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The instability of a rounded crystal has been studied by direct observation and numerical 
simulation. Distortions of the rounded shape along the predominant ( 100) directions arise in the 
stage of growth in the kinetic regime, i.e., under conditions such that the growth pattern is 
controlled exclusively by surface processes. Depending on the lattice structure (bcc or fcc), either 
(a)  only the predominant (100) protuberances form or (b)  both the predominant protuberances 
and additional ( 1 1 1) protuberances form. The numerical simulation of the process shows that the 
differences in the morphology of the protuberances are determined by the magnitude of the 
anisotropy, not by its angular distribution. Protuberances appear or are suppressed upon small 
changes in the anisotropy parameter. The effects depend on the magnitude of the kinetic 
coefficient and on the initial supercooling of the melt. 

INTRODUCTION 

The shape of a crystal grown from the melt is known to 
depend strongly on the anisotropy of the surface energy a. In 
particular, the fraction of the equilibrium shape made up of a 
given face is smaller, the higher the indices of this face.' 
Cubic crystals of substances having a low melting entropy 
(Q /kT, < 2, where Q is the latent heat of melting, and T, is 
the melting point) have an atomically rough crystal-melt 
interface, with a slight anisotropy of a (Refs. 2 and 3).  In 
this case the crystals are rounded in shape, without any evi- 
dence of plane faces or macroscopic steps. This shape is evi- 
dence of an isotropic growth of the crystals. These morpho- 
logical features, along with the linear dependence of the 
growth velocity V on the supercooling of the melt, AT, i.e., 
V = BAT (B  is a kinetic coefficient), are characteristic fea- 
tures of normal (continuous) crystal A detailed 
study of the growth of a rounded crystal at a small value of 
AT has revealed a slight anisotropy of the velocity.5 The 
subsequent formation of dendrites from an initially rounded 
crystal is predetermined by some a certain crystallographic 
direction ( (100) in the case of fcc and bcc crystals). As was 
shown in Ref, 6, such dendrites can undergo a steady-state 
growth by virtue of the anisotropy of the surface energy a 
(or of the kinetic coefficient B). All these results indicate 
that a small anisotropy of a (or of B )  plays a fundamental 
role in determining the shape of crystals which grow by the 
normal mechanism. 

The formation of protuberances on an initially rounded 
crystal results from both anisotropic processes at the inter- 
face and isotropic heat-transfer (or mass-transfer) processes 
in the melt. This stage of the growth is definitely nonsteady, 
so it is difficult to study by analytic methods. Our purpose in 
the present study was to learn about the initial stage of the 
formation of protuberances on a macroscopically rounded 
crystal through experiments and numerical simulation. Cal- 
culations of this sort have been carried out previously for tin 
crystals.' In the present study the calculations were extend- 
ed to transparent organic substances, whose crystal growth 
can be observed directly. 

and differ in pairs in the type of crystal lattice. In addition, 
cyclohexanol has an anomalously low kinetic coefficient B. 
It has been shown previously5 that at small values of AT 
(-0.1 K )  the crystals of these substances are rounded. 
When they reach a certain size, protuberances form on them. 
Six main (100) protuberances form on the crystals with an 
fcc lattice (cyclohexane and cyclohexanol; four protuber- 
ances lying in the plane of observation are visible in Fig. 1 ). 
Six main ( 100) protuberances and eight additional ( 1 1 1) 
protuberances form in the succinonitrile and camphene 
crystals. The latter protuberances grow more slowly, and 
they are later suppressed by (100) branches as the growth 
continues. Under certain conditions, dendrites can also form 
from (1 1 1) protuberances. As was shown in Ref. 8, the mor- 
phological features of these dendrites are determined to a 
large extent by the growth in a nonpreferred direction. It has 
also been established that only the ( 100) principal protuber- 
ances arise on a rounded succinonitrile crystal when the ini- 
tial supercooling of the melt is increased to 0.5 K. 

The experimental kinetic coefficients found for organic 
crystals in Ref. 9 can be used to calculate the radii of relative 
and absolute stability of the rounded growth forms, i.e., R, 
and R ,  . The radius R,  is the crystal radius at which a protu- 
berance which has arisen on the surface of the crystal grows 
no more rapidly than the rest of the surface. This radius 
corresponds to a smoothing of a distortion which has ari- 
sen.'' Figure 2 shows theoretical results on R (AT) calculat- 
ed from Eqs. ( 1 ) for 1 = 3, using the parameters given in 
Table I: 

EXPERIMENTAL RESULTS AND DISCUSSION where 

Table I shows the properties of the four substances stu- 2T I? 
R,, = ---e Km L='/, ( 2 4 )  (1+2), a, = - 7  

died. We see that all have low melting entropies (Q /kT< 2)  T o - T ,  ' QBR,, 
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TABLE I. 

K, is the thermal conductivity of the melt, Kc, is that of the 
crystal, x = 1 + K,,/K,,  , and I? = o/Q. 

The curves for succinonitrile (Fig 2a) and cyclohexane 
(Fig. 2b) essentially coincide. Also shown here is the AT 
dependence of the characteristic diffusion radius 
R, = a / ( Q / C ) B ,  where a is the thermal diffusivity of the 
melt and Cis its specific heat. For R < R,, the crystal growth 
is controlled exclusively by processes at the boundary. When 
the opposite inequality holds, the growth is controlled by 
heat transfer in the interior of the melt. A comparison of 
these calculated results with experimental data shows that 
the succinonitrile crystals visible under a microscope grow 
deep in the diffusion regime, while cyclohexanol crystals 
spend a long part of their growth time in the kinetic regime. 
This difference is a consequence of the large difference in 
kinetic coefficients. 

During the stage of growth in the kinetic regime for the 
cyclohexanol crystals, an anisotropy of the velocity has been 

Crystal-melt Thermal con- Experimental Klnetlc 
Substance Lattice surf. energy, ductivity of instability coefficient, 

cm2/s 

I - 1 1 type 1 J , ~ ~ ~  Imelt a, 1 r ad ius ,~m 1 cm/(s.K) 

found. This anisotropy causes a slight distortion of the 
rounded crystal in the four ( 100) directions in the observa- 
tion plane. When the value R = R, is reached, distortions 
with a curvature different from that of the original crystal 
appear on the surface of the crystal. These distortions subse- 
quently develop into dendrites. For cyclohexane, which has 
the same crystal lattice, precisely the same protuberances 
form, but in this case the observed growth of the rounded 
crystal occurs deep in the diffusion regime, as in the case of 
succinonitrile (Fig. 2a). On the other hand, succinonitrile, 
with a bcc lattice, is characterized by the formation of eight 
additional ( 1 1 1 ) protuberances in the initial stage of the in- 
stability of the rounded shape of the crystal. The same mor- 
phological feature is a property of the bcc camphene crys- 
tals. 

These results can be used to refine our understanding of 
the nature of the instability of a rounded crystal. In the stage 
of growth in the kinetic regime, i.e., while the shape of the 

FIG. 1. Successive shapes of growing crystals associat- 
ed with supercooling of a melt. AT = 0.1 K. a-c-Suc- 
cinonitrile; d-f-cyclohexanol. 
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FIG. 2. The relative-stability radius R ,  ( 1 ), the absolute-stability radius 
R, ( 3 ) ,  and the characteristic diffusion radius R, (2) ,  all divided by R,,, 
as functions of the supercooling of the melt. a-Succinonitrile; b-cyclo- 
hexanol. 

crystal is determined exclusively by processes at the inter- 
face, the rounded shape becomes distorted. In other words, 
even before the critical size is reached, protuberances are 
present on the crystal as a result of an anisotropy of surface 
processes. For this reason, there could hardly be any justifi- 
cation for invoking the concept of an absolute-stability ra- 
dius R,. In the diffusion growth regime, at R 2 R,, these 
protuberances develop along the (100) direction in the case 
of a cubic lattice. The amplitude of the distortions which 
arise is determined by the nature of the anisotropy, by the 
absolute values of B and u, and by the thermal properties of 
the melt. This amplitude imposes a certain morphology on 
the protuberances. Unfortunately, the specific way in which 
B and u depend on the crystallographic direction is not 
known. In particular, the difference between this depen- 
dence for the bcc lattice and that for the fcc lattice is not 
known. The subsequent analysis was carried out numerical- 
ly. It was assumed that the nature of the anisotropy of B and 
u is unknown; only the magnitude of this anisotropy was 
varied. 

FORMULATION OFTHE PROBLEM FOR THE NUMERICAL 
SIMULATION 

Most previous numerical simulations of the evolution 
of the shape of crystals have dealt with the Laplace equation 
instead of the diffusion equation or the heat-conduction 
equation.6311s12 That approach is legitimate for the diffusion 
growth regime, in which the surface temperature or the con- 
centration varies only slightly during the growth, since these 
properties are close to their equilibrium values. For super- 
cooling of the melt corresponding to the experimental condi- 
tions discussed above, the size of a critical nucleating region 
is less than R,, and in the course of the growth there is a 
transition from a kinetic regime to a diffusion regime. Under 
these conditions, it would be preferable to deal with the heat- 
conduction equation in the numerical simulation rather than 
to find solutions of the Laplace equation. 

Experimental observations of crystals which are small 
in comparison with the cell dimensions fall in the category of 
a free three-dimensional growth. The growth of three-di- 
mensional crystals has been simulated previously in several 

studies (e.g., Refs. 13 and 14). Such calculations, however, 
require a lot of computer time. Most of the work on the 
simulation of dendrite growth has dealt with the two-dimen- 
sional case ( a  plane cell ) . 

It is believed that growth in a plane cell and that in a 
three-dimensional cell are sufficiently alike that the mechan- 
ism for the shaping of the crystals can be determined. It was 
shown in Refs. 7 and 10 that the radii of absolute and relative 
stability are comparable in order of magnitude in the cases of 
two-dimensional and three-dimensional growth. According 
to Ref. 10, these radii are given by ( 1 ) for the case of two- 
dimensional growth in the diffusion regime. Expressions for 
R, and R, which incorporate the kinetics of surface pro- 
cesses are given in Ref. 7. The results calculated from expres- 
sions ( 1 ) agree with the results calculated from the expres- 
sions in Ref. 7 in the case of the growth of succinonitrile 
crystals, because of the large value of the kinetic coefficient B 
(the thermal conductivity in the solid phase was ignored). 
Substituting in numerical values of the properties of the suc- 
cinonitrile crystals (Q /C = 23.12 K, AT = 0.2 K) ,  we find 
the following values for the relative-stability radius (ex- 
pressed in units of the critical size of the crystal) : 72.4, 89.4, 
119.2, 156.4, and 250.3 for I = 3,4, 5, 6, and 8, respectively. 

The method developed in Refs. 7 and 14 was used for 
the numerical solution of the problem. When the heat-con- 
duction equation in polar coordinates is written in finite dif- 
ferences, the corresponding derivatives are expressed in 
terms of the temperature values at the nodes of an adjustable 
mesh based on radial lines. The lines of the mesh which inter- 
sect these radial lines are not circles, however. Those closest 
to the crystal reproduce the surface profile of the crystal, 
while those farthest from the crystal have the configuration 
of the edge of the cell (a  circle). 

The heat-balance condition at the interface is taken into 
account: 

where Vis the local growth velocity (in the direction normal 
to the surface), and (dT/dn), and (dT/dn)., are the tem- 
perature gradients in the direction normal to the surface in 
the two phases. Since one of the node lines coincides with the 
surface of the crystal, the Gibbs-Thomson correction to the 
surface supercooling, as generalized by HerringI5 to the case 
of an anisotropic surface energy, can be taken into account in 
the calculation of the crystal growth velocity: 

where 8,,, = ( To - T,,, ) / (  To - T, ) is the reduced super- 
cooling at the given point on the surface, 

u is the surface-tension coefficient, R is the volume of a mo- 
lecule, K is the surface curvature, T,,, is the surface tempera- 
ture, and T ,  is the temperature far from the interface. The 
anisotropy of the growth velocity and that of the surface 
tension are specified by the functions 

o=oo(l+Z, cos ncp), B=Bo(l+Z, cos ncp) , (4)  

where q, is the angle between the normal to the given region 
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of the surface and the direction of the most rapid growth. In 
the case at hand we have n = 4 and T ( p )  
= ro ( 1 - 15Z, cos 4p),  where To = uo R/kT is the ca- 
pillary length, and Z ,  < 1/15. We used the following para- 
meter values: B = 50 cm/(s.K), a = 1.16. l o p 3  cm2/s, 
ro = 2.10-8cm, K, = 5.32. cal/(cm.s.K), and var- 
ious values of the factors Z, and 2,. 

Preliminary calculations revealed that a large value of 
the kinetic coefficient imposes an additional restriction, na- 
mely a minimum time step, if the calculation is to converge. 
The thermal conductivity in the solid phase was ignored in 
order to reduce the computation time, and the last term in 
( 2 )  was ignored. 

Nonuniform meshes were used, with a step increasing 
along the radial lines with distance from the crystal. The 
initial size of the cell was chosen so that it was 40 times larger 
than the size of the crystal. The initial size of the cell was 
progressively increased in order to maintain this relation. 
Corrections were made for the position of the mesh nodes. 
The temperatures at the new nodes were found by interpola- 
tion. In the calculations on the case of a diffusion-limited 
growth, with B = CO, the surface temperatures were set 
equal to their equilibrium values for the corresponding sur- 
face curvature: e,,, = T ( p ) k .  In addition, the growth velo- 
city was found from condition (3) .  

RESULTS OFTHE NUMERICALSIMULATION AND 
DISCUSSION 

The numerical solutions give a complete description of 
the evolution of the shape of the crystal as well as informa- 
tion on the temperature field throughout the cell. Figure 3 
shows successive profiles of crystals calculated for a relative- 
ly slight anisotropy of the surface energy and of the growth 
velocity. The rounded crystal with a size of 15R,, specified 
in the initial conditions had no protuberances (profile 1 ) . As 
the growth proceeded, four protuberances developed along 
the directions of maximum growth velocity and of maximum 
surface energy, by virtue of the anisotropy of uand B. As can 
be seen from profile 3 in Fig. 3, at a crystal size - 300R,, 
some secondary protuberances are also quite evident (there 
are four additional protuberances; half of the crystal is 
shown in Fig. 3).  These secondary protuberances grow in 
the direction of minimum B and a .  This crystal size is com- 
parable to the corresponding experimental size. In the subse- 
quent stages of the growth, the velocities of the principal and 
secondary protuberances are comparable in magnitude. 

An increase in the anisotropy of the surface energy has 
the consequence that the secondary protuberances which 
arise when the crystal has reached a certain size grow more 
rapidly than the principal protuberances (Fig. 4) .  Analysis 
of the calculated isotherms [lines of constant relative super- 

FIG. 3. Successive profiles of crystals for A T =  0.2 K, Z, = 0.03, and 
Z,  = 0.06. ]-Time interval t = 0.07 s; 2-4.13; 3-1.1; 6 3 . 6 ;  5-8.9 S. 

FIG. 4. Successive profiles of crystals and the temperature field for the last 
shape ( A T =  0 . 2 K , Z I  = 0.05,Z2 = 0.06). t = 0,0.13,0.47, 1.2,2.4,3.8, 
and 7.5 s. 

cooling AT,,, = (To - T)/(  To - T, ) shows that the value 
of AT,,, is larger near the secondary protuberances than near 
the principal ones. On the contrary, the considerable enhan- 
cement of the anisotropy of the kinetic coefficient (Figs. 
5a,b) is responsible for the growth without secondary pro- 
turbances. That the appearance of the additional protuber- 
ances is associated with the size of the kinetic coefficient 
follows from Fig. 6, which illustrates the shape of the growth 
at an infinitely large B. Only the principal protuberances are 
present in this case; regions with a negative curvature form 
along the direction of minimum B and u when the crystal 
reaches a certain size. 

An increase in the supercooling has a similar effect on 
the morphology of the protuberances. With AT = 2 K, and 
with the same degree of anisotropy of B and o as in Fig. 3, the 
additional protuberances corresponding to the minimum u 
and B do not arise. 

These results agree with experimental data on the for- 
mation of the secondary protuberances (see the discussion 
above). In particular, they demonstrate that there are no 
additional protuberances as the supercooling is increased. It 
can be seen from Figs. 4 and 5 that comparatively small 
changes in the values of the factors Z ,  and Z,-measures of 
the anisotropy of the coefficients B and u-can have a strong 

FIG. 5. Successive profiles of crystals in the case of a pronounced aniso- 
tropy in the growth velocity with AT = 0.2 K. a-Z, = 0.05, Z, = 0.15; 
b-Z, = 0.03, Z, = 0.15. 
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kinetic coefficient thus also becomes more important. 
The experiments discussed above also point to the signi- 

ficant role of the anisotropy of B. In the case of succinonitrile 
(with a small anisotropy ), for example, secondary protuber- 

FIG. 6. Successive profiles of crystals during growth limited by heat remo- 
val ( B =  m, AT= 0.2 K, Z,  =0.03).  t=0.046,  0.46, 2.34, 10, 26, 67, 
108, 174 s. 

effect on the growth velocity of the primary and secondary 
protuberances. Consequently, the second component, which 
has different effects on the anisotropy of the surface energy 
and the growth velocity, can cause pronounced changes in 
the morphology of the crystals. 

A different dependence of a on crystallographic direc- 
tion was utilized in Ref. 12 to study the shaping of crystals on 
the basis of the Laplace equation. The results of the simula- 
tion in Ref. 12, like those of Refs. 6 and 11, fail to explain the 
features of the shaping of organic crystals described above. 

The good agreement with experiment found in the pre- 
sent study results from the solution of the heat-conduction 
equation by a method which is in principle exact. It uses no 
assumptions other than the validity of replacing differentials 
by finite differences. The growth of a small particle with an 
initial size smaller than the diffusion radius is definitely not a 
steady-state process, since the surface temperature and sur- 
face concentration vary comparatively rapidly with increas- 
ing crystal size at the transition from the kinetic growth re- 
gime to the diffusion regime. The diffusion radius R,  is 
usually smaller than the relative-stability radius R, for any 
harmonic of a periodic perturbation of the shape. 

Because of the change in the roles of the surface and 
bulk transport processes with increasing crystal size, the ef- 
fect of the anisotropy of the kinetic coefficient decreases (at 
an infinite value of the ratio BR /a, the anisotropy of the 
kinetic coefficient B has no effect on the growth pattern). 
Protuberances which appear initially do not grow rapidly, 
and the crystal becomes more rounded. Above the size corre- 
sponding to the relative-stability radius, conditions favor a 
more rapid growth of the protuberances. In the case of the 
growth of succinonitrile crystals, four primary protuber- 
ances develop first. When R,  is exceeded, additional protu- 
berances appear for the harmonic of the distortion with in- 
dex 8. The essential agreement of the sizes at which the 
secondary protuberances appear and the values of R, in (8 )  
is evidence that the simulation is highly reliable. 

No secondary protuberances appear if the four primary 
protuberances have grown to the extent that they strongly 
influence the entire temperature field near the crystal, and 
heat removal from the lagging regions is hindered. A situa- 
tion of this sort develops with increasing anisotropy of the 
kinetic coefficient. An increase in the general supercooling 
of the melt has a corresponding effect. Because of the change 
in the relation between, on the one hand, the stability radii 
(which become smaller than the unit in which they are ex- 
pressed, R,, ) and, on the other, the diffusion radius, surface 
processes become more important. The anistropy of their 

ances appear despite the large kinetic coefficient, while for 
cyclohexanol (with a large anisotropy) there are no such 
protuberances even at the smallest values of the supercool- 
ing attainable experimentally. 

The anisotropy of the surface energy has an important 
effect on the angular distribution of the growth velocity at 
small crystal sizes. With increasing crystal size, the Gibbs- 
Thomson correction to the equilibrium temperature be- 
comes less important. Anisotropy of the surface tension, 
however, has a very strong effect on the shape of the protu- 
berances and on their curvature. The secondary protuber- 
ances which grow in the direction of minimum surface en- 
ergy can have a curvature much larger than that of the 
primary protuberances. This result agrees with the experi- 
mental data. The large curvature of the secondary protuber- 
ances leads to good heat removal from them, so under cer- 
tain conditions these additional protuberances may grow 
more rapidly than the primary ones. 

CONCLUSION 

1. It has been established experimentally that when the 
rounded shape of a crystal becomes unstable protuberances 
form along certain crystallographic directions, specifically, 
( 100) directions for fcc crystals and (100) and (1 11) direc- 
tions for bcc crystals. Distortion of the rounded shape in the 
(100) direction preceding the formation of the protuber- 
ances is observed in the stage of growth in the kinetic regime 
(i.e., at crystal sizes at which the growth is governed by sur- 
face processes alone ) . 

2. This numerical simulation of the growth of a rounded 
crystal has shown that the formation of secondary protuber- 
ances (along with the ( 100) primary protuberances) may be 
governed by the degree of anisotropy of B and a. It is unrelat- 
ed to a change in the dependence of these properties on the 
crystallographic direction. The appearance or suppression 
of the additional protuberances results from small changes 
in the degree of anisotropy of B and a. Furthermore, this 
appearance or suppression is sensitive to the magnitude of B 
and to the initial supercooling of the melt. 
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