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Highly excited hydrogen atoms whose levels are split by the interaction with the electrostatic 
images in a conducting plane are analyzed. The classical model of a Rydberg atom and the 
semiclassical approximation are used. An analytic distribution of oscillator strengths in the 
spectra of the perturbed atom is found for transitions of the Lyman and Balmer series. Transitions 
from Rydberg states which correspond in the classical model to electron orbits which do and do 
not periodically degenerate into a straight line are analyzed separately. In the latter case, the 
probability for optical transitions to low-lying states is exponentially small. 

INTRODUCTION 

Rydberg atoms in a conducting cavity have been the 
subject of many recent studies. These systems have attracted 
much theoretical interest because they make it possible to 
see several subtle effects of quantum electrodynamics. These 
systems are also pertinent to several promising practical ap- 
plications, e.g., a one-atom maser (see the ). 

The interaction with a conducting wall strongly affects 
a Rydberg atom even if the distance d from the atom to the 
wall is much greater than the average radius of the atom, n2 
(n  is the principal quantum number of the valence electron). 
The operator representing the overall interaction of the 
atom with the wall is broken up into several terms, which 
play different roles at different values of d (Ref. 4).  The most 
elementary interaction is the van der Waals interaction, 
which is dominant at distances which are not too large, and 
for which retardation can be ignored. Assuming that the 
surface is ideally conducting, and using the simple electro- 
static model for the interaction of an atomic dipole with its 
image, we can write the following expression for the effective 
interaction operator (in atomic units) :2 

Here x ,  y, z are the coordinates of the electron with respect to 
the nucleus, which is at a distance d from the surface. We 
assume that the z axis runs normal to the surface (Fig. 1 ). 

Perturbation ( 1 ) converts the n2-fold degenerate level 
of the isolated atom into a multiplet (which we will be call- 
ing the "dipolc+dipole multiplet") . A d - splitting depends 
on the distance from the atom to the surface; a force thereby 
arises and acts on the atom. The magnitude of this force 
differs for atoms in different sublevels; this variation has a 
strong effect on the behavior of the atoms under experimen- 
tal conditions.' The multiplets generated by interaction ( 1 ) 
have an extremely unusual s t r~c tu re ,~  which is a bit reminis- 
cent of the structure of quadratic Zeeman m ~ l t i ~ l e t s . " ~  

For diagnostics of Rydberg atoms inside cavities, and 
for calculations of their lifetimes and other properties, it is 
important to know the oscillator strengths of the transitions 
from perturbed Rydberg states to low-lying excited atomic 
states. (The latter are incomparably less sensitive to external 
agents and can be regarded as the states of the free atom.) 
Calculations show that different components of a given di- 

pole-dipole multiplet have probabilities for transition to the 
ground state which differ by several orders of magnitude. 
This interesting effect was explained at a qualitative level by 
Alhassid et aL5 

In this paper we take a detailed theoretical look at the 
distribution of oscillator strengths for transitions from high- 
ly excited states of a hydrogen atom perturbed by the van der 
Waals interaction with a wall. We derive analytic expres- 
sions for probabilities of transitions to the ground and low- 
lying excited levels. These expressions turn out to agree al- 
most exactly with the results of numerical calculations. We 
show that the distribution of oscillator strengths and the 
density of energy levels in a dipole-dipole multiplet are relat- 
ed by trivial relations. The analysis method is analogous to 
that used in Refs. 9 and 10 in the problem of the quadratic 
Zeeman and Stark-Zeeman effects in the spectra of highly 
excited atomic hydrogen. 

1. EQUATION FOR THE COEFFICIENTS OF THE EXPANSION 
OF THE WAVE FUNCTION AND SOLUTION OF THIS 
EQUATION AT SMALL1 

Cases of practical interest are those in which the split- 
ting associated with the interaction Wis small in comparison 
with the interval (n - 3 ,  between adjacent unperturbed lev- 
els of the hydrogen atom. In this case the wave functions and 
energies of the atom can be found by perturbation theory. 
We write the wave function as a superposition of spherical 
orbitals Jnlm) for a shell with a given n and with an unper- 
turbed energy E p' = - 1/2n2. By virtue of the properties 
of perturbation ( 1 ), the superposition includes states with a 
fixed value of m (the projection of the angular momentum 
L, ), and the parity: 

The coefficients C, and the corrections to the energy in 
the lowest order of our perturbation theory can be found 
from the equations 

where p, and w,, the matrix elements of the perturbation 
operator, are given by 
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where the quantity 

FIG. 1 .  Interaction of the dipole moment of the hydrogen atom with its 
image in a conducting plane. 

The expressions for the matrix elements of the operators 9 
and sin2a are" 

System of equations (3) has a tridiagonal matrix and is a 
trinomial recurrence relation for C,. 

We are interested in the probabilities for transitions to 
the ground level or low-lying excited levels of the hydrogen 
atom. These probabilities can be expressed in terms of the 
coefficients C, with small 1 in an elementary way. For exam- 
ple, the oscillator strengths for transitions of the Lyman se- 
ries are equal to the product of the oscillator strength for the 
1s-np transition in the isolated hydrogen atom and the quan- 
tity C: . The distribution of oscillator strengths in a dipole- 
dipole multiplet is thus determined by the weight of the np 
orbital in the wave functions of the various sublevels. Corre- 
spondingly, the probabilities for transitions in the Balmer 
series are determined by the coefficients C,, C, , and C2 . 

In line with our purpose here, we will consider only 
states with n $1 and small values of Jm I (0,1,2). In this case 
the initial elements of the sequence C, determined by trino- 
mial recurrence relation ( 3 ) can easily be found analytically: 

Here A is an unknown constant, which does not depend on I, 
and 9 ,  is the normalized Legendre function 

Its argument is expressed in terms of the scaling correction 
to the energy: 

is a characteristic energy of the interaction of the Rydberg 
atom with the surface. Since the perturbation Wis negative, 
all the levels of the dipole-dipole multiplet lie below the un- 
perturbed energy value; thus E ' I '  and E are negative. 

The result in (6) follows from the circumstance that 
under the condition 1 4 n  diagonal and nondiagonal matrix 
elements of ? [Eqs. (5) 1 can be approximated by the same 
constant: 

The behavior of the coefficients C, in the case I<n is thus 
determined exciusively by the angular part of the matrix ele- 
men t s~ ,  and w,.  Using the known recurrence relation 

twice to find the relationship between 9 , , (x)  and 
PI,,, ( x ) ,  and comparing the result with what remains 
from trinomial recurrence relation (3) after substitution 
( lo),  we find Legendre solution (6). The physics underly- 
ing this approximation is discussed in Refs. 9 and 10. 

To finally find C, with I 4 n  we need to find the normali- 
zation constant A. To do this, we must know C, with I com- 
parable to n, in which case approximation (6) is not valid. 

2. CLASSICAL MODEL 

Because of the analogy between differential equations 
and trinomial recurrence relations, we can use an approxi- 
mate solution of trinomial recurrence relation (3) by the 
WKB method.'.12 It is convenient to first describe the purely 
classical picture of the van der Waals interaction of the atom 
with the surface. The fertility of classical ideas in problems 
involving perturbations of Rydberg atoms by external fields 
has been generally acknowledged since the work by 
S~lov'ev.~ 

In the classical hydrogen atom the electron is moving 
along an elliptical orbit with a given energy E F', a given 
angular momentum L, and a given Runge-Lenz vector A. 
The interaction with the surface causes the shape and orien- 
tation of the orbit to begin to evolve, so L and A are no longer 
constant. The effective Hamiltonian describing this evolu- 
tion, H "', can be found by averaging the perturbation W 
over the period of the circulation of the electron in its classi- 
cal orbit.6s13 However, the matrix elements of the operator 
W in the I representation are available, so the simplest way 
to find H 'I'  is to use the correspondence principle.9 

We rewrite trinomial recurrence relation (3), express- 
ing C,, , in terms of C, by means of operators which shift I: 

d 
[lo ( l ) + p  ( l )  exp (-2 z) + p  (1+2) exp (2 2) 1 c (o=E(*)c(~) .  
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We then go over to the classical limit, letting n- co and 
I- co in such a way that I/n remains finite. In this limit the 
quantity L E I  + 1/2 takes on the meaning of the classical 
angular momentum. (The classical angular momentum goes 
off to infinity in our case solely because of our use of the 
atomic system of units, with ?i = 1.) The operator - id /dl 
becomes the canonical "momentum" 0 which is the conju- 
gate of L. The expressions for w andp simplify dramatically 
in the classical limit. In particular, since we have m - 1, we 
can discard the terms containing m2/n2. We thus find 

We find that in the classical limit the Hamiltonian of 
our problem [the operator in square brackets in Eq. ( 12) ] 
corresponds to the following Hamiltonian: 

H"'(L, 0) =w, l (L)  -I- 2p , , (L)  cos 20. (14) 

Ignoring the difference between L, - A  and zero, we assume 
that the plane of the classical orbit passes through the z axis 
and remains in a fixed spatial position. In this case the quan- 
tity 0, the conjugate of L, is the angle between the Runge- 
Lenz vector and the z axis (this would not be true if L, were 
comparable to n; Ref. 14, for example). Analysis of the ca- 
nonical equations 

thus gives us a complete picture of the evolution of the Ke- 
plerian orbit. 

The Hamiltonian in (14), which is a trigonometric 
function of the generalized momentum, is typical of prob- 
lems in classical perturbation theory written in terms of ac- 
tion-angle variables. A qualitative picture of the motion of 
such systems can be drawn by working with diagrams of the 
"potential functions" 

U -  ( L )  EH"' ( L ,  0) 1 e=o=-Ud 

(16) 
2 L Z  

U' ( L )  EX"' (L ,  0) / e=n12= - ud[  1 - -( -) ] 
5 n  ' 

These functions play a role because of the following circum- 
stances. 

1. According to Eq. ( 15a), the generalized "velocity" L 
vanishes at 0 = 0 or n-/2 (modulo n-). Since the Hamiltonian 
H"'(L,B) is constant and represents the correction to the 
energy E "' for the interaction with the surface, we find that 
L vanishes if either E "' = U - (L) (in which case we have 
8 = 0 or T) or E ( ' )  = U + ( L )  (in which case we have 
0 = ~ / 2 ) .  Consequently, the limits on the evolution of the 
angular momentum for a given correction to the energy E '" 
are determined by the points at which the level E "' inter- 
sects the plot of the function U * ( L )  (Fig. 2).  

2. From the condition Icos20 1 < 1 and the equality 
H = E ('' we conclude 

FIG. 2. Oscillations of the angular momentum of a hydrogen atom which 
is interacting with a conducting surface. a-E < - I ;  b& > - 1. 

These results put restrictions on the values of E "'. Accord- 
ing to Fig. 2, the energy E '" obeys the inequalities 

[otherwise there is no L for which inequalities ( 17) are satis- 
fied]. 

3. Eliminating 0 from Eq. ( 15a) with the help of the 
condition H "' = E ' I ) ,  we easily find a differential equation 
which relates L to U * (L) : 

This result means that the classical angular momentum os- 
cillates with a period 

The quantities L,, and Lt2 in integral (20) are the mini- 
mum and maximum values of the angular momentum. The 
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quantity Lt2 can be found as the root of the equation 
E ' I '  = U - (L) .  With regard to Lt I ,  the situation depends 
on the value of the energy correction. 

We first assume - 1(E "'/ud < - 3/5 (Fig. 2b). The 
left turning point is then the root of the equation 
E ' I '  = U + (L) ,  with0 < LI1 gL<Lt2.  SinceL does not van- 
ish, the quantity 8 does not change sign according to canoni- 
cal equation ( 15b), while 16 1 increases monotonically. This 
result corresponds to a rotation of the Runge-Lenz vector in 
the plane passing through the z axis. The absolute value ( A (  
oscillates, reaching extrema at 6 = 0, .rr and 6 = .rr/2. 

If - 2<E "'/ud < - 1, the situation is radically differ- 
ent (Fig. 2a). The left turning point is L = 0, in which case 
the orbit of the electron degenerates into a line. Simulta- 
neously, the sign of 8 changes. In this case, there are two 
symmetric methods, corresponding to the same energy E 'I), 
by which the orbit can evolve. These two methods corre- 
spond to oscillations of the Runge-Lenz vector near either 
the positive or negative direction along thez axis. One or the 
other of the two possible isolated symmetric classical trajec- 
tories L = L(6)  will be realized, depending on the initial 
conditions. The angular momentum reaches a maximum at 
8 = 0 and .rr, respectively, and vanishes at the value of 6 de- 
termined from the equation 

The picture of the evolution drawn here agrees with the 
results of Ref. 8, which were derived by a different (and 
considerably less graphic) method. 

3. SEMICLASSICAL SOLUTION OF THE RECURRENCE 
RELATION 

Returning to the quantum-mechanical problem, (3) ,  
we note that its eigenvalue spectrum is obviously limited by 
classical interval (18) (Ref. 12). We will not go into a dis- 
cussion of the quantization conditions for the energy levels, 
but we would point out that in the part of the spectrum with 
- 2 < E "'/ud < - 1 the existence of two symmetric isolat- 
ed classical trajectories leads to an approximate twofold de- 
generacy of the eigenvalues. On the interval with 
- 1 < E ")/ud < - 3/5, the levels are singlets. 

In the classically allowed region of L values, the semi- 
classical solution of recurrence relation ( 3 ) is 

A ,I', C - --- 
1 - COS(S(L)+X) I L=r+se, ." ( L )  

where A,,, and x are arbitrary constants, and S (L)  and u 
are the classical action and classical velocity, respectively, 
given as functions of L. Specifically, 

and u = L [see ( 19) 1. Expression (2 1 ) is the standard form 
of the WKB solution in an arbitrary (possibly discrete) rep- 
resentation. It is the same as the result of the solution of 
trinomial recurrence relation (3)  in the asymptotic limit in 
n  -'  (Ref. 12). 

The normalization constant AwKB is found from the 
condition 

where the summation is over either even values of I or odd 
values. We then find that the constant A,,, is, as usual, 
related to the classical oscillation frequency of the "coordi- 
nate" L: 

The quantity fl = 2.rr/Tcan be calculated with the help 
of (20). This quantity is also equal to a quantity which can 
be determined experimentally, AE, the energy interval be- 
tween adjacent levels of a given parity in a dipole-dipole 
multiplet. 

4. OSCILLATOR STRENGTHS OF CLASSICALLY ALLOWED 
TRANSITIONS FROM STATES OF A DIPOLE-DIPOLE 
MULTlPLET 

Let us use (21) to determine the normalization con- 
stant in Legendre solution (6) .  [The WKB method cannot 
be used directly to find C, with I on the order of unity be- 
cause of singularities in PI and wl in ( 3  ). ] 

We consider the levels in the interval - 2 < E < - 1~ 
= E"' /u,, in which case the classically allowed region of 
values of the angular momentum extends to L = 0 (Fig. 2a). 
We consider values of 1 such that the condition 1 - m 2 )  1 
holds, but the condition 1 < n2 also holds. The first of these 
inequalities justifies our use of WKB solution (21 ); the sec- 
ond makes it possible to simplify the functions in (2 1 ), un- 
der the assumption 

S(L\  -LB(O) =L arccos ((~(-l)'~, 
(25) 

We can thus rewrite (21 ) as 

Here AE = Ac/ud is the reduced energy interval between 
levels of a given parity. We now note that under the condi- 
tion I - m 2 )  1 the Legendre function can be replaced by its 
asymptotic expression, so solution (6)  can be written in the 
form 

Comparing (27) and (26), we find the value of the constant 
A .  We thus find explicit expressions for the coefficients C,  in 
the expansion of the wave function of a level with a reduced 
energy E: 

The quantity AE varies along the multiplet, i.e., is a function 
of E (Fig. 3).  On the interval - 2 < E < - 1 ,  it is given by an 
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FIG. 3. Energy intervals in a dipole-dipole multiplet. Solid line-Analyt- 
ic calculation from expression (29); vertical line segments--calculated 
through a numerical diagonalization of the perturbation matrix. 

expression which follows from (20) (K is the complete ellip- 
tic integral of the first kind): 

From expression (28) we find explicit analytic expressions 
for the oscillator strengths for transitions of various series in 
the multiplet region with - 2 < E < - 1. 

Lyman series. The oscillator strengths are proportional 
to one of the following quantities, depending on the magnet- 
ic quantum number of the upper level, m: 

Balmer series. For transitions to 2s states, the oscilla- 
tor strengths are proportional to one of the quantities in 
(30). For transitions to 2p states, they are instead propor- 
tional to one of the following quantities 

In the m = 0 case, the transition probability amplitude con- 
sists of ( 2pns )  and (2p-nd) terms. The coefficients 5Il2/8 
and 5'12/4 are the ratios of the corresponding transition am- 
plitudes in the isolated hydrogen atom.I5 

Plots of the distributions of oscillator strengths (30) 
and (31) have completely different shapes (Fig. 4; the re- 

gion from E = - 2 to E = - 1 ). In particular, in the limit 
E - +  - 1 the intensity either increases sharply or tends to- 
ward zero, depending on the parity of the sum of indices 
1 + m of the Legendre function responsible for the observed 
intensity. For transitions of the Baimer series from m = 0 
states, the intensity dips to zero at E = - 5/4 (Am = 0; lin- 
ear polarization of the emitted light) or at E = - 3/2 
(Am = 1, circular polarization). Since expressions (30) and 
(3  1 ) are proportional to the same function A&(&) (the reci- 
procal of the density of energy levels), however, all these 
distributions can be found from each other by multiplication 
by simple functions of the energy. 

Shown in Fig. 4 along with analytic expressions (30) 
and (3  1 ) are the results of a numerical solution of problem 
(3) for n = 30 (the vertical line segments; the abscissa of a 
segment is determined by the energy of the perturbed state, 
and the height of the segment is determined by the transition 
probability). At the scale of these figures, the results of the 
numerical and analytic solutions coincide. 

5. PROBABILITIES FOR CLASSICALLY ALLOWED 
TRANSITIONS 

On the energy interval with - 1 < E "'/u, < - 3/5, 
the Keplerian orbit of an electron perturbed by the van der 
Waals interaction never becomes a straight line. Conse- 
quently, small values of the angular momentum are classi- 
cally unattainable for the atomic electron. By virtue of the 
condition A1 = 1, there are accordingly forbidden transi- 
tions to low-lying atomic states with a small angular momen- 
tum. More precisely, the probability for such transitions is 
exponentially small at n& 1. To find the corresponding 
expression, we write the WKB solution of our recurrence 
relation ( 3 )  in the classically forbidden region, with 
0 < L  < L,, (Fig. 2b). Using the results of Ref. 1 1, we find 

[ (1 /2) means the greatest integer in 1/21,  This expression 
falls off exponentially as I decreases, simultaneously chang- 
ing sign in each step. 

In Legendre solution (6) ,  the argument is purely imagi- 
nary in this energy interval. Using the appropriate asympto- 
tic expression for the Legendre functions (formula 8.10.4 
from the handbook in Ref. 16), we find, for I - m2$ 1, 

Joining (32) with (33), and substituting in A,,, from 
(24), we finally find 
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FIG. 4. Distributions of the oscillator strergths in a dipole-dipole multiplet (m is the magnetic quantum number of the upper level). a-Lyman series, 
m = 0; &Lyman series, m = 1; c-Balmer serles, Iml = 2; d-Balmer series, ImI = 1; e-Balmer series, m = 0, Am = 0; f-Balmer series, m = 0, 
A m =  1. 

This result means that the distribution of oscillator strengths 
in the Lyman and Balmer series is given by expressions like 
(30) and (31), but with IEI - 1 replaced by 1 - IEI, and 
with an additional factor which determines the probability 
for tunneling to a state with a zero angular momentum: 

The function ha(&)  is also given by an expression which 
differs from (29) : 

where the argument k is defined in (29). Expressions (34)- 
(36) have apparently been derived here for the first time. 

To evaluate the accuracy of our analytic expressions, 
we give in Table I values of the square of the coefficient C,  , 
which determines the transition probabilities in multiplets of 
the Lyman series, for the cases n = 30, m = 0 and 1. The 
horizontal lines separate results corresponding to classically 
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TABLE I. Values of C :  for n = 30 and m = 0 and 1. 
m=O m=i 

allowed and forbidden transitions. Results calculated from 
analytic expressions (30) and (34) are given here and are 
compared with data found through a numerical solution of 
Eqs. (3).  The agreement is good except near the singularity 
& =  -1. 

CONCLUSION 

We have analyzed the distribution of oscillator 
strengths in multiplets generated by a splitting of the levels 
of the hydrogen atom by the van der Waals interaction with a 
conducting surface. We have derived an analytic expression 
for the distribution of oscillator strengths. It  has the form of 
the product of the energy separation of neighboring levels of 
a multiplet and the square of a Legendre function. The argu- 
ment of this function is determined by the level energy. In 
the violet part of the multiplet, transitions to slightly excited 
states are classically forbidden. An additional barrier factor 
appears in the expression for the oscillator strength here. 

Comparing our analysis with the case of diamagnetic 
per turba t i~n ,~ , '~  we see that the intensity distribution in the 
spectra of the highly excited hydrogen atom perturbed by 
various external agents is actually described by the same uni- 
versal formula. The distinctive nature of the perturbation is 
seen in a different energy dependence of the argument of the 
Legendre function and also in the properties of the function 

A&(&), which determines the interval between levels in var- 
ious parts of the multiplet. 
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