not call for 
including refraction at the boundary between the regions 
where two kinds of waves exist,14 and it can be applied to 
LFW in the vicinity both of the Earth and of comets. 

The observed properties of shocklets are close to the 
properties of nonlinear FMS waves with an internal rota- 
tional discontinuity. We note that the angle of rotation of the 
magnetic field over the length of the rotational discontinuity 
in the structure of the FMS wave is less than or equal to 180", 
which agrees with observations.I3 The appearance of a high- 
frequency wave precursor ahead of the front of the rotational 
discontinuity can be explained by the wave emission of the 
surface current connected with the discontinuity, similar to 
what was done in Ref. 15 when the precursor of a shock wave 
was considered. 

The internal structure of the rotational discontinuity 
cannot be described in the approximation considered here 
since we neglect dissipation. In the presence of resistive dissi- 
pation the width 6 of the discontinuity increases with time 
like 6- (c2t /4m) "2,19 where a = Ne2/mv is the effective 
resistivity of the plasma and v the effective collision frequen- 
cy of the electrons. One can therefore neglect the spreading 
of the discontinuity, provided k 6 g  1 where k-wi/Vs is the 
wave number of the LFW and V, the solar wind velocity. If 
we assume that one may consider the conductivity in the 
present case to be resistive, it follows from the observation of 
the upstream damping of the precursors of the discontinui- 
ties with a frequency of the order of mi that v 5 mi. Using the 
fact that the time for the interaction of the LFW with the ion 
current in front of the Earth's bow shock wave is t- 100 s,14 
wefindks-lo- ' .  

Nonlinear MHD waves have also been studied using a 
model DNLS equation which is obtained through a partial 
linearization of the equations of the plasma dynamics that 
removes the nonlinear coupling between the plasma density 
and the magnetic field os~i l la t ions .~~  The modification of 
this equation, taking dissipation and an external applied 
force into account, made it possible to obtain a periodic solu- 
tion containing in its structure an intermediate shock 
wave." The solution given above in the form of quasihar- 
monic waves or waves with a mixed polarization are close to 
the solutions of the DNLS equation obtained for an appro- 
priate choice of the parameters, but the solution with an 
internal rotational discontinuity does not have an analog 
amongst the solutions of the DNLS equation. The reason is 
that this discontinuity appears when the plasma is signifi- 
cantly compressed and then the nonlinear coupling between 
the oscillations of its density and of the magnetic field be- 
comes important. 

The main difference between the results of a numerical 
~imulat ion '~ and those obtained in the present paper is that 
the steepening of the wave profile leads to a fast shock wave 
and not to a rotational discontinuity. This discrepancy can- 
not be attributed to neglect of the beam ions in the solutions 
considered above, since "deflecting" the beam during the 
calculation made practically no change in its results. I t  is 
apparently connected with the fact that in the numerical cal- 
culation a constant value of the magnetic field was main- 
tained at the boundaries of the chosen range. 

The model considered thus made it possible to explain 
the appearance of rotational discontinuities in the structure 
of the LFW observed in Ref. 13. To obtain more detailed 
information one must consistently take into account the in- 
teraction of the waves with ion currents and also dissipation. 
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