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The motion of a soliton pulse in a resonant nonlinear single-mode optical waveguide and the 
emission by this pulse are studied for the case in which there is a deviation from that matching of 
the carrier frequency and the waveguide properties which would lead to a pure soliton 
propagation regime. This disruption is treated as a perturbation of an integrable system. A 
perturbation theory for solitons is modified to deal with the effect of the emission by the soliton on 
the medium. The properties of the perturbed soliton are calculated. The spectral power density of 
the emission is found. It reveals a very nonmonotonic dependence on the wave number. 

1. INTRODUCTION 

Nonlinear-optics phenomena can serve as an effective 
proving ground for developing and refining theoretical con- 
cepts of soliton physics and the corresponding experimental 
base. With a eye on the properties of optical media, we can 
distinguish two directions for research of this type. The first 
is aimed at optical solitons in a nonresonant medium, the 
classic example of which is a plane waveguide channel which 
arises during steady-state two-dimensional focusing in a me- 
dium with a Kerr nonlinearity.' Included in this category is 
the problem of the propagation of ultrashort pulses through 
an optical waveguide with a nonlinearity which is quadratic 
in the field.223 The second direction is toward solitons in 
resonant media, which are responsible for self-induced 
tran~~arency,"~ superfluores~ence,"~ the passage of pulses 
through a nonlinear film,9*'0 and several other effects. The 
present status of self-induced transparency is reflected in the 
review by Maimistov et at. ' ' 

One should also bear in mind that in actual optical me- 
dia both these nonlinearities are present to some extent. 
There is accordingly the fundamentally important question 
of whether a soliton can exist in a "composite" medium of 
this sort. An affirmative answer was given to this question in 
Refs. 12-15, where it was shown that a soliton arises when a 
plane light beam is scanned over the surface of a resonant 
Kerr medium. A soliton regime arises when a certain condi- 
tion involving the parameters of this system is satisfied. Spe- 
cifically, the scanning velocity must be correlated in a cer- 
tain way with the parameters of the medium and of the 
emission. The physical meaning of the condition is that a 
balance is struck among such competing factors as the dif- 
fractive divergence, the self-focusing, and the evolution of 
the two-level subsystem. A soliton in a composite medium 
has characteristics of both a waveguide channel and a 2a 
pulse. This situation is described by the Maxwell-Bloch 
equations, but in this case, in contrast with Refs. 4-6, Max- 
well's equation includes terms which stem from the diffrac- 
tive divergence and the Kerr nonlinearity. 

As was first shown in Ref. 16, the same equations can be 
used to describe the propagation of ultrashort pulses 
through a nonlinear single-mode optical waveguide contain- 
ing resonant impurities. The impurities qualitatively change 
the evolution of the pulse as a soliton. It becomes necessary 
to match the frequency of the light wave with the parameters 
of the nonlinear medium. This matching condition is rather 

restrictive, but one might attempt to satisfy it by varying the 
frequency of the light wave over the inhomogeneously 
broadened line of the resonant transition.I6 A question 
which arises here is how a mismatch (which might arise, in 
particular, from errors in the determination of the character- 
istics of the medium) would affect the propagation of the 
pulse through the waveguide. Mathematically, a violation of 
this condition can be treated as a perturbation of an integra- 
ble system; if this perturbation is small, one can use pertur- 
bation theory for the solitons. 

Our purpose in the present paper is to analyze this per- 
turbed system. In first order we find corrections to the pa- 
rameters and shape of the soliton. We also find the charac- 
teristics of the radiation emitted by the soliton as a result of 
the perturbation. We show that a mismatch does not affect 
the soliton amplitude, but it does cause a small and asym- 
metric distortion of the shape of the soliton. We might men- 
tion several points which reflect distinctive features of this 
study. First, in the spirit of the formulation of the problem 
we do not assume-in contrast with Lamb4-that the car- 
rier frequency coincides with the central frequency of the 
atomic transition. Second, the perturbation theory for soli- 
tons in the form it was developed in Ref. 17 and used in Ref. 
18 requires some modification. The reason is that the effect 
of the radiation emitted by the soliton on the medium must 
be taken into account; the effect is seen in the difference 
between the evolution of the scattering matrix here and the 
evolution in Ref. 17. Finally, the perturbation-theory meth- 
od is based on the Riemann problem. That approach is tech- 
nically more transparent. In particular, it allows us to avoid 
the appearance of integral equations in the calculations of 
the corrections to the solitons. The corrections to the shape 
of a soliton which arise when a light beam is scanned over the 
surface of a medium with a composite nonlinearity were re- 
cently cal~ulated, '~ but the reaction of the medium to the 
emission by the soliton was ignored. 

2. EQUATIONS OFTHE MODEL 

The propagation of an ultrashort pulse propagating 
through a nonlinear single-mode optical waveguide contain- 
ing resonant impurities, which are modeled by two-level 
atoms, is described by the modified Maxwell-Bloch equa- 
t i o n ~ : ' ~  
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Here z and t are dimensionless coordinates in the moving 
system; E = A /Ro, where A(z, t)  is a slowly varying com- 
plex amplitude, and Ro is the maximum value of this ampli- 
tude; and a and u are elements of the density matrix of the 
two-level subsystem, which are associated with the induced 
polarization and the population inversion, respectively. A 
superior bar means complex conjugation. The angle brack- 
ets mean an average with the distribution functiong(6) over 
all normalized detunings of the transition frequency of an 
individual atom, w ,, , from the frequency of the carrier wave, 
w, where 6 = (w - w,, )R& '. We are not assuming that the 
carrier frequency coincides with the central frequency of the 
atomic transition, w,. Here Rg = 277-~,wd 2fi' ', where No 
is the density of resonant atoms, and L? is the effective matrix 
element of the dipole transition between resonant states. The 
coefficients d and e in ( 1 ) are given byI6 

where La is the resonant-absorption length, L, is the disper- 
sion length, and L, is the nonlinear length. These lengths are 
given by 

Here tp is the pulse length, Pis  the propagation constant, 121 
is the effective nonlinear susceptibility, and the dimension- 
less constant f = d~,t,fi-- ' characterizes the interaction of 
the light with the two-level subsystem. Equations ( 1) have 
soliton solutions if the parameters satisfy the condition16 

Below we will use some slightly different quantities: 
8 = 2z@, /Z = - 2f0, N = - fu, 2a = - 6. We can then 
rewrite Eqs. ( 1) as 

We denote by R that frequency within the linewidth of 
the atomic transition at which condition (4)  holds, and for 
which we have d ( R )  = do and e(R)  = e,. We then have eo 
= 2f *do. Writing d(w) as 

and writing a corresponding expression for e(w), we find, 
using (2 )  and (3),  

where 

Here k '  = ak(w)/aw, etc., and n, is the nonlinear compo- 

nent of the refractive index: 

n(o ,  8)  =no(o)  +n2(o)  (812. 

Let us look at some estimates. We assume w- lOI5 
m ,  no=1.5, k=(w/c)n,,  Az1.5 pm, k "  
= - 2.5.10 - 2 8  s2/cm, and k" = s3/cm. We then 

find I&pI I - 10 - 3-10 - 4. With regard top, , estimates yield 
I EP, I - 10 - 4-10 - depending on the particular mechanism 
for the optical a n h a r r n o n i ~ i t ~ . ~ ~ . ~ '  These corrections are 
therefore small, justifying our use of a perturbation theory 
for solitons. 

Using (6)  and (7) ,  we can thus write the Maxwell- 
Bloch equations ( 1 ) as follows: 

The right-hand side of Maxwell's equation specifies the per- 
turbation. For Eqs. (8)  we have an "E-curvature representa- 
tion": 

U,-V,+[U, Vl =i(~R-t;,a,), f d ,  
h 

where the 2 X 2 matrices U, V, and R are 

-i6a3+Q ( t ) ,  
-8 /2  is 

In the case E = 0, Eqs. (8)  can be integrable by the inverse 
scattering method. l6 

3. PERTURBATION THEORY FOR THE MAXWELL-BLOCH 
EQUATIONS 

Let us outline the procedure for finding solutions of the 
perturbed system (8) through the use of a Riemann prob- 
lem. We denote by T ,  ( t ,<)  the matrix Jost solutions of the 
Zakharov-Shabat spectral problem:' 

where I $ I -0 as It I -+ UJ , with the asymptotic behavior 

The scattering matrix S ( c )  can be expressed in terms of the 
Jost solutions: 

We denote by T , i = 1,2, the columns of the matrices T ,  . 
We introduce the new matrices 

@(t,  %)= (T(') eitt, T:' e-jCt), 0 ( t ,  %)= (T:) e i6f ,  ~ ( 2 '  e-ict) 
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The matrix 0 is analytic in the upper 5 half-plane, and we 
have det 0 = a ( f ) .  The matrix 8, in contrast, is analytic in 
the lower half-plane, and we have det 8 = Zi(c). Asymptoti- 
cally the matrix 0 becomes triangular: 

where 

(corresponding expressions can be written for 8 ) .  The rela- 
tionship with the scattering matrix is 0 + ( f )  
= S(f)  0 - ( f )  . We denote by 5, and c, the zeros of the de- 

terminants a ( ( )  and Z(c), respectively ( j = 1, ..., N). The 
columns of the matrices 0 and 8 then satisfy the proportiona- 
lities 

eci) (t, 51) =71 (t) 0") ( t ~  % J )  

yj(t) =yl exp i2ibltj, Imf;,>O, y,=C, 

G ( ~ )  (t, t j)  = - ~ ~ ( t )  (t, cj), 

Tj  (t) =Ti exp (--2iijt), 1m < 0, ij € C. 
- 

The set b ( g ) ,  5 = Re c, fJ, cJ, yJ, and yJ constitutes the scat- 
tering data. 

The relationship (10) between the Jost solutions be- 
comes 

where the matrix G(t, p )  is 

and 8 + is defined by 8 + = 8 - ' det 8. Expression ( 1 1 ) 
can be treated as a matrix Riemann problem with zeros,22 
i.e., a problem of the factorization of a nonsingular matrix 
G(t, 5) which is specified on the real axis, into a product of 
two matrices with the specified analytic properties. The vari- 
able t serves as a parameter here. The solution of the Rie- 
mann problem ( l l ) can be written in the form 

Here 

The matrices 

explicitly incorporate the proportionality of the columns at 
the points S, and cJ. 

Let us formulate boundary conditions for the popula- 
tion inversion N and for the induced polarization A. We will 
discuss "causal" solutions (in the terminology of Zak- 
harov7 ) . We then have N- - 1 and R -+ 0 as t - - w . Since 
the Bloch part of system (8)  is specified by first-order equa- 
tions, the asymptotic behavior of R and N as t -+ w arises as a 
consequence of the solution of the equations. Lamb4 showed 
that Nand R can be expressed in terms of the Jost solutions of 
the spectral problem. In terms of the matrices 0 and 8 we 
have 

N=-"8(')(t, a)0,8(~)(t,  a ) ,  

h=-trB(o (t, a) ( I + U ~ ) ~ ( ~ )  (t, a )  

(the superscript t r  means transposition). As t- w we thus 
find 

N+-1+2b(a)6(a), h+2a(a)6 (a) exp (-2iat). 

The equation for the z evolution of the scattering matrix 
is written (see the Appendix) 

OD 

S.-[ V-, S]-I-lV+IS=iaO+ ( 5 I -~O-~RU dt) @--I, ( 13) 
- 9) 

where the term with V +  incorporates the reaction of the 
medium to the emission by the soliton. Here 

Since we havek6 

we find from (13) the evolution equation which we have 
been seeking for the elements of the scattering matrix in the 
case of a continuous spectrum: 

Here the notation ( 0  " '1 f( t )  10 'j') means the integral 
/" ,'0 "'(t)f(t)0'J'(t)dt. 

To find the formulas forAhe dkcrete spectrum, we need 
to make the replacement ER-ER - czu3,  take the limit 
(+fj, and note that limits (15) disappear because of expo- 
nential factors. As a result we find 
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To reconstruct the potential Q(t) from the known solution 
of the Riemann problem, we chose the matrix 8 for definite- 
ness. This matrix can be represented by the asymptotic ex- 
pansion,, 

We then find 

We wish to stress that Eqs. ( 13) and (16)-( 18) de- 
scribe the exact evolution of the scattering data. They are 
awkward for practical calculations, however, since the solu- 
tions 19 and 8 of the Riemann problem in them depend on the 
unknown solution of the perturbed system (8). Further 
progress can be made by using an iterative scheme. 

4. SOLITON SUBJECTED10 A PERTURBATION 

We seek a solution for the envelope to first order in E ,  in 
the form 8 = 8, + 8 , ,  where 8, is the soliton in the adia- 
batic approximation,17 and 8, is a small quantity on the 
order of E. The solution of the Riemann problem can then 
also be written in the form 13 = 13, + e l ,  8 = 8, + 8,. Since 
the Jost coefficient is b, = 0 in the adiabatic approximation, 
the quantity b and therefore p and p are proportional to E. 

When these comments are taken into account, expressions 
( 12) with = 1 reduce in the leading order to a system of 
two linear algebraic equations: 

Solving these equations for 8,, and carrying out an asympto- 
tic expansion in accordance with ( 19 1, we find 

B.,=-2i(51-~I) (I--FI) (I-FiF1)-'. 

We introduce 

We find the soliton solution 

8,=4q1 exp (-i6)sech y.  (20) 

(the z dependence of y and 9 is given below). We can write 
explicit expressions for the solutions 8, and of the Rie- 
mann problem. 

a )  For the continuous spectrum (6 = Re g) ,  

I-ti-iq, th y -isle-" sech y ) (21) 

-iqie"sech y g-gi+iqI th y 
1 

b) For a discrete spectrum, 

1 e-Y -e-i" 1 e u  e-'" 
0. = T(-eie e" )sech Y. 0. = T(. eir, e-u ) sech y. 

Using ( 20), we can write the following expression for 
the perturbation R in (9)  : 

Now substituting (22) and (23) into (17), we easily find 
clz = 0, i.e., 6, = const and 7, = const. 

We now replace the complex quantity y, by two real 
quantities, A, and T,,  in accordance with y, 
= exp [i(A, - 2{, T, ) ] .  In these terms we have 9 
= ~ 1 7 ; ' ~ + A 1  and y = 2 ~ , ( t - ~ , ) .  Using (18) and 
(21), and using the notation -+( ( f ,  - a ) - ' ) = @ ,  
+ iw,, we find laws describing the evolution of T, and A, 

with contributions on the order of e: 

Hence 

A small deviation from condition (4)  thus leaves the soliton 
amplitude unchanged. Furthermore, the soliton velocity is 
independent of a variation of the refractive index n,, while 
perturbations of both types contribute to a phase modula- 
tion. 

The correction to the shape of the soliton is found by 
examining terms on the order of E in ( 12). We have 

cc 

The matrices 6, and 8,, which were found above, appear in 
the integrals. We thus have a system of two linear algebraic 
equations for 8, and 8,. Solving these equations, and carry- 
ing out the asymptotic expansion 

we find an expression for 8, = 2(B, ),, with the well- 
known structure:I7 

m 

The Jost coefficient b(6) is found by solving Eq. ( 16). For 
the perturbation under consideration here, (23), in first or- 
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der in E, the solution can be written 

For sufficiently large values of z we thus find 
En: 

b(z, 5)- - ~ ( ~ l + p z ) D - ' ( g ,  6)  (6-51) (E-8,) 

where 

We fix the lineshape of the resonant transition, assuming a 
Lorentz distribution: 

where r is the half-width, 2a = (012 - w)QG ', and 2a0 
= (w,  - w)Q; l. We then find 

where 

We write the polynomial D ( $ )  as 

For typical parameter values, one root lies in the upper half- 
plane (x, = x; + ix; ), while the two others lie in the lower 
half-plane (x, = xi - ix;, x, = x; - ix;). The correction 
g, in (24) can then be found by the method of residues. We 
will not write out the corresponding expression here, which 
is quite lengthy. What is of basic interest here is the asympto- 
tic behavior of the correction as lyl+ CO.  This asymptotic 
behavior determines the degree to which the soliton spreads 
out. Here are the results of the calculations. 

(a) For y- CO,  
3 

(Z1-ao+ir) (Zl-5,)' + 2ni -- y-i- 
(Z,-Zz) (Z1-23) 

FIG. 1. 

n x sech -(~,-5,)} r-". 
2'll 

When condition (4) is violated, the original symmetry 
with respect toy of the soliton shape is generally lost, and the 
degree of spreading is determined by the values of the imagi- 
nary parts of the roots x; and x;. If x; > q1 and x; > v l ,  no 
spreading occurs, and the distortion of the soliton shape oc- 
curs within the initial width of the pulse. If, on the other 
hand, one or both of these conditions do not hold, the width 
of the correction, PI, is greater than the original width of 
the soliton, but no tail arises. 

5. EMISSION BY A SOLITON SUBJECTED TO A 
PERTURBATION 

At small values of b ( 0 ,  the spectral power densityp(f) 
of the emission by the soliton is given byl8 

The parameter 6 is directly related to the wave number k of 
the linear waves which are emitted (g = k /2). Substituting 
expressions (25) and (26) into (27), we find 

3 

n 
x sech -(%-'kt). 

2'l i 

Figure 1 shows the spectral density p ( 6 )  for typical param- 
eter values. The wave-number dependence is definitely not 
monotonic; there are two clearly defined peaks, -ql in 
width, which correspond to forward and backward emis- 
sion. Away from the points g,, , and g,,, , the function p(g) 
falls off exponentially. 

n 
x sech- (Zl-I%)} o-". 6. CONCLUSION 

2% Condition (4), which is the condition for the existence 
(b) For y+ - co (for definiteness, we are assuming x; of a soliton regime in the propagation of an ultrashort pulse 
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through a resonant nonlinear waveguide, appears at first 
glance to be extremely restrictive, imposing stiff require- 
ments on the carrier frequency of the pulse. It has been 
shown above that small deviations from this condition do 
not disrupt the important properties of the soliton. In partic- 
ular, the amplitude and velocity of the soliton do not depend 
on a variation of the refractive index n,. The spectral power 
density of the emission by the soliton has been found. Since 
the medium absorbs the radiation emitted by the soliton, the 
shape of the soliton remains localized. 

The energy loss by the soliton as it moves along the 
waveguide can be offset through preliminary pumping of 
resonant atoms over a certain section of the waveguide.I6 
This situation is also described by Eqs. (5  ), but with differ- 
ent boundary conditions. One might suggest that again in 
this case a slight deviation from the matching condition (4) 
would leave the important parameters of the soliton at an 
acceptable level. 

We wish to thank A. A. Afanas'ev and R. A. Vlasov for 
useful discussions. We also thank L. F. Babichev and Ya. M. 
Shnir for assistance in the numerical calculations. 

APPENDIX 

Let us derive Eq. ( 13 ) . We introducex = @, - V@. In 
the case of a continuous spectrum the function x then satis- 
fies the equation 

We assume @ = BJh (z) , where h (z) is some function. From 
the condition x -0 as t - - w we find 

where 

Ast-  w wehave@-J8, h =  JSB-  h; hence 

where v+ = V -  + V+ and V+ is given in ( 14). Finally, 
for arbitrary t we assume x = BJK(t), where K(t) is some 

function to be determined. From (Al )  we then find 

Kt=iel-'0-'BOJh, 

In the limit t- oo we then find 
m 

x - i e ~ ~ + (  j 1 - 1 0 - l f i 8 ~ d i )  h. 
- cx 

Comparing (A2) with (A3), we find Eq. ( 13), which we 
have been seeking. 
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