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The coherent trapping of population which occurs in a medium upon the application of a single 
laser beam with a finite spectral width is analyzed. An analytic solution is derived for a nonlinear 
equation describing the transport of optical radiation at the frequencies of spectral lines for 
arbitrary spectra of the light and the absorption. The conditions under which coherent population 
trapping is observed are determined. During coherent population trapping, the decay of the 
overall intensity of the laser light in the medium is linear and independent of the spectra of the 
incident light and the absorption. The propagation of each spectral component is determined by 
the set of all other components (there is a "frequency memory"). 

1. INTRODUCTION 

The excitation of multilevel quantum systems by coher- 
ent fields has revealed some new effects of both conceptual 
and practical importance. One is coherent population trap- 
ping (CPT), which has recently become the subject of very 
active research. It is the topic of a large number of theoreti- 
cal and experimental papers (see, for example, the bibliogra- 
phies in Refs. 1 and 2). 

To a large extent, this interest stems from the very wide 
range of possible applications of this effect: ultrahigh-resolu- 
tion spectroscopy, free of not only Doppler broadening but 
also of homogeneous broadening of spectral lines, in both the 
optical3 and rf4 frequency ranges; frequency stabilizatioq5 
ultradeep cooling of atoms,6 in which temperatures on the 
order of 10- K can be reached with the help of CPT; passive 
laser mode 10cking;~ the conversion of a frequency modula- 
tion of optical radiation into an amplitude modula t i~n;~  the 
development of atomic interferometers for measuring the 
phase and amplitude of a radiation field;, the development 
of lasers which work without a population inver~ion;~- '~ and 
others. 

Coherent population trapping can occur in atomic, mo- 
lecular, or any other quantum systems which are interacting 
with fields, with either discrete or continuous spectra of 
states.I4 It is seen most vividly in the interaction of two- 
frequency laser light with a three-level medium having a A 
configuration of levels (a  "A system"). Usually, two of the 
levels would be sublevels ( 1 and 2)  of the ground state or 
low-lying metastable levels, while the upper level, 3, would 
be an optical level. Both transitions from the upper level to 
the lower levels are allowed. The effect can be summarized 
by saying that when the condition for a two-photon reso- 
nance is satisfied for optical fields propagating in the same 
direction, i.e., under the condition 

where a,,, are the frequencies of the fields, and a,, and ~ 3 ,  

are the frequencies of the 3-1 and 3-2 transitions, a coherent 
superposition of states 11) and 12) between the lower levels 
arises in the medium. The atoms "get stuck" (are trapped) 
in this superposition of states, and they are not excited into 
the 13) state, even if resonant fields are present. As a result, 
the medium can neither absorb nor emit light during CPT. A 

narrow coherent dip (a  "black line") appears near the two- 
photon resonance. This dip has been observed experimental- 
ly in several places.'5-17 

The most convenient way, and at the same time the 
most valid way, to describe CPT is by a method based on a 
quantum kinetic equation for the density matrix of the 
atoms. In the case of a A system, the CPT can be associated 
with the excitation of a low-frequency coherence p,,-an 
off-diagonal element of the density matrix-under condition 
( 1.1 ) . Two-photon resonance ( 1.1 ) is a necessary condition 
for the observation of CPT, so the nonmonochromatic na- 
ture of real laser light sources, which implies nonresonant 
components of the spectrum, should lead to a disruption of 
the coherencep,, and thus a CPT. This problem, however, is 
not so obvious. 

An effect of fluctuations of laser fields on CPT has been 
studied in several for the case of an optically thin 
medium. The basic results of this research show that when 
two uncorrelated laser fields with spectral widths A,  and A, 
interact with a A system the CPT is disrupted, and the coher- 
ent narrow dip is washed out of the fluorescence spectrum. If 
the fields are instead mutually correlated, with A,, f 0 ( A,, 
is the cross spectral width), the CPT reappears to the extent 
to which the relaxation rate I?' of the coherence p,, is re- 
stored (reduced) : 

where r is the "dark" relaxation rate ofp,, . This coherence 
can be achieved quite easily in an experiment, through the 
excitation of two fields from an original fluctuating field by 
acoustooptic modulation or frequency multiplication. At a 
critical value of the mutual correlation 
(A,, = (AlA,)"2, A1 = A,), the CPT is completely re- 
stored in nonmonochromatic fields. These conclusions are 
supported by experiments2' which used an acoustooptic 
modulation method. 

Coherent population trapping gives rise to important 
features in the propagation of laser light in optically dense 

So far, only two cases have been studied: the inter- 
action of two-frequency cw laser light with an optically 
dense mediums and the case in which the light is a periodic 
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train of ultrashort pulses with a width which spans the two 
lower levels of the A system.' It was shown in those studies 
that the decay of the laser light with increasing optical path 
length is linear, in contrast with the classical Bouguer-Lam- 
bert law, which is exponential. In the latter case, a bleaching 
of the medium occurs if the frequency of the splitting of the 
lower levels is a multiple of the pulse repetition frequency. 
On the other hand, the propagation of nonmonochromatic 
cw laser light with a spectrum spanning the two lower levels 
remains an open problem, although it is important to numer- 
ous physical applications. For example, there has recently 
been active research on systems in which the frequency dis- 
tance between the lower levels is extremely  mall"^'^ (these 
levels might be, for example, Zeeman sublevels of the ground 
state), or in which the atomic levels are degenerate in angu- 
lar-momentum projection.22323 Under these conditions the 
actual spectrum of the laser light spans the sublevels, and a 
CPT state may be excited in the quantum system. 

We thus see the need for a detailed theoretical study of 
CPT in an optically dense medium in the case of a nonmon- 
ochromatic laser field. 

In this paper we analyze the transport of laser light at 
the frequencies of spectral lines in an optically nonlinear 
CPT medium. We derive an analytic solution of the trans- 
port equation for the light for arbitrary spectra of the light 
and the absorption. We find that the propagation of each 
spectral component is determined by the set of all others; i.e., 
there is a "frequency memory." We show that the medium is 
bleached during CPT. The change in the overall intensity is 
linear and independent of the incident and absorbing spec- 
tra. At large optical thicknesses, however, at which the CPT 
fades away, the wings of the incident line strongly influence 
the decay of the overall light intensity. 

2. EQUATION FOR THE DENSITY MATRIX 

As we mentioned above, for laser sources with a real 
output spectrum, CPT is seen most vividly when the two 
laser fields are completely correlated. Experimentally, it is 
more convenient to work with a closely related case:24925 the 
simultaneous interaction of a broad-spectrum laser beam 
with the two transitions 1-3 and 2-3. 

To solve this problem, we specify the optical field to be a 
traveling plane wave with a carrier frequency w,, a wave 
vector k, and a unit polarization vector e: 

Here E(z,t) is the complex field amplitude, which has a reg- 
ular component as well as possible frequency, phase, and 
amplitude fluctuations. 

Let us consider the interaction of field (2.1 ) with a A 
medium. We assume that levels 1 and 2 are, for example, 
Zeeman sublevels of the ground state, while the third level 
(3) is an optical level. We assume that the partial probabili- 
ties for decays from level 3 to levels 1 and 2 are equal. For the 
case under consideration here ( a  single laser beam), condi- 
tion ( 1.1 ) holds regardless of the velocity of the atom. We 
will accordingly ignore the thermal motion of the atoms be- 
low. When this motion is taken into account, the final results 
are changed in that the homogeneous optical absorption 
lineshape is replaced by an inhomogeneous lineshape. 

Under these conditions, and in the approximation of a 

rotating wave, the system of kinetic equations for the density 
matrix of the atoms is 

wheref;, are the elements of the (unaveraged) density ma- 
trix, y is the rate of longitudinal relaxation between levels 1 
and 2, V(z,t) is the Rabi frequency for the field E(z,t), A is 
the rate of the spontaneous decay of the 13) state, 
a, = w, - a,,, and w, is the frequency of the i-k transi- 
tion. For simplicity we have assumed that Vis the same for 
the two optical transitions (3-1 and 3-2). 

We integrate the last three equations in (2.2), and we 
substitute the expressions for the optical coherencesf,, and 
f,, into the integral for the low-frequency coherencef,, : 

+ exp [(in, - +) (tr-tu) ] ~ . ( z ,  1 1 )  V(Z, tu )  

We average this expression over the possible fluctuations of 
the random field, in order to go over to the components of 
the average density matrix of the atoms, b. Under the as- 
sumption that the state of the atomic system does not affect 
the subsequent values of E(z,t) at the same point, and under 
the assumption that the inequality t '>t " holds in (2.3), we 
can "uncouple" the ternary correlation functions which 
arise in the course of the averaging. For example, we can 
write 

<V(z, t') V(z, t" )f,z(z, t " ) )  
=<V(z, tf)V'(z,  t"))<f,z(z, t " ) )  

=<V(z, t') V(z,  tN))p12. (2.4) 

The correlation function describing the steady-state process 
is determined by the spectral intensity J(w,z) of the laser 
field, according to the Wiener-Khinchin theorem. This cor- 
relation function can be written in the form (Ref. 26, for 
example) 

<v(z ,  t i )v*(z,  tu )>= B j d o  exp[-i(o-o,) (1'-tl1) ] ~ ( w , r ) ,  

where B is the Einstein coefficient for the stimulated emis- 
sion. Integrating over t " and t ' in (2.3), and focusing on the 
steady-state solution, we then find the following expression 
for the low-frequency coherence: 
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where 
ca 

Taking the average of the equations for the populations 
Li of system (2.2) in the corresponding way, and setting 
pi, = 0 for the steady state, we find the following system of 
equations ( p , ~  = 1,2; p Z Y ) :  

Here - G, ,= r+m, /2+  ~ ; / 2+ iw , , ,  where W, 
= ReW,. 

Equations (2.8) are sufficient for describing CPT in the 
field of nonmonochromatic laser light for an optically thin 
medium. [If we are instead interested in the propagation of 
the light through an optically dense medium, we need to 
supplement this system of equations with a transport equa- 
tion to describe the change in the spectral intensity J(w,z) of 
the light.] 

Let us analyze the case of an optically thin medium. We 
assume that the laser light spectrum is symmetric with re- 
spect to the carrier frequency w, and that the frequency 
spacing between the lower levels, w,, , is much smaller than 
the spectral width of the incident light, A: w,, 4A. Under 
these conditions we have 6', = %:, W, = W2 = W, and 
p, ,  =pz2 ,  andp,, from (2.8) is 

In deriving (2.9) we used the condition W&A; here W 
means the rate of optical excitation. 

From (2.9) we see that under the conditions W$ T, w,, 
the population p,, satisfies p3, = r/A and does not depend 
on the laser intensity. This result is evidence of population 
trapping in the lower levels. If the condition w,, $ W holds 
instead, then there is no coherent trapping even if W$ T, and 
the upper level is filled in proportion to the light intensity: 
p,, a W. These conclusions are supported by the experi- 
ments of Ref. 25, where the frequency spacing (w,, ) of the 
Zeeman sublevels of the ground state of cesium atoms was 
varied by varying the strength of a static magnetic field. 

We thus conclude that CPT can be observed even when 
an atomic system is excited by only a single laser beam, but in 
this case the spacing of the lower levels, w,, , must not exceed 
the rate of optical excitation, W: w,, < W. 

3. OPTICALLY DENSE MEDIUM 

We turn now to the case of an optically dense medium. 
For this purpose, Eqs. (2.8) must be supplemented with an 
equation for the propagation of the light. To find this equa- 
tion, we average a simplified Maxwell's wave equation:' 

where d,, is the matrix element of the dipole moment for the 
p-3 transition, and N is the density of atoms. 

Since the spectral intensity of the light, J(o,z),  is relat- 
ed to the field by 

m 

by carrying out the appropriate manipulations with (3.1 ) 
and setting d,, z d , ,  -d, we find 

1 A 
= -zho,N %Re J 5 exp [(-5 + iQp )(tff-tf) 

,L=1,2 - m  - %  

where Y = 1, 2, v#p. Breaking up the ternary correlation 
functions in the same manner as above, and integrating over 
t ", we finally find 

For convenience we have introduced here a dimensionless 
optical length 7, which is given by 

Equations (2.6), (2.8), and (3.3) constitute a self-con- 
sistent system of nonlinear integrodifferential equations. 
These equations can be used to find a correct description of 
the propagation of laser light, with the real spectrum, under 
the conditions corresponding to CPT. 

Solving this system of equations in the general case 
would require numerical calculations, but there is one case 
of practical importance in which an analytic solution can be 
found. This case characterizes radiation transport in a medi- 
um in detail. 

We assume the same conditions as in the derivation of 
(2.9). Equation (3.3) can then be written 

with the boundary condition J(w,O) = J, (w). Herep, (w), 
the profile of the absorption line corresponding to the p-3 
transition (p = 1,2), is given by 
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where R ( W) = R [ W(r) ] is an w-independent function of 
the optical length, which is determined by the population of 
the upper level: 

and a is the cross section for absorption of light at the center 
of the line. 

We seek a solution of Eq. (3.4) in the form 

where $(r) is a nonlinear optical length. Substituting (3.7) 
into (3.4), we find that $ satisfies the equation 

which can be integrated easily: 

For given lineshapes of the absorption, P, (w), and of 
the optical excitation, Jo (w), the function R' = R($) de- 
pends explicitly on $, and (3.9) is simply a transcendental 
equation for $ = $(r ) .  To demonstrate this point, we substi- 
tute (3.5) and (2.9) into (3.9). The latter then takes the 
form 

* 

where Wis given by (3.6) and is a function of $. If w,, <A,  
for example, i.e., if the absorption lines P, (w) and 0, (w) 
overlap strongly, then by approximating them by a single 
Lorentzian line and assuming that the optical excitation line 
J, (w) is also Lorentzian, we find from (3.6) 

where I, and I, are modified Bessel functions, and 
wo3 W(r=  0). 

Let us find the law describing the decay of the integral 
intensity of the optical radiation, which we define by 

We note that U and Ware related by 

In several cases, expression (3.10) can be simplified. 
Weset w:, g T ( T  + W ) .  Using (3.13), we then find 

where U, - U(T = 0)  is the integral intensity of the laser 
light at the entrance to the medium. A simple analytic solu- 
tion of (3.14), valid for arbitrary lineshapes of the incident 
light, J, (w), and of the absorption lines, P, (w), shows that 
the propagation of each spectral component J(w,r) in (3.7) 
is determined by the set of all other components. In other 

words, $ depends on the integral intensity U. 
It has been establi~hed'.~ that coherent population 

trapping arises only if the intensity of the laser light exceeds 
a certain threshold, the so-called coherent intensity: 

where U,, is the saturation intensity of the optical transition. 
In (3.14), condition (3.15) corresponds to the case W, ) T. 
Expanding U( $) in a power series in $, and using ( 3.14), we 
find 

r 
u(T)= u 0 ( i  --T). (3.16) 

Wo 

In other words, the decay of the integral intensity in the 
medium is linear, regardless of the lineshapes of the incident 
light and the absorption. This is the behavior until U(r )  
becomes comparable to the intensity U,. 

The nature of the decay at large optical thicknesses r 
under the condition U(r)  4 U,, or at arbitrary r if the condi- 
tion U, 4 U,, holds, depends strongly on the Jo (w) and 
p, ( 0 )  lineshapes. It is determined completely by the wings 
of these lines. 

Under the condition U(r) 4 U, ( W 4  I?) we find from 
(3.10) 

Since we have Wo ( T, we thus have $= r. According to 
(3.7), the spectral intensity J(w,T) thus falls off exponen- 
tially. The behavior of the integral intensity, in contrast, de- 
pends on the combinations of J, (w ) and P, ( a ) .  For Lor- 
entzian lineshapes of both the incident light and the 
absorption, with identical widths, we find from (3.12) 

At large optical thicknesses we have U(r )  cc T - ' I 2 .  This 
slow decay of U(r )  is due entirely to the wings of the emis- 
sion line. It demonstrates that the approximation of the spec- 
trum of the incident light by a Lorentzian line is a rather 
crude approximation. If the laser light has an approximately 
Gaussian spectrum, we would have 

where the parameter A depends on the ratio of the widths of 
the incident line and the absorption line.,' These results re- 
main in force in the case w,, ) Wo, even if UB U,. 

Finally, we wish to call attention to an important result 
of this section of the paper: A coherent bleaching of a medi- 
um (a  linear decay law) occurs for laser light with a spec- 
trum spanning the two lower sublevels in the cw regime, and 
not only for ultrashort pulses with a repetition frequency 
which is a multiple of o,, (Ref. 7 ) .  

4. CONCLUSION 

In this paper we have examined the coherent population 
trapping which arises in a medium to which a single laser 
beam, with a finite spectral width, is applied. We have shown 
that if the spectrum of the light spans the magnetic sublevels 
of the ground state, and if the frequency distance between 
these sublevels is smaller than the rate of optical excitation, 
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then the atoms will be trapped in these sublevels, and the 
medium will be bleached. The decay of the integral intensity 
of the laser light in the medium is linear in this case and does 
not depend on the lineshape of the incident light or that of 
the absorbed. The propagation of each spectral component 
J ( w , r ) ,  on the other hand, is determined by the set of all 
other components (there is a "frequency memory"). At 
large optical thicknesses, at which there is no CPT, the na- 
ture of the decay of the integral intensity depends strongly 
on the wings of the line of the incident light. 

Since this effect is sensitive to changes in the strength of 
the static external magnetic field, it might prove useful for 
controlling the propagation of light through a medium and 
also for developing CPT quantum magnetometers. 
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