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The correlation function of the MHD turbulence excited by a current in a thin, axisymmetric 
toroidal system is studied. The example of a reversed-field pinch is used to clarify the conditions 
under which anomalous transport arises. The dependence of the correlation function on the 
conditions at the boundary of the stochastic zone is studied. An accurate calculation of the 
correlation function is compared with an analytic expression for this function and good 
agreement is found. 

1. INTRODUCTION gral" If which is nonlocal. Generally speaking, therefore, 

The problem of anomalous transport in toroidal mag- 
netic confinement systems is of fundamental importance to 
success in the effort to achieve controlled fusion. It has been 
established that this anomalous transport is a consequence 
of the onset of turbulence in the plasma. Despite the turbu- 
lence which is excited, the plasma is in a quiescent state and, 
in a sense, a stable state. When the density and temperature 
ofathe plasma in steady state are given localized perturba- 
tions, for example, the perturbations are quickly smoothed 
out. Under certain conditions this stable stage becomes un- 
stable. A sharp eruption of plasma or oscillations of the re- 
laxation type occur, for example, so-called "saw-tooth" os- 
cillations. I.' 

Therefore the plasma turbulence which determines the 
anomalous transfer is characterized, in general, by the stable 
stage. The amplitudes of the stochastic oscillations of elec- 
tric and magnetic fields in this situation are small compared 
to the basic microscopic fields: 

There is another peculiarity-low frequency oscilla- 
tions or, which is the same-not high velocity of the excit- 
able waves compared with the heat velocity of electrons 
and ions: 

The theory of plasma turbulence and the anomalous 
transfer processes is constructed through the use of an ex- 
pansion in the small parameters in ( 1 ). The overall system of 
equations splits up into equations for the waves [these equa- 
tions include terms both linear and nonlinear (usually qua- 
dratic) in the amplitudes b and el and equations for average 
macroscopic quantities. Generally speaking, the latter equa- 
tions are written at the kinetic level. If the particle collisions 
are sufficiently effective, a system of hydrodynamic equa- 
tions for the bulk plasma and separate equations for superth- 
ermal particles can be identified from the kinetics in the stan- 
dard way.3.4 

In this case the anomalous-transport processes are de- 
termined completely by the interaction of the particles with 
the waves. These processes are described by a "collision inte- 

there is no way to reduce the anomalous-transport processes 
to a simple renormalization of the coefficients for ordinary 
collisional transport in a plasma. In addition, the collision 
integral representing the collisions with the waves, If, turns 
out to depend on the configuration of the average field B(r) .  
This dependence gives rise to strong nonlinear coupling in 
the system: The anomalous transport determines the config- 
uration of the average macroscopic fields, which in turn have 
an inverse effect on the same transport processes, in this case 
at the level of the collision integral I,-. In addition, the config- 
uration of the average fields strongly influences the excita- 
tion of the plasma waves 

We restrict the analysis here to MHD turbulence. This 
turbulence is excited effectively in a thin, axisymmetric to- 
roidal system if the Kruskal-Shafranov condition is not sat- 
i~ f i ed .~  This is the situation, in particular, in a reversed-field 
pinch (RFP). In a tokamak, the field B, (along the axis of 
the torus) set up by the external currents is an order of mag- 
nitude stronger than the field B, produced by the current in 
the plasma. In an RFP, B, and B, are on the same order of 
magnitude. The field B, falls off rapidly in magnitude along 
the radius r of the torus, vanishing at a certain point r, in the 
plasma. Beyond this point the field B, changes sign; hence 
the name "reversed-field pinch" (Fig. 1 ). In a toroidal sys- 
tem there are resonant surfaces defined by the condition 

mBe ( r )  nBz ( r )  0, B ( r )  = (B,'+Bf12)*s. k ( r )  = ------ + ----- = 
r B ( r )  R B ( r )  

Here m and n are arbitrary integers, and R is the major radi- 
us of the torus. The velocity of AlfvCn waves vanishes on 
these resonant surfaces, because of the relation V, - k. Con- 
sequently, when there are resonant surfaces in a toroidal sys- 
tem, slow modes satisfying the condition (2)  may exist. 
These are approximately AlfvCn modes, and they are local- 
ized for the most part near the corresponding resonant sur- 
faces. A tokamak lacks the m = 1 resonant surfaces which 
play a major role in the excitation of an MHD turbulence. As 
a result, the Kruskal-Shafranov condition is satisfied, guar- 
anteeing the overall MHD stability of the plasma. If an 
m = 1, n = - 1 resonance appears in the central part of the 
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discharge as a result of current peaking, disruptive oscilla- 
tions are excited in the t ~ k a m a k . ~  In an RFP, in contrast, the 
number of resonant surfaces is large. For the fundamental 
m = 1 mode these surfaces usually begin at r,,, -0.1-0.3. 
They become closely spaced near the reversal point r, (Fig. 
1). 

The presence and structure of the resonances and the 
configuration of the main field determine the excitation and 
basic properties of an MHD turbulence in an RFP. In the 
relaxed steady state, the turbulence has a steady-state spec- 
trum of excited harmonics, and the interaction of the waves 
with the particles is described by only a single correlation 
function, F ( r ) ,  which completely determines the collision 
integral If. A remarkable property of the relaxed state in an 
RFP is the pronounced stability of the profile of the current 
and the magnetic field in the di~charge.~ The theory explains 
this stability on the basis that, although the profile is deter- 
mined by the anomalous current transport, it is surprisingly 
insensitive to the particular type of MHD turbulence, i.e., to 
the function F ( r )  (Refs. 7 and 8 ). In order to describe other 
transport processes, however, in particular, the loss of heat 
and plasma particles, we need to know the exact correlation 
function F ( r )  and its properties for the fast-particle distribu- 
tion. This information is also important for determining 
whether it is indeed possible to construct a differential de- 
scription of the transport processes in a turbulent plasma. 
There are also the questions of determining the correlation 
function for spatially localized turbulence, which is precise- 
ly the case which prevails in RFPs and other toroidal sys- 
tems. 

The only way to answer these questions is to carry out a 
specific analysis of the correlation properties of MHD turbu- 
lence. These properties are the subject of the present paper. 

2. CORRELATION INTEGRAL 

The integral representing the scattering of particles by 
magnetic-field fluctuations is4 

FIG. 1 .  Structure of the unperturbed magnetic fields B, and B, in a re- 
versed-field pinch (RFP). The vertical lines show resonances; the arrow 
indicates r,, which is the point at which the field B, reverses. 

Here b, represents the fluctuations of the magnetic field, 
f(S1') is the distribution function, In' is the set of phase vari- 
ables, dS1' is an element of the phase volume, and G(In 1 a') is 
the Green's function of a particle. This function describes 
the motion of the particle along a magnetic field line. For 
simplicity we have written out explicitly in expression (4)  
only a single term: that responsible for the spatial transport. 
Here If represents the other terms.',' 

If the distribution function f(fi') varies only slowly 
over a length scale LC,, (L,,, is the length scale of the decay 
of (b,b :) along a field line), we find a diffusive expression 
for the flux l7 through an expansion in the parameter 
LC,, IhVlnf 14 1, where h = BJB, from (4): 

Under these conditions, the correlation function is impor- 
tant in determining the anomalous transport. This correla- 
tion function is given by, according to ( 5 ) ,  

F ( r )  = (b .  ( r )  b. ( r f )  )dL. 
0 

dr' b ( r 0  2 ' )  dz' B Z ( r r ,  e', 2') - -- - -- 
dL B ' dL B 

(7)  
do' Re ( r ' ,  e', 2')  
-= 

R d L 

With L = 0 we have r' = r, 8 ' = 8, z' = z. Here r, 8, z are 
cylindrical coordinates; L is the coordinate along a magnetic 
field line, with origin at the point r, 8, z; and B, ( r )  and B, ( r )  
are components of the main magnetic field B = d m .  

Equations (7)  describe a magnetic field line in the case 
in which it is perturbed by a random field b. As in (4), the 
angle brackets mean an average over an ensemble of realiza- 
tions of the random quantity b,, in particular, over the initial 
values 8 and \I/ = z/R; 8, Y~[0,2n-1. 

The approximation of cylindrical symmetry is valid for 
a thin toroid if its minor radius a is much smaller than the 
major radius R of the torus. In this case the field b, in the 
toroid can be represented by a Fourier series in 8 and z: 

b. = E , b . i 7 c n  ( r )  exp ( i  (me+ Y n)  ) . (8)  

If the field fluctuations b, are ignored in Eqs. (7),  then 
by substituting (8)  into (6)  and taking an average over 8and 
Y we find 
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In (9) we have used 1 b = I b ,- " - " 1 ;  the terms with - m 
and - n are not summed. 

It follows from (9) that if we ignore perturbations of 
the field lines of the random magnetic field then the entire 
correlation function F( r )  is concentrated at the resonant 
surfaces. In other words, this function exists only as a set of 
isolated peaks. This result means that there is no anomalous 
transport in the interior of the plasma, where the MHD os- 
cillations are excited. This anomalous transport appears 
only if the resonances overlap, since only in this case do the 
field lines undergo a random walk. 

To find the conditions under which the resonances 
overlap, we seek a solution of Eqs. (7) near the resonant 
surfaces. Substituting (8) into (7) ,  and retaining only the 
resonant mode, we find 

dr' 
-= + C.C., 
dL B 

We write the coordinate r' as r' = r + p(L) ,  and we consider 
the case in which the broadening of the resonances satisfies 
Sr-p(L) - Arm,, where Arm, ( a  is the distance between 
resonances (the length scale of the variations in the main 
field). We then find 

de' ' d ~ '  + (  p, -= 
dL 

hz ( 4  + k ' p  , 
dL r 

where h L,, is the derivative of the functions he,, = B,,/B 
with respect to r. 

At this point it is convenient to introduce the function 
g(L : 

L 

= j ~ ( L ~ L J .  
0 

Working from ( 1 1 ), we then find 

Substituting (12) into ( 11 ), we find an equation for the 
function g: 

d" brmn n 
-=- exp ( i  (me  + 7i z + I c L + ~ * ~  ) ) , 

d12 B 

The quantity kin ( 13) is defined by (3),  and k ' is the deriva- 
tive of the function k with respect to r, as in ( 1 1 ) . Near the 
resonant surface we have k-0. Setting k 'g( 1, we find 

Here p,, are the phases of the random field b yn, which is 
given by b y" = I b yn lexp (ip,, ). Expanding (6) in a Four- 
ier series, and substituting ( 12) and ( 14), we find 

Let us examine the behavior of the correlation function 
F ( r )  as a function of the phase p,,. We first set 
p,, + me + Yn = ~ / 2 ;  i.e., we fix the phase. Expression 
( 15 ) then becomes 

m 

where g (L)  is taken from (14) with p,, + me + Yn 
= ~ / 2 ,  the quantity k has been expanded in Sr = r - r,, 
(the excursion from the resonance point), and the summa- 
tion rule is similar to that in (9) .  Evaluating the integral in 
( 16) in the WKB approximation, we finally find 

COS yZ 
F ( r ) = [ n B ( r ) ] "  ( brmn12 

n 
(k' ( bTrnn( )'" ' 

Bk' 
yZ= (r-r,,,,,)' - 1 86."'" 1 ' 

Since (17) is valid only in a small neighborhood of each 
resonance, it is natural to set cos(y2) = 0 at y2 > 7r/2 (Ref. 
8 1. 

In another approximation, we assume that the phases 
p,, are random; we integrate over the random phases p,, in 
( 15) and then take averages over z and Y. As a result we find 

F ( r )  = 2 I brmn I z  11, ( x ~ ' )  cos (kr6rL) d ~ .  

where k is given by ( 3 ) ,  J, is the Bessel function of order 
zero as in ( 17), k ' = dk /drl, = r m n ,  the resonance points r,, 
are found from (3) ,  and the summation rule is like that in 
(9).  

We have written two expressions for the correlation 
function. Expression ( 17) was derived at a fixed phase of the 
fields b,, while expression ( 18) was derived by taking an 
average over the random phases p,,. We will see below 
(Fig. 9) that these approximate expressions do not differ 
greatly from each other or from the accurate value of the 
correlation function. The expression given in Ref. 7 for the 
correlation function is incorrect (see Ref. 8).  First, however, 
we would like to discuss some important general correlation 
properties of fluctuations which are excited in a bounded 
discharge volume. 

3. CORRELATION PROPERTIES OF SPATIALLY LOCALIZED 
TURBULENCE 

The resonant surfaces in an RFP lie inside the reversal 
point, at r < r,. At the center of the discharge there are no 

978 Sov. Phys. JETP 73 (6), December 1991 Gurevich eta/. 978 



resonances, because of the cylindrical symmetry. All the 
magnetic field lines thus undergo random walk in a bounded 
volume (Fig. 1 ). 

The general expression for the collision integral repre- 
senting the collisions of particles with fluctuations, I/. [see 
(4) 1, is generally nonlocal in form. As we mentioned earlier, 
this expression becomes a diffusion-like expression under 
the condition LC,, 9 L, where L = If/hVf I. From expression 
(5) for the diffusive flux we then find an equation for the 
mean square displacement of a particle: 

Here r, is the point from which the displacement begins. 
Integrating ( 19), we find 

In an -unbounded space, as L-  m ,  we then find the usual 
diffusion law ( ( r  - r, ) 2, = FL / B  2, but in a bounded vol- 
ume we find ( ( r  - r, )') <a2, where a is the scale length of 
the localization of the fluctuation region. From (20) we thus 
find 

as L-  a. In the case of turbulence excited in a bounded 
volume, calculation of the correlation function from (6)  
thus yields F( r )  = 0. This result definitely does not mean 
that the diffusion coefficient tends toward zero, of course. 
To illustrate the latter assertion, we consider the diffusion of 
particles in a bounded volume E [ - a,a] . The equation de- 
scribing the diffusion is 

Under the assumption that the particles do not leave the 
given volume, we find that the flux DdN/dr vanishes at 
r = f a. Assuming that the initial distribution N, ( r )  is 
symmetric, we find the following solution of the diffusion 
equation (22) : 

In particular, ifN, ( r )  = S(r) ,  all the constants C,, , n = 1, ..., 
describing the initial distribution are equal to unity, while 
C, = 1/2. The square displacement (?) is naturally found 
from 

Using (24) and (23 ), we find 
m 

<F> = $ + 4  (-1). (L)' .,p[- (E))' D L ] .  
n=l 

nn a 

FIG. 2. Plot of In(?) versus ln(L/L,,,). Solid line-Expression (25); 
dashed line-result of the numerical simulation for N = 21 resonances. 

Figure 2 shows (?) versus L. As L-0 we find ordinary 
diffusion from (25 ). As L - co , in contrast, we find from 
(23)and(24)  

d CI 
-<F, dL = 4 ~ - e r ~ [ - ( ~ ) '  DL] 

co 

The diffusion coefficient can thus be determined most con- 
veniently from the initial, linear part of the plot of (?) ver- 
sus L, before it starts curving because of the boundary effect. 
It follows that in determining the correlation function F ( r )  
for spatially localized turbulence, we should integrate over L 
in (6)  not to infinity but to a certain Lo which is greater than 
or equal to LC,, but less than the length L,, at which the 
boundary effect becomes important: 

Obviously, a differential description of the transport process 
for localized turbulence is legitimate only if this condition 
holds. 

The expression for the correlation function may con- 
tain, in addition to the rapid decay at short distances 
L - LC,, , some slowly varying correlations. The integral rep- 
resenting the scattering of particles by fluctuations, in par- 
ticular, the flux I?, can thus be broken up into two parts in a 
natural way: r = r, + r 2 ,  where 

where r, is the ordinary diffusion flux, and the flux r2 is 
determined by long-range correlations, which are nonlocal. 

Let us examine the physical meaning of the flux r, . The 
correlation function vanishes in ( 6) and (21 ) because once a 
trajectory (a magnetic field line) reaches the boundary it 
goes back into the turbulent plasma volume; it does this re- 
peatedly as L - m . For a trajectory undergoing a random 
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,: 2 , b,. -m -J 

FIG. 3. a-Spectrum of MHD oscillations in an RFP 
and I b :"I2 versus the mode index n, with rn = 1 .  b- 
The mode b y  as a function of r for m = 1 and 
n = - 15, as an example. Dashed line-Imaginary 
part; solid line-real part. 

walk, an integration over d 3r' in (28) is thus identical to an 
average of the flux r, over the entire volume. Far from the 
boundaries of the stochastic zone, expression (28) is there- 
fore a constant, and its physical meaning is the diffusion flux 
through the plasma volume. Expression (28) changes only 
near the boundary, over a distance on the order of LC,, .This 
change depends strongly on whether the trajectory goes 
back into the volume or leaves it (there is a certain probabili- 
ty for the latter outcome). 

The exact expression (4)  for the integral representing 
the scattering of particles by fluctuations thus incorporates 
both the diffusive transport described by expression (27) 
and the boundary conditions which are specified by (28) in 
terms of the behavior of the trajectory near the boundary of 
the stochastic zone. We now illustrate these assertions using 
as an example the numerical analysis of MHD turbulence in 
an RFP. 

4. MHD TURBULENCE IN AN RFP 

A 3 0  numerical simulation was carried out to study 
MHD turbulence in a reversed-field pinch (RFP). The 
MHD solutions were solved by the method described in Ref. 
10, which involves a Fourier-series expansion in the coordi- 
nates 0 and z with the help of fast Fourier transforms. In 
general, the total number of Fourier harmonics was N >  100. 
This numerical calculation was carried out by one of the 
present authors on a Cray computer. The solution was car- 
ried out up to the time at which a steady-state mode spec- 
trum was established. The computation time t was greater 
than T,, i.e., the time scale of the resistive diffusion in the 

system. Figure 3 shows a representative steady-state spec- 
trum. 

The behavior of the field lines in various zones of the 
discharge was studied through a direct numerical solution of 
Eqs. (7)  for the field lines of the magnetic field 
B = B, ( r )  + X,, b rnexp(i(mO + \Vz) ) + c.c., where the 
modes b 7" were taken from the complete MHD calculation 
described above. As the main field B, ( r )  we used Taylor's 
solution, expressed in terms of Bessel functions: 
B, = Bo Jo (Or/r, ), B, = B, J ,  (Or/r, ), where is the first 
root of J, ( x )  (Ref. 11 ). Some examples are shown in Fig. 4. 
Outside the zone of the resonances (Fig. 1) the field lines 
exhibit genuinely dynamic behavior. In the zone of the re- 
sonances, in contrast, two field lines which initially run close 
together move apart exponentially, indicating dynamic cha- 
os in this zone. Figure 5 shows a Poincart section in the r, z 
plane for the system (7). We see that for 0.2 < r <0.8 the 
magnetic surfaces are completely disrupted, so the trajec- 
tory of motion of a particle along a field line is stochastic. 
The stochastic properties of a model magnetic field in an 
RFP (with a very simple model form of the modes b 7") 
were studied by a mapping method in Ref. 9. 

We turn now to a direct calculation of the correlation 
function F( r ) .  Figure 6 shows the integrand (b, ( r )  6, (r') ) 
as a function of L. The averaging indicated by the angle 
brackets was carried out for a given r over the initial points 
0, and z, and also over the phases p,, . As a result of the 
averaging, the function (b ,  ( r )  b, (r') ) depends only on L 
and the initial coordinate r. It can be seen from Fig. 6 that 
there are three regions on the plot of (b, ( r )  b, (r') ) versus L. 

FIG. 4. Magnetic field lines in the r z plane in an RFP. 
a-In the stochastic zone; h u t s i d e  the stochastic 
zone. 

L 

C,ZO 
r i o  
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FIG. 5. Poincark section in the r z  plane in an RFP. 

One region is a rapid decay of ( 6 ,  ( r )  6 ,  ( r ' ) )  to zero over a 
length scale on the order of L =LC,, -- 5-6. Another is a re- 
gion of negative values of (b ,  ( r )  6 ,  ( r f  ) ), which varies rather 
slowly with L. This region extends to L ,  ~ 3 0 - 5 0 ,  telling us 
that a significant fraction of the trajectories reflected from 
the boundaries of the stochastic zone return. The point L ,, 
which corresponds to the vanishing of the correlation func- 
tion F(r)  = - f iw(br ( r )b ,  ( r l ) )dL,  is shown by the arrow in 
Fig. 6. For L > L ,  there are some small oscillations in 
(b,  ( r )  b, ( r ' ) ) ,  which reflect the presence of a regular struc- 
ture near the boundary of the zone (Fig. 5 ) .  

FIG. 7. Plot of ln(9)  versus InL /LC,, in an RFP. 

shown in Fig. 7 agrees with (23)  and (25). Another impor- 
tant point is that the integrand ( b ,  ( r )  6 ,  ( r ' ) )  in the region 
L >LC,, depends strongly on the nature of the boundary 
conditions. That this is true can be seen from Fig. 8 ,  which 
shows the results of a calculation of 
F(r )  = - f ; (b ,  ( r )  b, ( r l ) ) d L  in a case with absorbing boun- 

' 

daries, i.e., 6 ,  ( r )  b, ( r ' )  = 0,  when the trajectory reaches the 
boundary r  + or r -  . We see that the main positive part of the 
correlation expression remains essentially constant, while 
the negative part gradually vanishes as the difference 
r  + - r  - decreases. 

In determining the correlation function F(r )  we should 
thus carry out the integration in ( 6 )  only up to the value of L 
set by the condition (b ,  ( r )  b, ( r ' )  ) = 0.  This cutoff of the 
function (b ,  ( r )  b, ( J )  ) was made in the direct calculation of 
the correlation function F ( r ) .  We see that the calculated 
correlation function F ( r )  is in reasonable agreement with 
the approximate analytic expressions ( 18) and ( 19) (Fig. 
9 ) .  The observed discrepancy stems from the extent to which 
resonances overlap, which depends on the amplitudes of the 
harmonics, and also from the comparatively small number 

We see that the numerical results are in total agreement of resonant modes which actually determine-the onset of the 
with the analysis of the behavior of the correlation function stochastic behavior of the field lines in this example. 
carried out in the preceding section of this paper. In particu- 
lar, the behavior of the quantity (?) = .f; ( F / B  2 ,  dL 

FIG. 6. The integrand (b,(r) b, (r')) versus L /LC,, . 

FIG. 8. The integrand (b,(r)b, (r')) versus L /LC,, in the presence of 
absorbing boundaries r + and r - . Dashed l i n e r +  = 0.7, r -- = 0.2; solid 
line-r + = 0.6, r-  = 0.3. 
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FIG. 1 1 .  Plot of In(?) versus In - ( L  /LC,, ). Dashed line-In the region 
FIG. 9. The correlation function F(r) .  1-Numerical simulation; 2- of regular trajectories; solid line--at small values of the fluctuation ampli- 
calculated from expression ( 17); 3--calculated from ( 1 8 ) .  tude. 

We will therefore discuss the dependence of the correla- 
tion function F ( r )  on the fluctuation amplitude and the 
number of resonances, N. Figure 10 shows the correlation 
function F ( r )  calculated from ( 17) and ( 18) along with that 
found through the numerical simulation, versus the fluctu- 
ation amplitude 6.  We see that the discrepancy between the 
numerical simulation and expressions ( 17) and ( 18 ) disap- 
pears as the amplitude b  decreases, while the resonances re- 
main overlapping. At sufficiently small amplitudes, for 
which neighboring resonances do not overlap, the L  depend- 
ence of (?) (Fig. 1 1  ) differs substantially from the diffu- 
sion-like behavior shown in Fig. 7 .  The behavior in Fig. 1 1  is 
similar to the dynamic L  dependence of (9) for the region of 
regular trajectories, which is shown in the same figure. As 
the number Nof resonances increases, the characteristic size 
of the region which comes before the first zero of the inte- 
grand becomes progressively smaller in comparison with the 
corresponding size of its negative part, F ( r )  (Fig. 12). 

We now let N- CC. With a stochastic region of finite 
volume, this limit means that the distance between reson- 
ances vanishes: Ar,, -0.  In this case we have LC,, -0; i.e., 
the positive part of ( b ,  ( r ) b ,  ( r ' ) )  is expressed by a S-func- 
tion. To determine the complete function, we go back to 
solution (271, in which the boundary conditions are taken 
into account. The motion of a particle in the field of "random 
velocities" is described by 

Squaring ( 2 9 )  and taking an average, we find 

We see from ( 3 0 )  that the integrand ( 6 ,  ( 0 )  6 ,  ( L )  ) is deter- 
mined by 

Using solution ( 2 5 )  and relation ( 3  1 ), we find 

( 3 2 )  

Figure 12 compares the analytic expression ( 3 2 )  for the 
function (b ,  ( 0 )  6 ,  ( L )  ) with the results of the direct numeri- 
cal calculation of this function for a fairly large number of 
resonances. We see that there is a quantitative, not merely 
qualitative, agreement. 
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FIG. 10. The correlation function F(r)  at the point r = 0.43 versus the 
oscillation amplitude b. 1-Numerical simulation; 2-calcu!ation from 
expression ( 17); 3--calculation from expression ( 18); arrow-the ampli- FIG. 12. The integrand (b, (r) b, (r') ) versus L /LC,, . Dashed line-Case 
tude b,; dashed line-the function W(b) = b "122.2. l o - > .  of many resonances (N = 21 ); solid line+alculated from ( 32). 



From this analysis we can draw the following conclu- 
sions. 

1. A differential description of the anomalous transport 
in the turbulent region which arises when the resonances 
overlap is legitimate only under the conditions N )  1 and 
Sr,,, /a  4 1, where N is the number of resonances, Sr,,, is. 
the maximum distance between resonances, and a is the 
length scale of the variations in the distribution function$ 

2. In defining the correlation function one should use 
not (6) but the formula 

where Lo is the point at which the integrand (b,b :) vanishes 
[see (26) 1. The regular negative part of (b,b ;) which arises 
at L > Lo is an effect of the boundaries of the turbulent re- 
gion (Fig. 12). In a differential description of anomalous 
transport, this part is automatically incorporated in the 
boundary conditions (Fig. 8).  

3. Analytic expressions ( 17) and ( 18) for the correla- 
tion function become progressively more accurate as the 
number of resonances N increases and as the oscillation am- 
plitude b approaches the critical value b,/Bz k "Sr~,,/8, at 
which only the nearest resonances overlap ' ( ~ i g .  10). For 
b < b,, the resonances do not overlap, and the anomalous 
transport vanishes (Fig. 1 1 ) . 

4. An analytic calculation of the correlation function 
from F(r )  = ( b  /b, )Fb (r) ,  where the function Fb ( r )  is giv- 

en by ( 17) and ( 18) with b = b,, leads to a result which is 
essentially the same as the result of the numerical calculation 
(Fig. 10). 
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