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The growth of small instabilities during the ablative acceleration of planar foils by a laser light 
pulse is analyzed. It is shown that the question of the additional boundary conditions required for 
analytic solution of the problem in a model with a discontinuity front is related to the condition 
that the unperturbed flow be of an evolutionary nature. This question generally cannot be solved 
analytically. A scaling law is found and the corrections to the "classical" growth rate of the 
Rayleigh-Taylor instability for the finite density gradient, compressibility, convection, and the 
thermal conductivity of the plasma are calculated. Profiles of the hydrodynamic variables for a 
quasisteady unperturbed flow of the laser plasma found through a one-dimensional numerical 
simulation are used to derive a semiclassical solution of the spectral problem for the instability 
growth rates. The resulting solutions are compared with the solution of the spectral problem with 
the uniform-flow boundary conditions on both sides of the unstable region. They are also 
compared with the results of a two-dimensional numerical simulation. These comparisons show 
that the use of more-realistic boundary conditions leads to a higher instability growth rate. An 
intensification of the x-ray emission from the plasma corona or a decrease in the wavelength of the 
laser light causes significant improvements in the convective stabilization and in the stabilization 
due to the smoothing of the density profiles. A substantial decrease in the growth rates becomes 
possible for all instabilities. 

1. INTRODUCTION A= (ph-pi) / (ph+@l) 
The Rayleigh-Taylor (RT) instability is one of the 

most important processes in the physics of high energy den- 
sities. In particular, in various schemes for achieving inertial 
fusion, the RT instability imposes a limit on the energy 
which can be introduced in order to initiate the reaction. 
Most schemes for laser fusion or beam fusion under consi- 
deration today involve some sort of extreme compression of 
shells with a large aspect ratio. If an extreme compression of 
this sort is to be possible, the target must retain a high degree 
of spherical symmetry throughout the compression process. 
Deviations from spherical symmetry in the course of the 
compression ultimately lead to a deviation from a spherical 
shape which is on the order of the instantaneous size of the 
target itself. The quantitypR, which increases as 1/R in the 
case of spherically symmetric compression, stops increasing; 
i.e., the implosion comes to a halt. The degree of compres- 
sion required under the assumption that the asymmetry 
grows at a constant rate can be achieved by using a target 
with a large initial radius, i.e., by substantially increasing the 
amount of energy which is delivered. Another consequence 
of the RT instability is mixing of the shell material and the 
fuel in the shell being compressed. Again, the result is to 
extinguish the reaction. This point is crucial from the stand- 
point of the amount of energy which can be introduced. 
While the irregularities in the irradiation are smoothed out 
to a large extent in the transverse direction by the electron 
thermal conductivity, the RT instability, being a hydrody- 
namic instability, is unavoidable during the compression of 
the plasma target and in this sense poses the greatest danger. 

The classic RT instability arises at an interface between 
fluids at rest if a relatively heavy fluid (with a density p,, ) is 
being supported by a relatively light one (with a density 
p, ) . I s 2  In this case the growth rate of small perturbations 
with wave number k is (T = (Agk)  ' I 2 ,  where 

is the Atwood number, and g is the acceleration imparted to 
the heavy fluid. During the compression or acceleration of 
laser targets by a plasma, the gradients in the ablative pres- 
sure and the gradients in the density are in opposite direc- 
tions near the ablation surface. In other words, the configu- 
ration is one in which the RT instability will occur. There is 
an important distinction, however, which arises because of 
the flow of mass and heat through the instability region and 
also because of the distributed smooth profiles of hydrody- 
namic properties. As recent experiments on laser ablative 
acceleration of plane foils have the growth rate of 
the most dangerous instability modes is smaller by a factor of 
about 2 or 3 than would be expected on the basis of the classi- 
cal theory. In addition, at large values of k, i.e., in the short- 
wavelength region, the instability growth rates do not in- 
crease as they would be expected to do on the basis of the 
classical theory, but in fact vanish. Similar results emerge 
from two-dimensional numerical simulations of the growth 
of small perturbations which have been carried for 
both planar and spherical geometry. The growth rate of the 
RT modes found experimentally, like the results of the nu- 
merical simulation, agrees satisfactorily with the formula 
proposed by Takabe:I3,l4 

u=a ( g k )  '"-b (kv,) , ( 1 )  

where v, = m,/p, is the velocity at which the plasma flows 
across the ablation front, and a and b are numerical coeffi- 
cients. The results of 2 0  numerical  simulation^^*'^ show that 
the values of these coefficients are, quite accurately, a = 0.9 
and b = 3. The long-wavelength instabilities thus grow more 
slowly than the classical RT instabilities, and the modes 
which grow most rapidly correspond to the wave number 

a2g 6' k,,, = - = 0,02 7 . 
4 b2v,2 v a  
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The corresponding growth rate is 

Analytic and numerical models have been proposed in 
several places and have been used in efforts to explain the 
stabilization in the short-wavelength limit. These explana- 
tions have been based on the thermal conductivity and the 
flow ofmass through the unstable r e g i ~ n . ' ~ - ~ ~  Although cer- 
tain versions of the analytic work lead to a formula like ( 1 ) 
for the growth rate, the theory runs into a fundamental diffi- 
culty here, which we will discuss below. 

In the present paper we are interested in the onset of the 
RT instability during the acceleration of planar targets by 
laser ablation. We derive analytic solutions for the spectrum 
of RT instabilities in the short-wavelength limit. We derive 
corrections for the compressibility, the thermal conductiv- 
ity, and the convection. We discuss the hydrodynamic mod- 
els which have been used in previous studies, the various 
formulations of the problems, and the choice of boundary 
conditions. We discuss the formulation of the eigenvalue 
problem, and we solve this problem. We derive the growth 
rates for the RT instability in the semiclassical approxima- 
tion from the actual quasisteady profiles found for the var- 
ious hydrodynamic properties through 1D numerical simu- 
lation of the problem of the ablative laser acceleration of an 
aluminum target. 

Solving the eigenvalue spectral problem has several ad- 
vantages over a 2 0  numerical simulation of the onset of an 
instability in a laser in which case a Cauchy prob- 
lem is examined for the growth of a given initial perturba- 
tion. The first advantage is that the spectral approach is not 
afflicted by an arbitrariness in the specification of the initial 
small perturbations. A second advantage is that the pertur- 
bation modes which grow most rapidly can easily be distin- 
guished. 

2. UNPERTURBED FLOW OF A LASER PLASMA 

Let us examine the onset of instabilities during the laser 
acceleration of thin plane foils. The case of planar foils has 
the advantage over a spherical implosion of laser targets that 
both the theoretical and experimental studies on the pro- 
cesses accompanying the ablative acceleration of planar foils 
lead to a clearer understanding of the physical processes of 
most imp~r t ance .~~-~ '  In the numerical calculations, realis- 
tic equations of state have been used. The heating of the 
target by x radiation, the radiation transport, etc., have been 
taken into account. We will make use of these calculations 
below in solving the overall spectral problem. To find the 
scaling and a simple analytic solution of the problem, it is 
sufficient to use a simpler model of hydrodynamic equations 
written in the c.m. coordinate system of the foil being accel- 
erated. These equations are the continuity equation, the 
equation of motion, and the energy-transport equation: 

dp - + v (vp) =o, 
at 
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Here P is  the plasma pressure; x = p c , ~  is the thermal con- 
ductivity; E, W, and c, are the specific internal energy, the 
specific enthalpy, and the specific heat at constant pressure; 
I is the intensity of bulk sources of energy; and g,, is the 
acceleration of the center of mass of the foil. 

After the laser pulse begins, a first shock wave propa- 
gates through the target. After this wave leaves the free rear 
surface of the target, the target particles begin a translational 
motion in the forward direction, parallel to the laser beam. A 
rarefaction wave propagates opposite the laser beam at the 
same time. After several reflections, a steady-state plasma 
flow is establi~hed.~'~' In practice, a steady-state or self- 
similar plasma flow is established if the laser energy ab- 
sorbed in the plasma becomes distributed over the plasma 
volume quickly in comparison with the hydrodynamic time 

FIG. 1. Distributions ofp (g/cm3), P (Mbar), v ( lo6 cm/s), and g ( lOI5 
cm/s2) in an ablatively accelerated plasma with I =  1013 W/cm2, 
R = 1.06pm, do = lOpm, and r = 6 ns. a: With allowance for x-ray emis- 
sion from the plasma corona. 0-100 M2; A-100 MZ/Fr; *-Fr/Fr,, ; 
A-Pe (the scale for these quantities is the logarithmic scale on the right). 
b: The x-ray emission from the plasma corona is suppressed. 
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FIG. 2. Distributions o f p  (g/cm3), P (Mbar), u ( lo6 cm/s), and g ( 10'' 
cm/s2) in an ablatively accelerated plasma with I=  10" W/cm2, 
/1 = 0.26pm, do = lOpm, and T = 6 ns. a-With x-ray emission from the 
plasma corona; b--this x-ray emission is suppressed. 

scale of the flow. The time scale of the energy redistribution 
over the plasma volume is on the order of several times the 
time required for the rarefaction wave to propagate from the 
rear surface to the critical surface, -2-3 ns. A steady-state 
flow pattern like that in Figs. 1-3 then arises. We can distin- 
guish three regions of this flow pattern: a plasma corona, 
which is expanding into the vacuum in the direction opposite 
the laser beam, from the critical surface where the density is 
p, = ?rm,mi/Ze2A :, at which light with the wavelength A, is 
absorbed (e is the charge of an electron, me and mi are the 
masses of an electron and an ion, and Z is the charge number 
of the plasma ion); the ablation zone, the region in which the 
heat absorbed in the corona is transferred by thermal con- 
ductivity to the denser layers of plasma; and the dense plas- 
ma which is actually being accelerated by the pressure of the 
ablation layer is the part of the target which has not evapo- 
rated. 

FIG. 3. Distributions o f p  (g/cm3), P (Mbar), u ( lo6 cm/s), andg ( 1015 
cm/s2) in an ablatively accelerated plasma with I= 5 .  1012 W/cm2, 
R = 0.26 pm, do = 10 pm, and T = 6 ns. 

The acceleration of the center of mass of the plasma 
target can be estimated quite accurately in terms of the abla- 
tion pressure Pa : 

go=P,lpodo ( 5 )  

(do is the initial thickness of the target, and pa is its initial 
density). The thickness of the ablation layer can be found 
from the value of the thermal diffusivity and the sound ve- 
locity c, at the critical surface: 

da=xelc,o (6) 

It follows from (6) that the thickness of the ablation layer is 
proportional to the wavelength of the laser light, and for 
typical experiments we would have da -- 100 pm)do z 10 
pm for A, = 1.06 pm or da =do for A, = 0.26 pm. The na- 
ture of the unperturbed flow is determined by the values of 
two dimensionless parameters: the PCclet number 
Pe = vL /x, which characterizes the relative roles played by 
thermal conductivity and convection over a length scale - L, and the Froude number Fr = v2/gL, which character- 
izes the relative contribution of the inertial force and of con- 
vection. 

The ablation zone, in which there is a steady-state heat 
transfer, gives way to the layer of accelerated plasma 
through a transition region, which is bounded on the left by 
the surface of maximum density (Fig. 1) and on the right by 
the surface at which the hydrodynamic acceleration 

vanishes. The latter surface is naturally identified as the ab- 
lation front. In this transition region, the density decreases 
substantially (p,,,/pa > lo),  while the hydrodynamic ac- 
celeration remains essentially constant. This acceleration 
goes to zero rapidly at the ablation front. In a comparatively 
narrow transition region, with a width on the order of do, the 
condition for the onset of the RT instability, gdp/dz <O, 
holds. 
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3. EIGENVALUE PROBLEM FOR THE HYDRODYNAMIC 
INSTABILITY OF A LASER PLASMA 

To solve the problem of the growth of small perturba- 
tions, we linearize the initial system of hydrodynamic equa- 
tions, writing all the hydrodynamic variables in the form 

where p, (5 t )  is the exact solution for the unperturbed plas- 
ma flow. We write the small deviation @? in the following 
form for the case of planar geometry of the unperturbed 
flow: 

Knowing the solution of the eigenvalue problem, we can find 
the solution of the Cauchy problem for any initial perturba- 
tion, by writing this perturbation as a Fourier integral of the 
eigenfunctions of the spectral problem. The rise time of the 
instability is determined by the time evolution of the ampli- 
tude of the perturbation mode which is growing most rapid- 
ly. 

Assuming that the perturbations are adiabatic, we write 
linearized equations for small perturbations: 

+v-=--- dv as, asz 1 a p  + K ~ - ~ , -  - 
A t  d z  P d z '  

(12) 
P az 

Herep(z,t), v(z,t), g(z,t), and P(z,t) are the profiles of the 
unperturbed flow, and the adiabatic index 

is determined for the unperturbed plasma from the actual 
equation of state. The derivation of Eqs. ( lo)-( 13 ) did not 
require the assumption that the unperturbed flow is ideal in 
terms of its equation of state; nor were we obliged to assume 
that there was no dissipation, etc. The only assumptions 
were that the perturbations themselves are adiabatic and 
that there is a lower limit on the wavelength of the perturba- 
tions. It is easy to see that these limitations are not very 
important. For example, by requiring that the Peclet num- 
ber for the perturbations be large, i.e., 

we find the limitation R $1 /M, on the perturbation wave- 
length, where 1 is the mean free path, and M the Mach num- 
ber. For typical conditions we would have I = 10- 3pm and 
M =  10-'-10-*andthusR> 10W1pm. 

If the time scale for the variation of the properties of the 
unperturbed flow is run, we can use the semiclassical approx- 
imation for perturbations whose growth rate a satisfies the 
inequality ar,, $1. We can introduce the concept of an "in- 
stantaneous growth rate" of the instability against the back- 
ground of the given unperturbed plasma flow; here we would 
take a to be the fastest of all the growth rates which charac- 
terize the various perturbation modes at the given instant. 

The presence of modes which grow slowly in comparison 
with exp(at) is unimportant, since these modes do not dis- 
rupt the symmetry of the unperturbed flow. 

In the semiclassical approximation, the changes in the 
properties over the time tare given by the usual exprimion 

t 

The boundary conditions on Eqs. ( lo)-( 13), in which 
the time derivatives are replaced by a in the semiclassical 
approximation, follow from the requirement that the pertur- 
bations be regular. The choice of boundary conditions is de- 
termined by the particular formulation of the physical prob- 
lem. 

For laser acceleration of a thin foil in the steady state 
after the passage of the shock wave and the expansionwave, 
the rear surface of the target undergoes adiabatic expansion 
into vacuum in a gravitational field with an accderation go 
(in the noninertial coordinate system of the center of mass of 
the plasma being accelerated). The conditions that the per- 
turbations be regular at this ourface then lead to the follow- 
ing asymptotic boundary conditions at the left-hand bound- 
ary as z+O (the asymptotic behavior of the properties of the 
unperturbed solution is 

where w is a parameter of the profile: 

where 

The coefficients h,, h,, and h, are expressed in terms of the 
coefficient h,, which is arbitrary since the problem is linear, - 
when P, fi,, f i x ,  and from (16) are substituted into the 
linearized versions of Eqs. ( lo)-( 13), with z- 0. 

On the right of the unstable region, in the ablation zone, 
the boundary conditions are the vanishing of the perturba- 
tions as z- m, since we have kd,  $ 1. This approach corre- 
sponds to imposing boundary conditions at z = z* which sat- 
isfy the condition d,, > z*, d,, where d,, is the distance 
from the rear surface to the clitical surface. In principle, the 
thickness d ,  of the ablation zone can vary over a wide range, 
depending on the laser wavelength. Our calculations show, 
however, that the instability growth rate is essentially inde- 
pendent of the particular coordinate chosen as the right- 
hand boundary in the ablation zone. 

The functions p(z,t), v(z,t), g(z,t), and B(z,t), which 
appear as coefficients in Eqs. (10)-(13), were found 
through numerical s imu la th  of the 1D motion of an ablati- 
vely accelerated foil. The motion of the foil was simulated by 
means of the 1D Lagrangian hydrodynamic code "kpul's," 
whidp was described in Ref. 27. The calculation used the real 
equation of state.32 The departure of the electron tempera- 
ture from the ion temperature was taken into account. The 
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ionization kinetics was taken into account in the approxima- 
tion of an average ion charge. The absorption of the laser 
light was calculated from the inverse bremsstrahlung mech- 
anism. The electron thermal conductivity, which was limit- 
ed with respect to the classical value in accordance with Ref. 
33, and the x-ray emission, in the forward-backward approx- 
imation (25 energy groups), were incorporated in the ener- 
gy transfer. The foil was partitioned into Lagrangian cells in 
such a way that there were at least 50 points in the ablation 
region in the quasisteady regime. This result was achieved by 
starting with a relatively fine mesh near the irradiated sur- 
face. The laser intensity reaches a steady-state value in 1 ns; 
the steady-state profiles are established in - 2 ns. 

Before we discuss the results of the solution of the spec- 
tral problem ( lo)-( 13), we would like to examine some 
analytic approaches to the problem which make it possible 
to derive simple scaling relations and the behavior of the 
instability growth rate as a function of the parameters of the 
accelerated plasma and of the laser light. We recall that the 
"classical" expression for the growth rate of the instability of 
an interface between two incompressible fluids, 
a = (Agk) 'I2, predicts an unbounded increase in the growth 
rate with increasing wave number k. In the problem under 
consideration here, however, the finite density gradient, the 
removal of mass from the instability region by convection, 
the thermal conductivity, and the compressibility lead to 
substantial-qualitative-changes in the instability growth 
rate. 

4. MODELOFA UNIFORM FLOW WITH A DISCONTINUITY 

In an effort to derive analytic solutions incorporating 
the convective flow of mass through the instability region, 
several ~ t u d i e s ' ~ - ~ ' * ~ ~  have used a model in which the unsta- 
ble region in the ablation zone is replaced by discontinuity 
surface separating two uniform plasma flows. Despite the 
apparent simplicity of this model, attempts to derive a dis- 
persion relation in it have run into a well known difficulty, 
the problem of the additional boundary conditions at the 
discontinuity front. Since this problem is of fundamental im- 
portance, we will discuss it here. 

We assume that the inequalities 

hold on the two sides of the unstable region. We also assume 
that the thickness of this unstable region is small in compari- 
son with the length scales of the unperturbed flow. We can 
then think of the overall flow pattern as consisting of a dis- 
continuity surface separating two uniform plasma flows, at 
z<Oandz>O. 

This picture of the unperturbed flow is similar to a de- 
flagration wave, i.e., a subsonic combustion wave. For short- 
wavelength laser light, the critical surface is much closer to 
the ablation front, and the entire region out to the critical 
surface can be incorporated in the concept of the front. The 
flow in this case is similar to a deflagration wave with a su- 
personic flow behind the front. 

A necessary condition for the existence of an unper- 
turbed steady-state flow with a discontinuity is that the dis- 
continuity be ev~lu t ionary .~~ This condition means that the 
number of boundary conditions at the front must be one 
greater than the number of independent perturbation modes 

which can be radiated in either direction from the front. For 
a deflagration wave to be evolutionary, there must be an 
additional boundary condition-beyond the basic condi- 
tions which follow from the conservation of mass, momen- 
tum, and energy fluxes. This additional relation is the given 
propagation velocity of the deflagration front. In hydrodyn- 
amics, the propagation velocity of a deflagration front is giv- 
en as an "external" parameter determined by the chemical 
kinetics, the calorific value of the fuel, etc. It follows in no 
way from the hydrodynamic equations. We run into a corre- 
sponding problem when we treat the ablation front as a dis- 
continuity surface. 

Writing the perturbations of all the hydrodynamic vari- 
ables in the form @(z,t) a exp(ut + pz) , solving Eqs. ( 10)- 
( 13), and using the inequalities ( 17), we find the character- 
istic equation 

where the value i = 1 specifies variables in the incoming flow 
(z <0) ,  and the value i = 2 specifies in the outgoing flow 
(z>O). 

Using the inequalities (17) and the condition that the 
modes decay with distance from the front, we find that in the 
case of a subsonic unperturbed flow in the incoming region 
( i  = 1, z < 0, Ml = vl  /c,, -4 1 ) only an acoustic mode is pos- 
sible: 

In the outgoing flow, at z > 0, there are three solutions which 
are linearly independent. They are the acoustic mode 

the entropic mode 

and the rotational (vorticity) mode 

The last two of these modes are carried along with the mass 
flow. 

In the linear approximation, an arbitrarily small pertur- 
bation on both sides of the discontinuity is a linear combina- 
tion of the modes ( 19)-(22) existing to the left and right of 
the discontinuity front. In this case the dispersion relation 
should be found from the boundary conditions on the match- 
ing of the corresponding solutions for the perturbations at 
the discontinuity surface at z = 0. These boundary condi- 
tions are the perturbations of the conservation equations for 
the mass, momentum, and energy fluxes, in which the per- 
turbation of the coordinate of the discontinuity front, 
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z = z, (x,t), should also be taken into account: 

Here A [q, ] = q,, - q,, is the jump in the corresponding 
property at the discontinuity surface, and ((x,t) is the per- 
turbation of the position of the discontinuity front. For the 
perturbations we thus have15 

We see that Eqs. (23)-(26) do not solve the problem. 
For the five perturbation amplitudes us, u,, v, , p,, and ( we 
have only four equations. This situation is a direct result of 
the evolutionary nature of the original unperturbed flow, 
which requires an additional boundary condition-in addi- 
tion to the basic conditions which follow from the conserva- 
tion laws. 

In the problem of the stability of an interface between 
two fluids at rest, with different densities, this difficulty does 
not arise. For example, if for simplicity we adopt the incom- 
pressibility condition ( M g  1, a/c, k < 1) then we find the 
following results from Eqs. 23-26 with v, = u, = 0: 

Although the number of boundary conditions has been 
lowered by one in the case v = 0 [see Eq. (25) 1, in a fluid at 
rest we also lose the two modes in (21 ) and (22), which are 
carried along with the mass flow. Using (19) and (20), we 
can then immediately find a dispersion relation for the clas- 
sical RT instability from Eqs. (28)-(30): 

Formally, a dispersion relation could be found in the 
case v # O  if we had some relation among the perturbation 
amplitudes to supplement Eqs. (23)-(26). Possible versions 
of this additional relation were discussed in Refs. 15-23, but 
this additional relation is "external" with respect to the 
model discussed in the hydrodynamic approach, as we have 
already mentioned. The choice of this relation is "a matter of 
taste." At the same time, this model of uniform flows as 
z-. f ca makes it possible to find an "exact" dispersion rela- 
tion by a numerical simulation in which the discontinuity is 
replaced by a transition region with a known structure. The 
condition that the unperturbed flow be evolutionary is a nec- 
essary condition for the existence of a steady-state structure 
of the discontinuity front.34 At a formal level, specifying the 
structure of the discontinuity is equivalent to imposing an 
additional boundary condition. 

The case of a supersonic flow out of the discontinuity 
surface at z > 0 was also studied in Ref. 19. The condition 
that a deflagration wave of this sort be evolutionary would 
require two additional boundary  condition^.^^ Correspond- 
ingly, to close the equations for the amplitudes and to derive 
a dispersion relation, we would require two relations in addi- 

tion to (23)-(26), since in this case we have an additional 
acoustic mode at z > 0. 

5. GROWTH RATESOFTHE RT INSTABILITY FOR 
NONUNIFORM DISTRIBUTIONS OF THE ACCELERATION 
AND THE DENSITY 

We consider an ideal plasma at rest, with nonuniform 
distributions of the density, the pressure, and the accelera- 
tion along the z axis. 

Adopting perturbations in the form 

q=ip(z) exp (o t+ ikx) ,  (32) 

with v = 0, we can reduce Eqs. ( lo)-( 13) to a single equa- 
tion for 8, : 

The boundary conditions follow from the continuity of 
the velocity and pressure perturbations in the fluid particles. 
In particular, we have 8, = 0 at rigid boundaries or in the 
limit z+  + ca if there are no boundaries. 

Since the pressure perturbation in Lagrangian coordi- 
nates is 

- d gk2 a,) a ~ P V G ,  
P ~ ~ ~ ~ ~ P ( - ~ F ~ + ~  

it is easy to see that if there is a free surface "below," at which 
the density vanishes and the relation gdp/dz < 0 holds, then 
Eq. (33) with g = const has a solution corresponding to a 
"global" mode of the RT instability: 5, a exp (kz). This solu- 
tion satisfies Eq. (33) with V - i  = 0 regardless of the density 
profile p(z)  (Refs. 35 and 36). The global mode of the RT 
instability has the highest growth rate, a = gk. 

To study the behavior of the growth rate as a function of 
the density profile, we consider the limit of an incompress- 
ible fluid. Equation (33) becomes 

where a ( z )  = - d (ln(p) )/dz is the steepness of the den- 
sity profile. 

Equation (35) can be solved easily when a layer of fluid 
with an exponentially decreasing densityp a exp ( - az)  in a 
uniform gravitational fieldg = const > 0 is bounded by walls 
a t z=OandL:  

Here n is the index of the wave eigenfunction. The dis- 
persion relation corresponding to the solution (36) is 

Approximating the arbitrary distribution of the density 
by a finite number of layers with an exponential density dis- 
t r i b u t i o n ~ ~  a exp( - a i z )  in each layer i, we can show that 
in the short-wavelength limit 
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the instability growth rate has the asymptotic form (36), 
(37), where a = max, (a, ) and L are respectively the steep- 
ness and thickness of the layer of maximum steepness. The 
eigenfunction is localized in the layer of maximum steepness 
in this case and falls off exponentially outside this layer, in 
accordance with 

For any finite wave number k we find the following 
estimate. If the function 

for layerj takes on a value which is the highest value in terms 
of a ,  then one can show that the following inequality holds 
for the growth rate of the RT instability for the given k: 

For an arbitrary discontinuous density profile with a steep- 
ness a < a,,, , the growth rate of the RT instability is then 
limited by the inequality 

gum,, 
0' < ---- 1 

for k > - a,.,, 
l +atnqr/4k2 2 

02<gk for k<'/,a,,,, (41 

where gk is the envelope of the single-parameter family of 
functions fa (k)  . 

We can estimate the effect of nonuniformity of the ac- 
celeration g(z) similarly. In the approximation of an incom- 
pressible fluid with a continuous density profilep(z) and a 
nonuniform acceleration g (z) , the instability modes with the 
maximum growth rate are localized in a layer L *, in which 
we have g(z)a  (2) -- max(ga) . In the limit of large wave 
numbers the growth rate is given by 

(J2 = 
max ( g a )  

I+ (aS/2k) '+ ( n / k L ' ) 2  ' 

where a *  = - d (ln(p))/dz in layer L *. 

6. CONVECTIVE STABILIZATION 

The effect of the plasma flow velocity on the instability 
growth rate in the short-wavelength limit can be estimated 
by perturbation theory, as small corrections in terms of the 
Froude number Fr = v2a/g, which characterizes the role of 
convection in the plasma being accelerated. 

We assume 

Fr<a21k2< 1, (43) 

i.e., that the velocity pf the unperturbed flow is small in the 
unstable region. 

We write Eqs. ( lo)-( 13) for small perturbations in the 
approximation of an ideal incompressible fluid: 

For a fluid at rest (Fr  = 0), Eqs. (44)-(47) reduce to 
Eq. (35) which we write in the form 

where 

is a self-adjoint differential operator with the eigenvalues 
So, = ga/u [see (37) 1, as follows immediately from (35) 
for the eigenfunctions (36). 

To within small terms in an expansion in powers of 
(Fr) I", we find the following equation from Eqs. (44)- 
(47) : 

The operator 

h 

is a small correction to the unperturbed operator R in terms 
of (Fr) '" with a- (ga) "', and the boundary conditions are 
expressed as an exponential decay outside the interval (0, 
L ) .  

We accordingly seek the eigenvalues and eigenfunc- 
tions of the operator (49) in the form 

where the eigenfunctions B,, are solutions of Eq. (48) for 
the eigenvalues 

and cc'  = cz: + cc ;  + ... . Using the standard technique of 
perturbation theory," we find the following result for the 
first-order correction to the lowest eigenvalue, So,, which 
corresponds to the maximum growth rate in the case n = 1: 

where 
L 

Correspondingly, for the second-order corrections we find 

To estimate the corrections to the instability growth rate, we 
set v = const and evaluate the integrals in ( 53 ) and (55 ) . As 
a result we find 

Sll=2va/o=2 (Fr) '", (56) 

v2k2 1 256n2 9,8 k2  
=-- 

'a = 77 z ( 4 n 2 - l ) 1  n~ a~ Fr . (57) 
n = l  
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The instability growth rate can thus be written in the 
following form, to within terms of second order in perturba- 
tion theory:" 

Expression ( 58 ) obviously does not give us a complete 
solution of the spectral problem-the behavior of the insta- 
bility growth rate for all wavelengths-but it does give a 
fairly accurate description of the behavior of the growth rate 
near the maximum at small values of Fr. The maximum 
growth rate is 

From (37) and (58) we find that the instability growth 
rate does not exceed (ga) Consequently, approximating 
of the growth rate by (1) may be valid if the growth rate 
reaches its maximum value at 

Correspondingly, with b = 3, this means 

Expressions (58) and (58a) are a good approximation for 
Fr < Fr,, , while (58) is a good approximation for Fr > Fr,, 
(Fig. 4). 

To estimate Fr, we can assume, in order of magnitude, 

where v, is the plasma velocity at the critical surface. We 
then find the Froude number to be 

In particular, from (60) we find Frz0.02 for a target accel- 

FIG. 4. Maximum instability growth rate as a function of l/(Fr)'". 
[Fr=Fr(a,,,)]. 

erated ablatively by light with A, = 1.06pm from a Nd laser. 
This result agrees satisfactorily with the results of numerical 
calculations. 

We thus see that irradiation by higher harmonics of the 
laser light reduces the growth rate of the RT instabilities in 
the accelerated plasma by convection to a greater extent. 

Typical values of Fr/Fr,, in the instability localization 
region (z, ,z, ), found from the results of 1D numerical simu- 
lation of the ablative acceleration of A1 targets under various 
conditions, are shown in Fig. la. 

Figure 4 shows values of the maximum instability 
growth rates, normalized to (ga)  'I2, for various values of 
the characteristic number Fr. These results were calculated 
for the interval (zo,za) from the solution of the complete 
spectral problem for various regimes of the unperturbed 
flow of an ablatively accelerated plasma. We see from Fig. 4 
that the behavior of o,,,/(ga) "' as a function of Fr agrees 
well with the asymptotic expression (58a) up to values 
Fr > Fr,, ~ 0 . 0 6 ,  and it agrees well with the asymptotic be- 
havior for Takabe's approximate expression (1): 
a,,, /(ga)  'I2 cc l / (Fr )  'I2 at large values of the Froude num- 
ber. 

7. EFFECTOF COMPRESSIBILITY AND THERMAL 
CONDUCTIVITY ON THE INSTABILITY GROWTH RATE 

The role played by the plasma compressibility is charac- 
terized by two parameters:I8 the Mach number M = u/c, 
(the sound velocity is c: = y P / p ) ,  which characterizes the 
compressibility of the plasma flow carrying particles out of 
the instability region, and the "acoustic" Froude number in 
the unstable region, Fr, = c;a/g = Fr/M2, which deter- 
mines the actual effect of the compressibility on the growth 
rate of the RT instability with respect to the growth rate in a 
fluid at rest. Figure la  shows typical values of M 2  and Fr, 
found by numerical simulation in the region (z, ,za ). 

Introducing the parameter 6 = a/cf k 2, which vanishes 
'in the short-wavelength limit, we can rewrite Eq. (33) for 
small perturbations in a fluid at rest as follows: 

In the short-wavelength limit, a /k<  1, Eq. (61 ) be- 
comes 

The solution of the spectral problem in the short-wavelength 
limit is 

In other words, the corrections to the growth rate for the 
compressibility are determined by the quantity ( l/Fr, ), 
which is generally not small. 

The corrections for the compressibility of the unper- 
turbed flow are small, proportional to M '. For acoustic per- 
turbation modes in the approximation of a discontinuity and 
a uniform flow, for example, the spatial distribution (19) is 
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replaced by exp( f kz/( 1 - M *) ' I 2 ) .  The corresponding 
corrections for the compressibility in expression ( 5 8 ) can be 
estimated to be 

As we have already mentioned, the corrections to the 
growth rate for the finite thermal conductivity can be impor- 
tant only in the short-wavelength limit. To estimate the ef- 
fect of finite thermal conductivity in comparison with that of 
convection, we consider the equations for the perturbations 
in the approximation of an incompressible plasma at rest 
under the condition 

x k A 2  
<-< 1. 

(ga)  '; kZ 

From the linearized versions of the heat-conduction 
equation, the continuity equation, and the equation of mo- 
tion, in which we retain terms up to first order in the small 
parameter (65), we find 

Calculating the growth rate, we find, in the short-wave- 
length limit, 

Comparing the correction for the thermal conductivity in 
(67) with the correction [in (58) ] for convection, we easily 
see that the thermal conductivity is relatively unimportant 
under the condition Pe = u/xa) 1. The typical values of the 
Pe number found from the numerical calculations (Fig. l a )  
show that the thermal conductivity is generally inconse- 
quential. 

8. SOLUTION OFTHE SPECTRAL PROBLEM 

As we mentioned back in Sec. 4, it is essentially impossi- 
ble to derive an analytic solution of the spectral problem for 
RT instabilities in the case with convective transport of par- 
ticles, even in a very simple model with a discontinuity. On 
the other hand, the spectral problem ( 10)-(13) can be 
solved numerically as an eigenvalue problem. In the semi- 
classical approximation, the coefficients u (z,t), p (z,t) , 
P(z,t), and g(z,t) in Eqs. ( lo)-( 13) are treated as steady- 
state profiles of the unperturbed flow found through a 1D 
numerical simulation of the original problem of the ablative 
acceleration of a foil by a laser light pulse. Quasisteady pro- 
files are established after the passage of several shock waves 
and rarefaction waves following the beginning of the laser 
pulse. The typical u(z),p(z), P(z), andg(z) profiles in Figs. 
1-3 were found in numerical calculations at t = 6 ns, at 
which point the plasma flow was essentially in a quasisteady 
state. 

In the numerical solution, eigenvalues of the problem 
( lo)-( 13) for perturbations as in (32) were sought by a 
"shooting" method. For a given approximation cr 'k', the 
system of differential equations was solved by the Adams 
method, and then a new value a 'k + '' was found by New- 
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ton's method: 

u(k+t)=O(h)-F (o(k)) (dF/du)-l 

The value of dF/da  was found numerically. Here F ( a )  = 0 
is the boundary condition at the right-hand boundary, at 
z = z*: 

where 

The iterative process was terminated when the following 
condition was satisfied: 

A check was then made to see whether the inequality 

was satisfied. 
In the solution of Eqs. ( lo)-( 13), the integration away 

from the singular point z = 0 was performed in accordance 
with the asymptotic behavior ( 16). The value of z,, from 
which the system of differential equations was actually 
solved was chosen in the interval (0.02-0.05)z0, where the 
coordinatez, corresponds to the density maximum. The cal- 
culations showed that the value found for a is essentially 
independent of the value of z,,, over the specified interval. 

Figure 5 shows the perturbation growth rate, a = ~ ( k ) ,  
found through the solution of the spectral eigenvalue prob- 
lem (lo)-( 13) with boundary conditions ( 16) and (68), for 
the unperturbed flow of ablatively accelerated plasma corre- 
sponding to Figs. l a  and 2a. 

We see from Fig. 5 that as we go to progressively shorter 
laser wavelengths the instability mode which grows most 
rapidly shifts in the long-wavelength direction in the a ( k )  
dispersion relation. Specifically, we find A,,, ~ 2 5  p m  at 
A, = 0.26 and A,,, -- 16 p m  at A, = 1.06 pm. The instability 
growth rate at A = A,,, is 3040% lower when the target is 
irradiated with the fourth harmonic of the laser than when it 
is irradiated with the first harmonic, under otherwise equal 
conditions. A substantially greater decrease in the instability 
growth rate as we switch to shorter laser wavelengths occurs 
in the short-wavelength part of a ( k )  . 

The x radiation from the plasma corona heats the dense 
layers of the plasma of the accelerated part of the target to a 
greater or lesser extent, depending on the intensity of this 
radiation. A relatively high intensity of the x radiation and a 
correspondingly pronounced heating of the dense plasma 
lead to the density profiles with a gentler slope, while they 
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FIG. 5. Instability spectra for the ablative acceleration of an Al target for FIG. 7. Instability spectra for the ablative acceleration of an A1 target for 
unperturbed flows corresponding to the profiles in Figs. la  (curve I )  and unperturbed flows corresponding to the profiles in Figs. 2a (curve 1) and 
2a (curve 2 ) .  2b (curve 2 ) .  

increase the convection of particles out of the instability re- 
gion (z, ,z, ) (compare Figs. la, b, and 2a, b).  By preparing a 
target with multilayer coatings of materials with different 
values of 2, and by varying the intensity of the x-ray emis- 
sion from the plasma corona, one can thus alter the dynam- 
ics and growth rate of the instabilities in the course of the 
ablative acceleration of targets. 

Figures 6 and 7 show the perturbation growth rate, 
a = u(k) ,  found through a solution of the spectral problem 
( lo)-( 13 ) for unperturbed flows under the conditions cor- 
responding to Figs. la, b, and 2a, b, respectively. In the nu- 
merical simulation of the ablatively accelerated foil in ver- 

FIG. 6 .  Instability spectra for the ablative acceleration of an Al target for 
unperturbed flows corresponding to the profiles in Figs. la (curve 1) and 
Ib (curve 2 ) .  

sions b, the x-ray emission from the plasma corona was 
artificially suppressed (Figs. lb  and 2b). We then solved the 
spectral problem ( lo)-( 13 ) with unperturbed solutions for 
the case of the irradiation of a target with laser light with 
A, = 1.06 pm (Fig. 6)  and A, = 0.26 p m  (Fig. 7).  

It can be seen from the results in Figs. 6 and 7 that the 
heating of the dense layers of the target by x radiation from 
the plasma corona causes a substantial decrease in the insta- 
bility growth rate and a shift of the fastest-growing instabil- 
ity mode into the long-wavelength part of the a ( k )  spec- 
trum. Specifically, we find A,,, -- 16pm and&,, =. 7pm for 
laser irradiation with wavelength A, = 1.06 p m  with and 
without x radiation from the plasma corona, respeclively. 
We find A,,, -- 25 p m  and A,,, =: 16 pm, respectively, in the 
case of laser irradiation with a wavelength A, = 0.26 pm. 

Figure 8 shows the spectrum of the growth rate of the 
RT instability for the ablative acceleration of targets by laser 
light with A, = 0.26 p m  at intensities I = 1013 W/cm2 and 
I = 5 -  10'' W/crn2 under the conditions of the unperturbed 
flows shown in Figs. 2b and 3, respectively. As expected, 
under otherwise c0nstar.t conditions the primary effects of a 
change in the intensity of the laser light are a change in the 
acceleration of the target, a change in the convection veloc- 
ity, and a corresponding change in the instability growth 
rates. 

It was shown in Sec. 4 above that it is not possible, 
strictly speaking, to find an analytic solution of the problem 
for the growth rate of RT instabilities with convection of 
particles through the instability localization region in the 
very simple model in which the transition region is replaced 
by a discontinuity front. On the other hand, the spectral 
problem can be solved numerically, by integration through a 
transition region with a given (known) structure. Actually, 
specifying the structure of the discontinuity front, i.e., speci- 
fying the spatial distribution of the hydrodynamic variables 
in the region (z,,z, ), is equivalent to specifying an addi- 
tional boundary condition in the problem with uniform plas- 
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FIG. 8. Instability spectra for the ablative acceleration of an Al target for 
unperturbed flows corresponding to the profiles in Figs. 2b (curve I )  and, 
3 (curve 2). 

ma flows separated by a discontinuity front. It is therefore of 
interest to compare the solution of the "exact" spectral prob- 
lem with the model problem of the stability of the ablation 
front. In the latter case, the unperturbed flow used in the 
solution of spectral problem ( lo)-( 13) was the transition 
region (z, ,za ) with the structure found from the 1D numeri- 
cal simulation, but with a uniform plasma flow 
p = p(zo ) = const at z<zo and with another uniform plasma 
flowp = p (za ) = const at z)z,. Accordingly, in the spectral 
problem of the stability of the ablation front, the boundary 
conditions (16) at the free rear surface of the target were 

FIG. 9. Instability spectra for the ablative acceleration of an Al target for 
unperturbed flows corresponding to the profiles in Fig. la. I--Solution of 
the spectral problem with boundary conditions ( 16), (68); 2-solution of 
the spectral problem for the model with a "discontinuity front"; 3-ap- 
proximation of the 2 0  simulation on the basis of ( 1 ). 

FIG. 10. Ratio of the instability growth rates to a,, = (gk) "' for the 
solution of the spectral problem with boundary conditions ( 16), (68); for 
the solution of the spectral problem for the model with a "discontinuity 
front"; and for the approximation of the 2Dsimulation on the basis of ( 1 ) 
for the unperturbed flow under the conditions of Fig. la. 

replaced by the boundary condition that the perturbations of 
all the quantities in the uniform flows vanish on each side of 
the discontinuity front and far from it. For z > z,, i.e., down- 
stream, these boundary conditions are equivalent to (68), 
while for z < zo the corresponding boundary conditions re- 
placing ( 16) are 

Figure 9 shows the RT instabilities found through a 
solution of spectral problem (lo)-( 13) for a discontinuity 
front with the boundary conditions (68) and (69). Curve 1 
corresponds to the front structure of Fig. la, while curve 2 
corresponds to the solution of the spectral problem with 
boundary conditions (68) and (69). Curve 3 is a plot of the 
approximate expression ( 1 ) . 

Our calculations show that the instabilities found 
through the solution of the spectral problem for the "actual" 
unperturbed flow of the plasma of the accelerated target are 
approximately the same as the results of the 2 0  numerical 
simulation for the instability growth rate. The difference in 
growth rates is less than 20%. The instability growth rates 
found in the model with a discontinuity front, on the other 
hand, are in most cases considerably smaller (Fig. 9 ) ,  al- 
though the instability spectra are qualitatively similar. 

The instability growth rates for the exact solution of the 
spectral problem, for the solution for the case of a discontin- 
uity front, and for expression ( 1 ) are shown by the curves 1- 
3, respectively, in Fig. 10 for unperturbed flows under the 
conditions of Fig. la. These growth rates are shown here as 
ratios formed with the classical value a,, = (gk) 

9. CONCLUSION 

This analysis of the growth rate of the RT instabilities in 
ablatively accelerated laser targets shows that the factor of 
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primary importance in stabilizing these instabilities is the 
convection of plasma particles out of the unstable region in 
the ablation zone (zo,z, ). This convection velocity in turn 
depends primarily on the laser wavelength and the intensity 
of the x-ray emission from the plasma corona. As the laser 
wavelength is reduced, the critical surface moves closer to 
the ablation front, so the convective transport of particles 
out of the instability localization region is effectively in- 
creased. In addition, the more intense emission of x radiation 
from the plasma corona causes, as a result of heating, 
smoothing of the density profiles in the dense layers of accel- 
erated plasma, so the role of the convective removal of parti- 
cles out of the instability region is effectively strengthened. 

The wavelengths of the instability modes which grow 
most rapidly are Amax =:25 p m  and Amax =: 16 p m  for the ab- 
lative acceleration of an aluminum foil with do = 10pm ir- 
radiated by a laser with I = 1013 W/cm2 for laser wave- 
lengths 1.06 pm and 0.26 pm, respectively. If, on the other 
hand, the spectra found for the instability growth rates are 
limited to a )  l / rH (7, =: 3 ns is the time scale of the varia- 
tions in the hydrodynamic properties of the unperturbed 
flow), we find that the instabilities are "cut off' in the long- 
wavelength region at A =: 150 p m  and R =: 50 p m  and in the 
short-wavelength region at R =: 5 p m  and il z 15 pm, respec- 
tively, for laser wavelengths of 1.06 p m  and 0.26 pm. These 
results agree satisfactorily with the experimental results of 
Refs. 3 and 4. 

Some interesting opportunities arise from the possibil- 
ity of changing the growth rate of the RT instabilities by 
changing the intensity of the x-ray emission from the plasma 
corona and by changing the dynamics of the accelerated 
plasma. These changes might be achieved, for example, by 
using multilayer targets with large-Z layers on the front of 
the target, as was first pointed out by Gardner et a1.' 

The solution of the eigenvalue problem ( lo)-( 13) 
leads to results which are approximately the same as the 
results of a direct 2 0  numerical simulation, but these resuks 
are achieved at a much lower cost in computer time. The 
method proposed here thus makes it possible to derive un- 
perturbed 1D profiles and a system of equations for the per- 
turbations in which the number of important physical pro- 
cesses taken into account is substantially greater than would 
be possible in a direct numerical simulation of the growth of 
perturbations. This new approach also simplifies the prob- 
lem of finding the most important scaling behavior, which is 
useful for an optimization. 

The experimental results presently available agree with 
the general trends in the behavior of the instability growth 
rate according to the theory, but the data available are not an 
adequate basis for making a detailed comparison with the 
theory. 

We wish to thank A. B. Bud'ko, A. L. Velikovich, A. 
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I )  The estimate (58) can easily be obtained alo for, e.g., pv = const 
(steady unperturbed flow). Qualitatively, Eq. (58) remains un- 
changed. 
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