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The problem is studied of the presence of integrals in the generalized drift-kinetic equation 
(DKE) which takes into complete account all the finite Larmor radius (FLR) corrections to first 
order in an expansion in the inverse cyclotron frequency in the general three-dimensional case. 
The possibility of macroscopic flow of the plasma is taken into account. It is shown that the 
magnetic moment, modified with account of the longitudinal motion ofthe particles and the 
vortex flow of the plasma is an exact integral of the generalized DKE. It is shown that special 
calibration of the electric potential leads, in the low-frequency case considered, to an approximate 
DKE integral of an energy type. A general expression is obtained for the energy density flux 
connected with FLR corrections in the DKE. 

1. INTRODUCTION F df  81 
d f + v v f  +--= Q [ ( v - v ) ~ b ]  --. 

The approximation of a collisionless magnetized plas- at mn dv 9 v 
(1)  

ma is frequently used in the description of a wide range of 
laboratory and cosmic plasma systems. This approximation 
assumes that the characteristic time and space scales of 
change in the state of the system exceed the period of cylco- 
tron rotation ( - 1/f l= mc/eB) and the Larmor radius 
(-v,/fl), respectively, of particles in a magnetic field B, 
but are significantly smaller than the times and lengths of 
free flight. The motion of the particles in this case consists of 
a fast cyclotron rotation, a drift motion across the lines of 
force of the magnetic field, and a longitudinal motion. The 
dynamics of slow drift and longitudinal motions of an en- 
semble of particles is described by the drift kinetic equation 
(DKE) of Rudakov and Sagdeev,' which is obtained from 
the collisionless equation of Vlasov by averaging over the 
cylotron rotation. The account of the effects of a finite Lar- 
mor radius (FLR) in problems on the equilibrium and sta- 
bility of a plasma (see, for example, Refs. 2-4) has stimulat- 
ed numerous attempts to modify the DKE with account of a 
non-zero value of l/R. However, calculations of such a type 
are rather cumbersome, so that one usually restricts oneself 
to a two-dimensional c a ~ e , ~ . ~ , ~  to an implicit form of the 
equation, etc., which narrow down the region of applicabili- 
ty of the results. 

A generalization of the DKE, taking completely into 
account the FLR corrections in first order in expansions in 
terms of l/fl in the general three-dimensional case, has been 
obtained in Ref. 8. In the present work we consider the prob- 
lem of the presence of integrals of the motion of the plasma 
particles with account of macroscopic flow of the plasma 
and FLR corrections to the drift motion. It is shown that 
correct allowance for the longitudinal motion of the parti- 
cles and for the vortex flow of the plasma modify the equa- 
tion for the adiabatic invariant (the magnetic moment). It is 
also shown that, if the electrostatic potential is calibrated in 
special fashion, then the total energy of the particles in a 
comparatively slow (but not stationary) drift motion is also 
conserved. A general expression associated with the FLR 
correction to the DKE is obtained for the energy flux den- 
sity. 

2. DRIFT KINETIC EQUATION WITH ACCOUNTOF FLR 

Following Ref. 8, let us write the Vlasov equation for 
the one-particle distribution function f(t,r,v) in the form 

In contrast with the traditional approach,' we now intro- 
duce the volume density F of electromagnetic force, while 
the electric field E is eliminated by the relation 
E = - [V  x B] /c + F/en. Most of the notation is standard, 
m and e are the mass and charge of the particles of the de- 
scribed component of the plasma, and V is the mean mass 
velocity of this component. The transition to the quantities F 
and V in Eq. ( 1 ) in place of E and V, = cE X B/B allows us 
to avoid the explicit expansion of the electromagnetic field in 
powers of 1/fl, and the appearance of products of the elec- 
tron drift velocity V, in the FLR terms (see Ref. 7 ) .  By 
integrating ( 1 ) with the weights 1 and v, we obtain then the 
equation of continuity in ordinary hydrodynamic form with- 
out any corrections 

dtn+n div V=O (2)  

and the expression for F in terms of the macroscopic param- 
eters of the plasma 

where P is the pressure tensor and d, = a, + VV. The dy- 
namics of the magnetic field, which enters into Eq. ( 1 ) only 
through R and the unit vector b = B/B, is determined by the 
exact equation 

a,B rot[VXB] 1 
-= -- 

F 
B B 

rot - . 
52 mn 

Introducing the velocity u and the basis {e,  ,e, ,b) in velocity 
space by the relation 

We can now write the right-hand side of (21 ) in the form fl  
(df /dp), and seek the distribution function in the form of 
the expansion 

In zeroth order in 1/R, the distribution function is isotropic 
in the plane perpendicular to the direction of the magnetic 
field Cf, = f ) and is determined by the equation 
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u, 
a f O  (din, V+ull div b ) ,  

2  du, 

In first order, the oscillating part of the distribution function 
is given by the relationss 

while the DKE for the isotropic part is modified in the fol- 
lowing fashion:" 

% 0 [ f i 0 1  

1 U L  dfo ur2 dfo  + - { b r o t ( ( b V ) b )  Q [ - - ( u ~ ~ ~ + ~ ) - ~  2 du, mn ull 
Ull 

+ [ b X ( b V ) b ]  

u , P f o  V B  
2  du, B  

+ vf,)  - , U I I  - - 
dull B  

U r  dfo +rot, v.[ - u.'df.s + (d,b+ ( b V )  V )  (- - 
2dull B  2 du, 

mn 

U L  a f o  V B  
+ 2 [ ( b ' 7 ) v x b ]  .[- 

U1l du,B 

- u l l ~ f o +  

VYL u, d fo  V (nB)  +[-x mn b ] . ( - - -  2 du, nB 

u, dfo ~ V P L  afo +----)+ullu,-- [bmt(bV)V-brotb(b(bV)V)] 
2  du, mn au, 

+ 

B  

- [ b  rot b  div, V - b  rot V  div, b  

-2b r o t ( b v ) V ]  +o- mn b ]  =o. ( 9 )  

The moments pl, = m n ( u i ) ,  p, = mn(u: ) /2 ,  
qI1 = m n ( u ; ) ,  q, = mn(ull  and u : ) / 2  in the left side of ( 9 )  
are determined by the transverse isotropic part of the distri- 
bution function, taken in zeroth order and described by Eq. 
(7). Correspondingly, the calculation of the divergence of 
the part of the pressure tensor of order l / f 2  is carried out 

with the help of ( 9 ) ,  and leads to the following expression 
for its longitudinal component: 

V B  + (2p,-qll) [d iv  ( b  ( b  rot b )  ) + - r o t  b ]  - V P ,  rotr v 
B  

3. CONSERVATION OFTHE MAGNETIC MOMENT 

Having the exact solution ( 9 ) ,  which describes the dy- 
namics of the collisionless distribution function to first order 
in 1/f2,  it is natural to raise the question of the existence of 
first integrals in this equation. We attempt to find such inte- 
grals X in the form of the simplest polynomial expansion 

The action of the functional ( 7 )  on ( 10) leads to the 
polynomial 

u, d X ,  
--- divl V + ( i + i ) ~ , + ~  (5 cliv b + b . k y ) }  , 

2  d u ,  - tnn 

where Xj = 0  at n )  U 0' < 0 ) .  Successively equating to 
zero terms with different powers of u,,  , we obtain a chain of 
equations for the variable Xi (in the next higher order of 
expansion in l / f 2 ) .  Thus, for the highest mode X,, we have 

The general solution of ( 12) takes the form 

where $(r , t )  is such that bV$ = 0 ,  and y is an arbitrary func- 
tion of argument p, = u:/B.  Furthermore, considering the 
terms - uii, we obtain 

The term with y in ( 13 ) vanishes in accord with (4),  while 
the last nondivergent term in the general case b ( b . V ) V # O  is 
eliminated only in the case n  = 0 .  Thus, the traditional drift- 
kinetic equation QOIX ] = 0  has the simple integrals $ and 
p,. The role of $ can be played by any quantity fixed in the 
plasma, constant along the lines of force of the magnetic 
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field, whilep zp, is proportional to the magnetic moment of 
the charged particle. 

We now consider how the expression for p is modified 
in first order in l /n .  First, in correspondence with ( 8) ,  os- 
cillations in the phase angle of the contribution appear: 

where 2, [V] = e, (epV)V - b curl V/2. Second, substi- 
t u t i ng~ ,  in place off, in (9)  and using the same procedure 
of expansion as in ( 11 ), we find 

Fo 
pI0 = - - b rot (V+ullb) 

Q (15) 

(the contributions to Eq. ( 15) that contain the arbitrary 
functionp, are omitted). Equations ( 10) and ( 1 1 ) genera- 
lize the well-known formulas for the magnetic moment (9)  
to the case of plasma flow with nonzero mass velocity V. 

Thus, the quantity p, + py an exact integral of the gen- 
eral DKE (9),  and p zp, + py + p; + +; is the solution of 
the kinetic equation (1)  to first order in the expansion in 
l / n .  The apparent inconsistency because p ,  which is an in- 
variant of the motion of a single particle, depends [accord- 
ing to ( 14) ] on the characteristics of the ensemble (p,,,l ) is 
explained by the fact that the pressure forces can be ex- 
pressed in terms of the field and the force of inertia by means 
of the equation of motion ( 3 ) .  

We emphasize again that the expansion of Eq. ( 1 ) in 
powers of l/Cl leads to the result that the adiabatic invariant 
of the motion p becomes an exact integral of the resultant 
equation. 

4. LAW OFCONSERVATION OF ENERGY 

4.1. Case of motion of individual particles 

If a particle moves in a stationary potential electric field 
( E  = - V@, a,@ = O), then, as is well known, its total ener- 
gy E = e@ + mu2/2 is conserved (the presence of a slowly 
changing magnetic field leaves this assertion in force). In 
other words, the quantity E is an integral of the kinetic equa- 
tion ( l ), as is easy to verify by direct substitution. However, 
substitution of E in the DKE (7)  does not reduce it to an 
identity. The explanation of this paradox is connected with 
the necessity of correctly following the logic of the expansion 
in powers of 1 /n  and is possible only on the basis of Eq. (9) .  
Actually, in contrast with the quantity F, the electric field at 
V, #0 contains a quantity -fl, which should be taken into 
account in the next higher order expansion. Formally, the 
stationary quantity @ ( r )  satisfies (7)  if 
W @  + u,, bV@ = 0, whence, in the next higher order, 
V@ z [VX B] /c (the factor B /c assures that @ has the di- 
mensionality of the electric potential. In the stationary case, 
such a potential @ is frozen in the plasma and is constant 
along the lines of force of the magnetic field, i.e., it can serve 
as the integral IC, described above. Furthermore, @ should be 
substituted in terms - 1/R of Eq. (9), whence we obtain the 
result that the quantity 

is an integral of Eq. (9), along with the magnetic moment. 
Formally, the kinetic energy in ( 16) is - l /fl  of the poten- 
tial. 

An important feature of the generalized DKE (9),  
which was obtained as a result of the expansion of the kinetic 
equation in powers of l / n ,  is the fact that Eq. (6)  can be an 
integral of Eq. (2)  even in the case of alternating fields with 
frequency w < a .  For this, it is only necessary to calibrate the 
scalar potential @ in corresponding fashion. Actually, let the 
electric field be given by the general expression 
E = - V@ - d,A/c, where A is the vector potential 
curl A = B. If the longitudinal electric field is only weakly 
nonpotential [b.d,A- BV(w/fl) '1 then, substituting ( 16) 
in (9),  we obtain a deviation - 1/f12 from the next higher 
termsin (9)  (-ClmV2), if 

Equation ( 17) can be regarded as the desired gauge of the 
potential. Actually, in this case, the scalar potential is deter- 
mined with accuracy to within an arbitrary function, which 
moves along with the plasma (i.e., d,{ + V.V{ = 0) .  In oth- 
er words, the substitution @-+@ + { simultaneously with 
A + A  + Va, where d,a/c = - g, conserves both the electric 
and the magnetic fields, as well as the gauge ( 17). It is cur- 
ious to note that the gauge (17) for the stationary plasma 
flow (d,V = 0)  transforms into the Petviashvili-Gordin 
transformationlo @ = A.V/c, which locally conserves the 
magnetic helicity (as f l  - co ) . 
4.2. The case of macroscopic motion of the plasma 

In the general case of plasma flow in alternating electric 
and magnetic fields, the energy of the individual particle is 
not an integral of the motion. However, it is natural to expect 
that the total energy of the plasma in the absence of dissipa- 
tion is conserved, as is the case in magnetohydrodynamics. 
Nevertheless, up to the present time, a general expression for 
the change in the energy density, obtained within the frame- 
work of drift theory, is still lacking." Such an expression 
can be obtained on the basis of (9)  to first order in l/Cl. Let 
us first discuss the corresponding derivation for the DKE 
(7)  in zeroth order in l/Cl. 

The volume energy density of the thermal motion of the 
particles is simply mn(u: + ui )/2 = p, + p,, /2. Integrat- 
ing the DKE with weights u: and u t ,  and combining the 
resultant equations, we obtain 

8 t ( p L + ~ l l / 2 )  =- (2p,+p11/2)div V 
+ (p,-p)b(bL ) V -  div(b(q,+q11/2)). 

The nondivergent terms on the right-hand side are eliminat- 
ed by taking into account the energy of the magnetic field 
and the kinetic energy of the directed motion of the plasma; 
in sum, 
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This equation has a simple physical meaning. The 
change in the energy density is connected with the convec- 
tive energy transport (the first term under the div sign), 
with the heat flow (the terms with ql,ll ), with the convective 
transport of energy along the lines of force of the magnetic 
field (with account of the energy of the magnetic field), and 
also with the work of the electromagnetic forces [the last 
term in ( 18 ) 1. If, for example, the flow of current is connect- 
ed only with the component of the plasma considered, then 
the last term falls exactly to zero, which is equivalent to a 
zero electric field in a system of coordinates frozen in the 
plasma. 

Applying the analogous procedure to Eq. (9),  we ob- 
tain an expression for the change in the energy density with 
account of the FLR terms: 

+ [. ( \  ( !"( 2p-L -1 :I!))- %(2,],  +$))I 
I I I I I R  - mrt B 

Here we have already higher-order moments RII = mn(uf ), 
R# = mn ( u i  u:/2), R, = mn(u:/8), calculated according 
to&, while the expression for the pressure tensor P, - l / n  is 
obtained with the help of the relation (8).'  

For a one-component plasma (say, hydrogen), Eq. 
( 10) describes the change in the energy density of the ionic 
component and the magnetic feld. Taking it into account 
that, in the case of quasi-neutrality, 
F + F e = ; - [ B X c u r l B ] / 4 ~ ,  while V e z V = B  curl 
B/4?rmnR (see Ref. 8),  we find that the last (nondivergent) 
term in ( 19) drops out if we mean by pressure (on the left- 
hand side) the total pressure of the ions and electrons (the 
inertia of the electrons can be neglected). 

Thus, as was to be expected, the total integral of the 
energy over the entire volume occupied by the plasma is con- 
served and, with account of FLR corrections to the drift 
motion of the ions, is given by 

It is easily seen that the analogous derivation is valid also for 
the case of a multi-component plasma if the energy density of 
all the components of the plasma is inserted under the inte- 
gral. 

5. CHANGE OF VARIABLES 

The surfaces E = const andp = const in phase space are 
essentially the characteristics of the in partial differential 
Eq. (9).  This means that, transforming to E and p as new 
independent variables, we can reduce the number of the lat- 
ter in (9).  As a result, knowledge of the integrals of the drift 
motion allows us to write down the rather unwieldy general- 
ized DKE (9)  in a simple and physically lucid form. Actual- 
ly, the change of variables {t,r,ull ,ul )+ {t,r,~,p) in (9)  leads 
to the "basic" equation for the distribution function 

Here V f  = u:b curl b/2n, while VT represents the velocity 
of local ion drift: 

As is easily seen, Eq. (21 ) describes the gradient of the 
drift, the centripetal drift, due to curvature of the lines of 
force of the magnetic field, the drift connected with the 
change in the direction of the magnetic field with time and 
finally, the drift induced by the forces of the plasma pres- 
sure. Thus, Eq. (20) has a simple physical meaning. If the 
mass velocity in the phase microvolume does not compen- 
sate for the local drift of the particle, the resulting phase 
current produces a change in the particle density in the given 
microvolume [the quantities ull,, in (20) should of course be 
expressed in terms of E and p with the help of ( 15), ( 16) 1. 

If the conditions formulated in Sec. 4.1 are not satisfied, 
then the energy (16) is not conserved, and we must add to 
the left side of (20) the phase current (df /a&)& connected 
with the change in the energy 

F mu,' 

mn 2 R R 

Here the mass velocity V is represented in the form of the 
sum 

in which the velocity components V, = c [ b ~  V@]/B and 
V, = [b X (d,A + #/en ] /B associated with the potential 
and vortical parts, respectively, of the electric field are intro- 
duced explicitly. The unity subscript indicates smallness - 1/R. As is easily seen, under the assumption of Sec. 4.1, 
the quantity & is found to be of order - ( w 3 / R 2 ) ~  and should 
be omitted in the considered order of expansion. In the oppo- 
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site case, the corresponding terms should be taken into ac- ')The advantage of repeating here the generalized DKE is the correction 
count in (20). This, nevertheless, does not complicate the of a large number of typographical errors in the formulas of ~ e f .  8. 

equation very much. Thus, the use of the 'L. I. Rudakov and R. Z. Sagdeev, Physics of Plasma and the Problem of 
Eq. (9) turns out to be necessary only in the case in which Controlled Thermonuclear Reactions (in Russian), Vol. 111, Edited by 
the partition of (23) is not possible, i.e., IV, I g IV, I (for M. A. Leontovich, Acad. of sciences, Moscow, 1958, p. 268. 

'W. Rosenbluth, A. Krall and N. Rostoker, Nucl. Fus. Suppl., 1, 243 example, in the absence of an electric field). 11962). . - -  --, 
3B. Cohen, R. Freis and W. Newcomb, Phys. Fluids, 29, 1558 ( 1962). 
4G. V. Rudakov, Fiz. Plaszmy 12,1115 ( 1986); [Sov. J. Plasma Phys. 12, 

6. CONCLUSION 

The simple consequences of the generalized drift kinetic 
Eq. (9) that are considered in the present work extend the 
usual representations of the drift motion of charged particles 
in a strong magnetic field to include the case of a finite Lar- 
mor radius in an abritrary three-dimensional geometry. Use 
of traditional "hydrodynamic" variables allows us to pro- 
ceed without a priori ordering of the terms of the kinetic 
equation. The presence of the integrals introduced in the 
present work in the generalized drift-kinetic equation have 
made it possible to simplify greatly the considered equation 
and to describe it in a physically lucid form. 
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