
Self-similar regimes of ultrarelativistic acceleration of particles trapped 
by an electrostatic wave in an inhomogeneous isotropic plasma 

N. S. Erokhin, N. N. Zol'nikova, V. L. Krasovskii, L. A. Mikhailovskaya, 
and S. S. Moiseev 

Institute of Space Research, Academy of Sciences of the USSR 
(Submitted 27 March 199 1 ) 
Zh. Eksp. Teor. Fiz. 100,832-840 (September 1991) 

The ultrarelativistic acceleration of charged particles trapped in the potential well of a plasma 
wave, which is in turn incident on a density slope in a weakly inhomogeneous, isotropic plasma, 
has been studied analytically and numerically. The dynamics of the long-term (in principle, 
permanent) confinement of the trapped particles in the accelerating phase of the field and that of 
the ultrarelativistic (theoretically unbounded) acceleration of these particles are analyzed for 
self-similar profiles of the phase velocity of the plasma wave. 

INTRODUCTION 

In connection with the technological progress made in 
the field of high-power lasers, active research has recently 
been undertaken on various possibilities for the ultrarelati- 
vistic acceleration of charges by intense electromagnetic 
waves (this research was stimulated primarily by Refs. 1-3). 
The basic idea here is that intense electrostatic waves (Lang- 
muir waves) excited in a plasma, with fields E-m,cw,/e 
and with phase velocities up, -w/k approaching c (the ve- 
locity of light in vacuum), could accelerate charges to ul- 
trarelativistic energies. The rate at which the particles would 
acquire energy would be significantly higher than that which 
has been achieved in conventional accelerators. Several 
mechanisms for acceleration of this type have been dis- 
cussed; examples are plasma beat-wave acceleration 
(PBWA), i.e., an acceleration by a plasma wave excited in a 
plasma by beats stemming from a superposition of two laser 
beams with approximately equal frequencies; plasma wake- 
field acceleration (PWFA), i.e., acceleration by the wake 
fields of charged bunches; plasma feeder acceleration 
(PFA);4 and surfing in a magnetic field? A question which 
arises in connection with all these schemes is that of an upper 
limit on the energy of the accelerated particles. 

In the case of surfing of charges on a longitudinal wave 

wave in a weakly inhomogeneous plasma for various profiles 
of the relativistic factor yp, , calculated in terms of the vary- 
ing wave phase velocity: yph = 1/( 1 - fl :, 

The results show that two fundamentally different ac- 
celeration regimes are possible: acceleration with charge 
condensation at the bottom of the potential well and accel- 
eration in which charges stick to the wall of the potential 
well, in a process like that described by FaTnberg3 for the 
case of a homogeneous plasma. In the former case the energy 
of the particles increases in proportion to t ', where s(2/3. 

Yph = 1/(1 -Pph2)1'2. 

In other words, the acceleration falls off as time elapses, but 
the energy spread of the accelerated particles shrinks. In the 
latter case, the energy of the charges increases linearly with 
time, i.e., the acceleration rate reaches a constant value. This 
constant value depends on the particular point on the wall of 
the potential well to which the trapped particle is stuck, in 
accordance with the results of Ref. 3. At the same time, the 
energy spread of the accelerated charges may shrink sub- 
stantially in this regime because of the inhomogeneity of the 
plasma. Our analysis also shows that the acceleration is ex- 
tremely sensitive to small regular deformations of the den- 
sity profile, which determine the growth rate y,, (x) .  

in a transverse magnetic field,5 there is no theoretical upper OF TRAPPED 
limit on the energy which the accelerated particles can ac- PARTICLES AT THE BOTTOM OF THE POTENTIAL WELL 
quire, but the plasma would have to be in a magnetic field, 

Let us consider the Cherenkov interaction of the 
and the field strength H, would determine the acceleration 

trapped particles with a longitudinal wave 
rate. As the magnetic field is weakened, the acceleration rate 

r 
decreases, and it vanishes at Ho = 0. 

Possibilities for unbounded acceleration of charges in E=eJ3,(xiL)cos Y ,  Y=Yo+of - j  k(r)dx. - 
an isotropic plasma (Ho = 0)  were pointed out by Fain- 

0 

The wave is propagating along the density gradient of a 
berg.3 One example was acceleration by a longitudinal wave weakly inhomogeneous plasma, whose variations have a 
with a phase velocity up, = cpph equal to c in a homogeneous length scale L. In terms of the dimensionless variables 
plasma. In this case, however, there is the question of the 

r = a t ,  X = WX/C, and p = u/c, the relativistic equations of 
dynamics of the acceleration of the trapped particles by the motion of a charge with a rest mass mo can be written as 
plasma wave in an inhomogeneous isotropic plasma. For ex- f0ll0ws:~ 
ample, we would like to study the conditions for the confine- E 

ment of trapped particles by a wave with a varying phase d 
- Y $ % = ~ ( E ) c ~  Y, P = Y ~ + T - ~ ~  - 

velocity; we would like to examine the phase stability, the d~ 
0 Pph(E) ' 

rate at which the charges acquire energy, and how the phase 
velocity depends on the profile. In this connection we have pl=const y=y, ( I -pXZ) - I " ,  E=X/p, ( 1 )  
carried out a detailed analysis of the dynamics of the un- a(g) flph(E) '% yl=(i+(pl/moe)2)", -=(-I . 
bounded acceleration of trapped particles by an electrostatic uo Pph(0) 
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Here p = o L  /c is the semiclassical parameter which is a 
measure of the weak inhomogeneity of the plasma (p) I ) ,  
and a({) = qEm/moco is the dimensionless amplitude of 
the longitudinal wave. The following relations will be useful 
below: 

$z=&,(E) [1-Ycl , y,=a(E) p. cos 'Y. 

To analyze the acceleration of the charges, we go over 
from ( 1 ) to a nonlinear equation for the phase of the wave on 
the trajectory of the trapped particle: 

We begin with a brief outline of the WKB analysis of the 
acceleration. During adiabatic acceleration, the motion of a 
trapped particle in the field of the wave consists of fast phase 
oscillations with a slowly varying period and a slowly vary- 
ing amplitude. Introducing the small parameter E = l/p and 
the slow time s = ET, we seek a solution of (2)  through an 
asymptotic expansion: 

Y (z, s)=W~(Z,  s)+eW,(r, s)+. .  . , 
~=E,(s)  +&El (7, S) +. . . . 

The slow variables go and s are related by 
5 

s ( ~ o ) =  J dE/PPh(E), 
0 

while the longitudinal velocity and the relativistic factor of 
the particle are given in the zeroth approximation by 

The equation for Wo (7,s) 

i.e., the bounce frequency of the phase oscillations of the 
trapped particles is 

It is convenient to introduce the functions g and r : 

where t9 = Wo + 1r/2,em is the right-hand turning point for 
the trapped particle in the symmetric potential well, and the 
parameter x is 

From ( 3 )  we then easily find the following expression for 
G(r,s) = a e / a ~  : 

When (4) is used, the relativistic factors for the forward and 
retrograde motions of the trapped particle and the oscilla- 
tion period T(8 ,  ,s) can be found from 

Here the angle brackets mean the averaging operation 

ern 

<R(B,s)>= J dBR(0, s). 
-en, 

Expressions (4)  can be used to write a solution for O(r,s) in 
quadrature with the unknown function 0, (s); the latter 
function is found from the condition for the soluability of the 
equation for W ,  (7,s). In the limit yph ) 1, we find the follow- 
ing result for the oscillations of the trapped particles near the 
bottom of the potential well, i.e., for the case O m <  1: 

According to (6 1, the trapped particles condense at the bot- 
tom of the potential well with increasing yph, forming a 
bunch; i.e., permanent confinement of the trapped particles 
in the potential well of the wave, with a yph which increases 
without bound, is achieved (under the condition that the 
situation is adiabatic). As a result [as is easily seen from 
(5)  1, the energy of the particles increases in proportion to 
the increase in y,,, : 

Consider this condition for an adiabatic situation. Using the 
expression for the bounce frequency, we write this condition 
as follows: 

It follows that although the bounce frequency tends toward 
zero with increasing yph , the situation will remain adiabatic 
for the oscillations of the trapped particles for an arbitrarily 
long time, provided that yph ({) increases no more rapidly 
than the power function ' I3  as {+ 03. 

Let us examine in more detail the self-similar asympts- 
tic behavior of the solution of Eq. (2)  for the power-law 
profile yph (5) = y, { *I3 under the condition {b 1. Switch- 
ing to the new variables 

R (E) =y/ylyph(g) , 5=ln g, 

we find from (2)  the following equation for a nonlinear os- 
cillator with a positive friction for the self-similar function 
R(5):  

where x = (ap2/2y, y: is a large parameter. Analysis of 
(7)  shows that, for the initial data which would be natural 
for the problem of ultrarelativistic acceleration, all motions 
of the nonlinear oscillator R decay with increasing 5, in pro- 
portion to exp ( - < /6). The trajectories in the phase plane 
approach a focus singular point with R z 1  + ( 1 / 9 ~ ) ,  
Rf = 0. The energy of the trapped particles increases in ac- 
cordance with 

Simultaneously, the phase of a wave decreases monotonical- 
ly on the trajectory of a trapped particle: 

With increasing 6, the small oscillatory increments in y and 
t9 decay in proportion to - ' I6. 
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There is a fundamental point worth noting here. It is 
associated with the difference between ( 6 )  and ( 8 ) .  The der- 
ivation of ( 6 )  used an expansion in the small parameter E;  in 
this expansion, the inertial force on the right side of Eq. ( 2 )  
was automatically assumed small. However, analysis of the 
self-similar case corresponding to ( 8 )  leads to the conclu- 
sion that this assumption is incorrect in the sense that after a 
sufficiently long time the inertial force becomes comparable 
to the electrical force. For this reason, and despite the satis- 
faction of the adiabatic condition dfl ' / d r<  1, the motion 
of the trapped particles basically corresponds to a slow creep 
along the rear wall of the electric potential e, -cos8 at the 
bottom of the well. In other words, an ultrarelativistic 
trapped particle automatically goes into the accelerating 
phase of the field of the plasma wave and stays there perma- 
nently, undergoing an unbounded acceleration. A corre- 
sponding conclusion follows for other self-similar cases in 
which the yph profile is a power law yp, ( 6 )  = y, f  " with 
n  < 2/3. To demonstrate this point, we note that the change 
of variables 

where Y = 1 - 1.5n < 0,  leads us to the following equation 
for R: 

This equation describes the motion R  of a nonlinear oscilla- 
tor with an energy 

27=0,5R,2+8 (R,  q) 

in a potential well 

with a positive friction. The action (an adiabatic invariant) 
of the oscillator 

can be shown to fall off with increasing 7 in accordance with 

J ( ~ ) I J ( Q ( ~ ) = ( E ~ I E ) ~ ' ~ .  

In other words, the trapped particles condense at the bottom 
of the potential well, 8( cc ) = 0. The energy and phase of the 
particles have the asymptotic behavior 

The acceleration rate thus falls off to zero as time elapses. 

2. UNBOUNDED ACCELERATION OF TRAPPED PARTICLES 
IN THE STICKING REGIME 

We now consider the solution of Eq. ( 2 )  for a power- 
law profile of the relativistic factor, yph ({) = y, f ", with a 
power n  in the interval 2/3 < n  < 1. As in the preceding sec- 
tion of this paper, the substitution R ( 7 )  = y / f i  yph ( f ) ,  
where 7 = f ', leads us to Eq. ( 9 )  for the function R  ( f ) ,  but 
in this case we have Y < 0  and 7 - 0  as f -+ + cc . With these 
differences in mind, we can show that in this case there is no 

potential well at all as f  - + cc , i.e., as 71-0, and R becomes 
infinite in accordance with the power law. Further analysis 
leads to the following scenario. At large values of p the 
trapped particles first condense near the bottom of the po- 
tential well 0, but this condensation subsequently comes to a 
halt. As r -  CC,  the particles stick to the rear wall of the 
electric potential with a certain phase 8, , 0  < 8, < n-. As a 
result, the asymptotic behavior of y and 8 is 

y ( z )  - y  (T , )  +u(T-r,) sin O,, 
0 ( z )  =em+ [p/2y* (2n- I ) ]  ( p / t )  '"-', 

where r ,  is a constant. As time elapses, the energy of the 
trapped particles thus increases linearly, as in the case of a 
homogeneous plasma, discussed by Fair~berg.~ In contrast 
with Ref. 3, however, all the trapped particles may localize 
in phase near the bottom of the well, if the parameter values 
are chosen correctly. 

Let us examine the acceleration of particles for powers 
n  > 1. Again in this case there is acceleration in the sticking 
regime, and there is no condensation of particles at the bot- 
tom of the potential well. For y and 8 we find the asymptotic 
behavior 

y ( 7 )  = a t  sin 0,+const, 
0 ( a )  =Om-[y l z /2y (~)u  sin O m ] .  

Numerical solutions have been carried out of Eqs. ( 1 ) 
for various profiles of the phase velocity of the plasma wave, 
Dph ( f  ), including some power-law profiles, 

with n  > 0, and an exponential profile, 

Pph(E)=pph(0)+['-pph(O) 1 th E 

The results of these calculations confirm the analysis above. 
To illustrate the results, we show in Fig. 1 a plot of the wave 
phase Y  ( 7 )  on the trajectory of a trapped particle and the 
relativistic factor y ( r )  for a power-law profile of Dph (6 )  
with the parameter values n  = 2, Dph ( 0 )  = 0.9, p = lo3, 
a = 0.05, y, = 1, and Y o  = - 0.7571. We see from Fig. l a  
that the rate at which the trapped particle is accelerated 
reaches a constant value fairly quickly. According to Fig. lb, 
and in agreement with the discussion above, a sticking re- 
gime occurs in the course of the acceleration: After several 
oscillations, the trapped particle sticks to the rear wall of the 
electric potential. 

The case n  = 0.75 is illustrated in Fig. 2a by a plot of the 
phase Y ( T )  for the parameter values p = 500 and 
Y o  = - 0 . 5 ~ .  The values of the parameters a, y,, and 
pPh ( 0 )  are the same as for Fig. 1. Because of the relatively 
small value ofp, the trapped particle first acquires a substan- 
tial momentum, and the peak-to-peak amplitude 6Y of the 
oscillations reaches a value on the order of unity. The oscilla- 
tions then decay. We clearly see an increase in the oscillation 
period, which is a consequence of a substantial increase in 
the relativistic factor y. After a sufficiently long time the 
trapped particle sticks to the rear wall of the potential. This 
event is demonstrated in Fig. 2b, which shows a plot of the 
self-similar function R ( 7 )  in the case n  = 5/6, in which we 
have f  = l / v4 .  The unbounded increase in R ( 7 )  with de- 
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FIG. 1. Unbounded acceleration of a charge in the case of a power-law 
profile of the phase velocity of a plasma wave with exponent n = 2, which 
corresponds to the sticking regime. a-Relativistic factor of the charge; 
b--phase of the wave at the trajectory of the charged particle ( p  = lo3, 
p=0 .9 ,a=0 .05 ,  Yo= - 0 . 7 5 ~ ) .  

creasing 7 signifies sticking of the particle, and the accelera- 
tion rate becomes constant. 

An important conclusion follows from the discussion 
above. In this problem, the y,, profile depends on the distri- 
bution of the plasma density. This density increases mono- 
tonically up to a certain value along the propagation direc- 
tion of the plasma wave. It is not difficult to see that small 
regular deformations in the plasma density distribution with 
p,, =: 1 will lead to a pronounced change in the y,, profile, 
including a change in the exponent in its growth law, 
n -d  lny,, /d lnl. The growth law determines the type of 
acceleration regime. Consequently, the acceleration mecha- 
nism is sensitive to the plasma density distribution. In the 
general case of a variable n, there can be a mixed regime for 
the acceleration of trapped particles by a plasma wave in an 
inhomogeneous plasma. 

3. DAMPING OFTHE LONGITUDINAL WAVE BY THE 
TRAPPED PARTICLES 

Let us briefly examine the effect of the damping of the 
longitudinal wave by the trapped particles. Since we are in- 
terested in ultrarelativistic acceleration, we will be assuming 
that the wave is loaded with a fairly low-density flux of 

FIG. 2. Acceleration of a charge for values 2/3 < n < 1 of the power in the 
expression for the profile of the wave velocity. a-Phase of the wave on the 
trajectory of the charge in the case n = 3/4 ( v  = - 1/4,{ = 1/71); b- 
plot of the self-similar function R ( V )  for the case n = 5/6 (p  = 500, 
p = 0.9, a = 0.05, '4, = 7~12). 

trapped particles. The specific condition will be given below. 
We furthermore restrict the discussion to acceleration when 
trapped particles condense at the bottom of the well. 

It is convenient to write the kinetic equation for the 
distribution function of the trapped particles in terms of the 
variables Y, 6, and q, p ,  /mot, introduced above: 

Here @ (6'4') = qp (g,Y )/ m, c2 is a dimensionless electric 
potential, and E is the small parameter which was defined 
back in Sec. 1. Expanding f( Y,q, $) in powers of the param- 
eter E, and we find from ( 10) that the distribution function f 
depends in the zeroth approximation on %' and 6, where %' is 
the Hamiltonian 

We assume for simplicity that the transverse momenta 
are small and f-S(p, ). The condition under which the next 
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approximation has a solution imposes the requirement that 
f, (8,{) be a function of the adiabatic invariant J( 8 ,  6) 
alone. For trapped particles, this invariant can be calculated 
from 

wherep, is the generalized momentum corresponding to the 
generalized coordinate Y, and Y,,, are the turning points; 
i.e., 

For the untrapped particles we have, in place of ( 1 1 ), 

The + in ( 12) correspond to untrapped particles with 
velocities 0, >Pp, and fix <Pph, respectively. By analogy 
with the preceding sections of this paper, we choose the fol- 
lowing expression for the electric potential and the Hamilto- 
nian: 

where 8, ({) are the turning points for the trapped particles. 
Here we have 0<8, ({) <0, ({), and 8, (5) is found from 
( 11 ) ; it is determined by the maximum value J, of the adia- 
batic invariant for the trapped particles. Equation ( 1 1 ) can 
be rewritten as 

em 

I-I. j dB[ (cos 0 - cos 0.) (2% + cos 0 - cos 0.) 1 ". 
- e m  

re=2/a(~)x2(e) .  

It follows that the trapped particles first condense near the 
bottom of the potential well, but if the damping of the longi- 
tudinal wave is substantial, the levels rise, and the particles 
are gradually spilled out. The spatial distribution of the den- 
sity of trapped particles has "holes." In particular, over the 
period 0< 18 1 <T this distribution is described by 

where (n,,) is the density averaged over the wave period. 
Let us examine the energy flux density of the trapped 

particles, averaged over the wave period, during accelera- 
tion in the condensation regime. For simplicity we set 
fo (J) = (277-/J, ) = const. Calculations lead to 

We write q = ze, and we denote by v, the group velocity 
of the longitudinal wave. In the problem of the ultrarelativis- 
tic acceleration of charges, the condition for conservation of 
the total energy flux in the wave-plus-particle system deter- 
mines the law describing the damping of the wave by the 
trapped particles: 

where n, is the plasma density. 
According to ( 13 ), the maximum energy of the bulk of 

the accelerated trapped particles is 

vc EmL(E) 
rmax -- 

c 8nmoc2<nt,> ' 

Strong acceleration is achieved when the flux density of 
the trapped particles is low: 
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