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The dynamics of the propagation and interaction of electromagnetic pulses in nonlinear media, 
when current generation can be described on the basis of a two-level quantum system (Maxwell- 
Bloch equations), is investigated. The collisional properties of stationary "half-wave'' solutions 
are investigated for the case of an absorbing two-level mediume9 It is shown that in the limit of 
long or short wave packets that are wide or narrow, compared with w; I, where w, is the 
transition frequency, these solutions have soliton properties. In the case of an amplifying medium 
a new class of nonstationary nonlinear solutions in the form of wave packets, whose frequency 
shifts into the blue region of the spectrum as they are amplified, is found. The conditions under 
which the nonlinear optics of a two-level medium can be used to describe the field 
electrodynamics of superconducting (including high- T, ) planar structures are determined. The 
concept of "population inversion" of a Josephson superconducting structure is introduced on the 
basis of this analogy and an interpretation of the new concept is given. 

1. INTRODUCTION 

The development of methods for producing and shap- 
ing pulses of light of length - 10- l5 s has greatly increased 
interest in the physics of the propagation of short powerful 
wave packets in linear and nonlinear media. A general fea- 
ture of the wave processes occurring here is that they cannot 
be described with the help of the apparatus of traditional 
nonlinear optics-the method of slowly varying amplitudes 
and phases (SVAP), which operates with quasimonochro- 
matic fields. The large width of the spectrum of a pulse is, 
however, not the only factor limiting the applicability of the 
SVAP method. In the strong fields of an ultranarrow pulse 
the basic assumption of traditional nonlinear optics that the 
medium is weakly nonlinear and strongly dispersive breaks 
down. This assumption made it possible to confine attention 
to a finite number of nonlinearly interacting waves: on the 
one hand, the number of terms in the expansion of the polar- 
ization in powers of the field now becomes significant, while 
on the other hand in strong fields the condition of phase 
matching can be satisfied simultaneously for all harmon- 
i c s . ' ~ ~  These circumstances imply that an adequate descrip- 
tion of wave processes on the femtosecond time scale is possi- 
ble (and, as it happens, convenient) only in terms of the real 
field and real polarization induced by it.324 

The character of the interaction of a light pulse with the 
medium depends on both the parameters of the pulse itself 
(spectrum and field intensity) and on the structure of the 
quantum levels of the material, and in the general case it can 
be very complicated. For this reason it is of interest to study 
the nonlinear dynamics of intense ultrashort electromagnet- 
ic pulses for the example of simple quanium systems, such 
as, for example, a two-level system, which reveals at least 
qualitatively the physics of the interaction of a powerful 
ultrashort electromagnetic pulse with the medium in the 
more general case also. Maxwell's equations together with 
the equations describing the interaction of the field with a 
medium consisting of two-level particles form the system of 
Maxwell-Bloch equations (MB) . 

At the present time the linear and nonlinear properties 

of the "truncated" MB equations, which are obtained from 
the exact equations in the approximation of resonant inter- 
action of quasimonochromatic radiation with the medium 
and are formulated in terms of the SVAP of the field and the 
material variables of the medium, have been studied in great- 
est detail.5 Phenomena such as self-induced transparency of 
2 m  pulses in absorbing media, r-pulse formation in ampli- 
fying media, and a number of other phenomena are de- 
scribed on the basis of the "truncated" MB equations (see 
the reviews Refs. 6, 7, and 8).  

There are significantly fewer works concerning the ex- 
act MB equations. We call attention to Ref. 9, in which solu- 
tions in the form of solitary waves were found for the MB 
equations. This stimulated interest in the MB system from 
the viewpoint of the possibility of integrating it by the in- 
verse scattering me th~d . ' ~ , "  In particular, in Ref. 10 it was 
shown that by means of the inverse scattering method an 
approximation of the MB system (the reduced MB equa- 
tions) rather than the exact system can be integrated for the 
case of a medium with low density. We also call attention to 
Ref. 12, where the soliton properties of the solutions found in 
Ref. 9 were investigated by integrating numerically the exact 
equations and it was shown that the indicated solutions are 
not solitons, since they do not have the property of elastic 
scattering. 

The purpose of this work is to investigate analytically 
and numerically the properties of solutions of the exact MB 
equations for the cases of both absorbing and amplifying 
media. By studying the collisions of pulses with a wide range 
of initial characteristics it was possible to find the range of 
parameters for which the interaction is of a quasisoliton 
character (Sec. 2).  In the case of an amplifying medium 
(Sec. 3) a new class of nonstationary nonlinear solutions 
was found in the form of wave packets which shift into the 
blue region of the spectrum. The energy of these packets 
increases not as a result of the increase in the number of 
photons per pulse but rather as a result of the increase in the 
energy of each photon as the pulse propagates in the medi- 
um. 

In Sec. 4 an analogy is drawn between the propagation 
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of a pulse in a two-level medium and the evolution of the 
electromagnetic field in planar superconducting Josephson 
structures. This analogy makes it possible to transfer under 
appropriate conditions the results of Secs. 2 and 3 to the 
electrodynamics of layered high-T, superconductors. 

2. ABSORBING TWO-LAYER MEDIUM: QUASISOLITON 
BEHAVIOR OFTHE EXACT SOLUTIONSOFTHE ME 
EQUATIONS 

We shall study the propagation of an electromagnetic 
plane wave with electric field intensity 8' in a medium of 
two-level particles, having transition frequency w, and di- 
pole moment p. The self-consistent system of equations de- 
scribing the propagation of a field pulse along the z axis (MB 
equations) includes the equations for the material variables 
of the medium 

an 2~ - -- --8 I m p ,  
d t A 

and the wave equation 

Herep = 2p12 is the polarization, n = p,, - p,, is the differ- 
ence of the populations of the levels of a separate particle, 
and pi, is the density matrix of the two-level system. The 
macroscopic polarization of the medium P, appearing in the 
wave equation (2), is connected with the polarization of a 
separate particlep by the relation 

where Nis the particle number density. In the material equa- 
tions ( l ) we dropped the relaxation terms, making the as- 
sumption that the pulses studied are significantly shorter 
than the longitudinal TI and transverse T2 relaxation times 
of the medium. 

In this section we shall study the properties of an ab- 
sorbing medium, i.e., we shall assume that before the pulsed 
field appears (at t = - a, ) all particles of the medium 
are in the bottom level: p , ,  ( - co ) = 1, p2, ( - ) 

= p I 2 (  - 0 3 )  =o. 
For the system of equations ( 1 ) and (2) we can intro- 

duce the dimensionless parameter 

which characterizes the relation between the field of the elec- 
tromagnetic wave and the two-level medium." For low den- 
sities of the medium, such that a < 1, the backscattered part 
of the pulse 8 (z, t)  is negligibly small (in this case in the 
wave equation P< 8' ), and the wave equation (2)  can be 
reduced to an equation describing the propagation of a pulse 
in one direction." 

We shall study the case a - 1, when the presence of the 
reflected wave can significantly affect the evolution of the 
pulse and makes it necessary to investigate the complete sys- 
tem. According to Ref. 9, Eqs. ( 1 ) and (2)  have exact solu- 
tions in the form of bell-shaped pulses: 

where I - ~  is the parameter of the solution which determines 
the pulse width, and v is the velocity of the pulse and is con- 
nected with T~ by the relation 

Before investigating numerically a collision of the pulses 
(5) ,  it is useful to study the analytical properties of the sys- 
tem of equations ( 1 ) and (2)  in some limiting cases. Two 
parameters characterizing the interaction of an electromag- 
netic pulse with a medium can be identified in the material 
equations ( 1 ). The first parameter is the ratio of the charac- 
teristic time scale rp of the variation of the field in the pulse 
to the period w; ' of the characteristic oscillations of the 
two-level system. We shall call a pulse long if ~ ~ w ,  $1 and, 
correspondingly, short if ~ ~ w ,  9 1. It is convenient to char- 
acterize the magnitude of the field of the pulse by the param- 
eter 8'/8',, where 8, = 7%3,/2,u is the saturation field 
strength of the two-level system. 

1. We first study the interaction of a long pulse, 
T~ wO $1, with the medium. Since the material equations ( 1 ) 
in which the transition frequency w, is replaced by detuning 
from resonance Aw and the field 8 is replaced by the wave 
amplitude E become identical to the truncated equations of 
resonant intera~t ion,~ the case which we are studying is 
analogous to the adiabatic interaction of radiation with a 
medium when the polarization can adjust to the instanta- 
neous value of the electromagnetic pulse. Following the 
method proposed for this case in Ref. 13, we shall represent 
the formal solution of Eqs. ( 1 ) written in the integral form 

as a series in the small parameter ( T ~  wO ) - 

In the linear case, when the change in the populations can be 
neglected (n = - 1 ) , according to Eq. ( 8 ) the polarization 
of the medium can be represented in the form 

The differential operator on the right-hand side of the 
expression (9)  describes the linear dispersion of a two-level 
medium in the low-frequency limit w w,. This can be easily 
verified by calculating the response at the frequency w corre- 
sponding to the polarization (9)  which is simply the expan- 
sion of the linear susceptibility of the medium 

in powers of w/wo. 
When the nonlinearity is taken into account the simul- 

taneous solution of Eq. (8)  with the equation for the popula- 
tions ( lb)  gives terms in the expansion which are analogous 
to the terms obtained in Ref. 13 and which describe the satu- 
ration of the transition. These expressions, however, can be 
simplified for the following reason. From Eq. (5)  for the 
exact solution of the MB equations it follows that for 
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T~ w, ) 1 the maximum value of the field of the pulse satisfies 
g,,, - f i / p ~ ~  4 go, i.e., far from the saturating field. Thus 
the first nonlinear correction to the linear polarization is 
proportional to 8 ( g/$ ,  )2 .  Retaining in the polarization 
the first dispersive and the first nonlinear terms of the expan- 
sion we obtain 

The smallness of the nonlinear and dispersion corrections to 
the polarization makes it possible to go from the wave equa- 
tion (2) to an equation describing the propagation of a pulse 
in one direction. This equation will have the following form: 

where 

v,=c[ l +4nxL(0) I-'", c ,=6n~-~u.,x,~ (0),  
~,=nc-~v,  [a2xLlaw21 xNL (0) =-'/2pN80-3 

Equation ( 1 1 ) is the modified Korteweig-de Vries equation, 
which has soliton solutions. The simplest one-soliton solu- 
tion of Eq. ( 11) in the form of a hyperbolic secant (see, for 
example, Ref. 14) converges to Eq. (5)  in the limit ~ ~ w ,  ) 1. 

2. We now consider the case of the interaction of a short 
pulse, ~,w,  4 1, with the medium. Since the pulse is shorter 
than the time interval w; ' during which the response of the 
medium is established, the polarization at a given time is 
determined by the value of the field at all preceding times. In 
addition, it follows from the exact solution ( 5 )  that for a 
short pulse the intensity of the field at the maximum is signif- 
icantly higher than the saturation intensity 8,. Thus in the 
case at hand the medium is strongly nonlinear and strongly 
dispersive and it is impossible to make an expansion in some 
parameter. It can be seen, however, that for T ~ O ,  4 1 the 
material equations can be solved for any form of the pulse g. 
Neglecting at first in Eq. ( l a )  the term wop compared with 
ap/dt we find that 

Im p=sin Y (t) , n=-cos (t)  , (12) 

where 
1 

21.1 Y (t)=- J &(tf)dtl ,  
A - m  

is the phase of rotation of the material variables. Hence, ac- 
cording to Eq. ( la) ,  we obtain for the real part of the polar- 
ization 

t 

Re p = - o o  1 dt' sin 'Y (t'). 
- m 

Substituting Eq. (13) into the wave equation (2)  we obtain 
t 

d 2 8  I d 2 &  4nNpwOd 
- _ - = - -  sin $ J 8 (tl)dt'. ( 14) 
dz2 cZ a t2  cZ d t  - m 

It is easy to see that Eq. ( 14) can be rewritten for the func- 
tion Y in the form 

d2Y 1 d2Y - - - = a  - 
az2 cz at2 

(:I2 sin Y, 

the sine-Gordon equation, which has soliton-like solu- 
tions.I4 The simplest one-soliton solution of Eq. (15) is 
identical to Eq. ( 5) in the limit w , ~ ~  4 1. 

Thus in both limiting cases studied above-a long pulse 
(the case of a weakly nonlinear and weakly dispersive medi- 
um) and a short pulse (the case of a strongly nonlinear and 
strongly dispersive medium)-the system of MB equations 
reduces to equations which have soliton-like solutions. It 
can thus be expected that the exact solutions (5)  in these 
cases have soliton properties. 

In order to investigate the properties of the exact solu- 
tions we investigated numerically the collision of pulses (5 )  
in a wide range of pulse lengths. In the calculations the be- 
havior of the material variables of the medium was given in a 
self-consistent manner with the profile of the electric field: 

The distance between the colliding pulses was chosen from 
the condition that the results of a collision should not depend 
on the initial spatial separation of the pulses. 

The most characteristic computational results are pre- 
sented in Figs. 1-3. It was established, first of all, that the 
exact solutions of the MB equations are not solitons in the 
strict sense. In the region of pulse lengths T, of the order of 
the period of the characteristic oscillations w; ' of the two- 
level system a collision of the pulses results in distortion of 
the initial profile of the pulses and energy loss (Fig. 1 ) . An 
oscillatory structure of the field characteristically forms 
after a collision. In the case of a collision of pulses with dif- 

FIG. 1. The evolution of the spatial distribution of the field intensity 8 (z, 
t )  of colliding pulses having the same ( a )  and opposite polarities (b)  with 
7 =20; ' , rP ,=0;  ' , a n d a = 4 : a ) w o t = O ( l ) , 3 . 4 ( 2 ) , 6 . 8 ( 3 ) , l 0 . 2  
($),and 13.6 (5 ) ; b )o , , ( t )  = 0  (1),5.6 ( 2 ) ,  11.2 (31, 16.9 (4),22.4 ( 5 ) ,  
and 28.0 (6) .  

424 Sov. Phys. JETP 73 (3), September 1991 Belenov et a/. 424 



FIG. 2. The evolution of the spatial distribution of the field intensity I (2, 
t )  of colliding pulses having the same (a)  and opposite (b) polarities with 
7 = 7 o ; I , ~ ~ ~  =4m;',anda=4 [ L = r -  ( v ,  +u2)t /2] :o , (r)  = O  (f), 1500 (2 ) ,  3000 (3) ,  4500 (4 ) ,  and 6000 (5 ) .  

ferent polarity, the decay of the pulses accelerates. These 
results agree with the numerical calculations performed in 
Ref. 12. 

At the same time it was found that when the lengths of 
the colliding pulses are three to four times greater or less 
than rp ZW;' the "inelastic" effects are significantly 
weaker. Figure 2 shows the results of calculations of a colli- 
sion of longer pulses (rPl = 701;' and rP2 = 4w; '). It 
should be noted that because the medium is excited only 
weakly in the field of long pulses, the accumulated effects of 

FIG. 3. The evolution of the spatial distribution of the field intensity I (z, 
t )  of colliding pulses having the same (a)  and opposite (b) polarities with 
rp, = 0 . 4 ~ 1 ; ~ , 7 ~ ~  =0.2m;',anda=4:w0(t) = O  ( l ) , 0 .8  (2 ) ,  1.6 (3) ,  
2.4 (4) ,  and 3.2 ( 5 ) .  

the nonlinear interaction of the pulses are realized only when 
they propagate in tandem. One can see that the dynamics of a 
collision in this case is of a practically elastic character (Fig. 
2).  Figure 3 shows the results for the collision of relatively 
short pulses (T,, = 0 . h ~  ' and rP2 = 0.213, I ) .  The calcu- 
lations show that in this case also the interaction occurs es- 
sentially elastically, and in addition for both tandem and 
head-on collisions of pulses of both polarities. 

Summarizing our analysis of the collisional properties 
of the exact solutions of the MB equations we can draw the 
conclusion that these solutions have a quasisoliton character 
in two ranges of pulse lengths: 7, 2 3w; ' and rp 5 0.3w; '. 
In the long-pulse limit 7, & w; ' a collision of the solitons 
(5)  can be described quite accurately by the Korteweg-de 
Vries equation ( 1 1 ) while in the short-pulse limit rP < w; ' 
the collision is described by the sine-Gordon equation ( 15). 

3. AMPLIFYING TWO-LEVEL MEDIUM: NONSTATIONARY 
SOLUTIONS OFTHE MB EQUATIONS IN THE FORM OF WAVE 
PACKETS SHIFTED INTO THE BLUE REGION OF THE 
SPECTRUM 

In this section we shall study the characteristics of the 
propagation of an electromagnetic pulse in a medium of in- 
verted two-level particles. Before the arrival of the pulse all 
particles are in the upper level and in Eqs. ( 1 ) we must set 
p 2 2 (  - 00)  = 1,p11( - 00)  =p12( - 00)  =o .  

The propagation of short laser pulses in amplifying two- 
level media is studied, as a rule, for the case when the field of 
the pulse is a quasimonochromatic wave in resonance with 
the transition frequency and the motion of the pulse is de- 
scribed in the SVAP a p p r o x i m a t i ~ n . ~ , ~ * ' ~ , ' ~  In a long ampli- 
fier a pulse whose envelope E(z, t )  behaves in a self-similar 
manner 

where F ( x )  is a sign-alternating function that decays as 
1x1 - 00, is formed. The pulse described by such a solution 
consists of successive subpulses, the structure of each of 
which is close to that of a 27r pulse of self-induced transpar- 
ency, and in addition the total area of the entire pulse is 

V (z; w )  = -k E ( r ,  t)dt=n 
h 

-m 

(the so-called T-pulse of amplification). As it propagates 
through the medium a P-pulse removes all energy stored in 
the medium. The energy of the pulse increases in proportion 
to the traversed path z, and since the area remains constant 
the time scale of the variation of the envelope of the pulse 
decreases as a z. Over long amplification lengths the pulse 
length rp becomes of the order of the period of the character- 
istic oscillations of the two-level system w; ' and the SVAP 
approximation can no longer be used to describe the dynam- 
ics of amplification of the pulse. Thus analysis of coherent 
amplification of a quasimonochromatic field in a two-level 
medium leads in a natural manner to the investigation of the 
exact MB equations. 

Before analyzing the numerical results, we shall discuss 
some analytical properties of the solutions of the MB equa- 
tions in the case of an amplifying medium, which are mani- 
fested on a long propagation paths. We assume (and we shall 
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give a proof below) that in the process of amplification from 
arbitrary initial conditions the time scale of the variation of 
the field of the pulse becomes less than the period of the 
characteristic oscillations of the system w; '. Under this 
condition in Eqs. ( 1 ) and (2) ,  and as was done in Sec. 2, the 
term mop can be neglected compared with ap/at, and after 
the equations are solved we arrive at the equation 

which differs from Eq. ( 15) by the minus sign on the right- 
hand side. The transformation of variables = t + z/c and 
7 = t - Z/C transforms Eq. ( 18) into the following form: 

It is not difficult to see that Eq. (19) agrees to within the 
notation with the fact that it describes the evolution of the 
envelope of a pulse in a resonantly amplifying medium [in 
the latter case the phase of rotation \V of the material vari- 
ables is determined by the envelope of the pulse while in our 
case it is determined by the real field Z?; see Eq. ( 12) 1. Equa- 
tion (19) has a solution with the self-similar variable 
u = fl2&.I6 Here q ( u )  is given by the equation 

and the field intensity is connected with the function q by 
the relation 

Equation (20) has solutions that are regular at u = 0.15,16 
These solutions are such that q ( u )  is a sign-alternating os- 
cillating function of the wave-packet type, not equal to zero 
in the neighborhood of u = 0. For solutions propagating in 
the positive direction along the z-axis, i.e., setting 7 ~ 0 ,  the 
expression (2 1 ) can be represented in the form 

The evolution of the field intensity Z? of the pulse is 
mathematically very similar to that of the envelope E of the 
pulse. The field (22) consists of a sequence of subpulses with 
areas of the order of & 27r. The total area of the subpulses 

(z, CQ ) is conserved and is equal to T. The field removes all 
energy stored in the medium. However for conditions of 
propagation when the effect can be described only in terms 
of the total intensity and polarization the physics of the evo- 
lution of the field is significantly different. In the first case 
(envelope model) as it propagates in the medium the pulse is 
compressed but its frequency does not change. In the second 
case, when the pulse is quite short and powerful and the 
motion of the pulse cannot be described in the envelope mod- 
el the pulse is not only compressed but its frequency, which 
according to Eq. (22) is equal 

also changes and shifts into the blue region of the spectrum 
in proportion to the path length traversed by the pulse. 

Then, as in the first case, the energy of the field grows as 

FIG. 4. The evolution of the field intensity of a pulse in an amplifying two- 
level medium (a = 0.5): 1 ) pulse incident from vacuum on the half-space 
z >  Ofilledwith theactivemedium [w,  ( t )  = O];2) w, ( t )  = 18.1; 3)  36.2; 
4 )  54.3; 5 )  72.4; 6)  90.5. The field in the region z < 0 at times l >  0 corre- 
sponds to a wave emitted by the active region into vacuum. 

a result of the addition to the pulse of photons having the 
same frequency as the pulse. In the second case the number 
of photons in the pulse does not change; the energy of the 
pulse increases as a result of the addition to the instanta- 
neous energy of the photons of the field an energy ?h,, emit- 
ted by a particle in an induced transition between levels. 

Figure 4 shows the typical results of the numerical in- 
vestigation of the dynamics of the propagation of a pulse in 
an amplifying medium. The amplified pulse was incident 
from the vacuum on an inverted medium, filling the half- 
space z > 0. Irrespective of the initial profile of the amplified 
pulse, two stages can be traced in the dynamics of amplifica- 
tion. At the starting stage the spectral components of the 
pulse which are close to resonance with the characteristic 
transition frequency w, are predominately amplified and the 
pulse is transformed into a wave packet whose average fre- 
quency is approximately equal to w, (Fig. 4, t = 18.1 w; I). 
In the process of amplification the envelope of the wave 
packet is compressed in width, and the amplitude of the field 
in the envelope grows in accordance with the theory of co- 
herent amplification in the SVAP approximation. When the 
time scale of the variation of the envelope becomes of the 
order of w; (in this case the field of the pulse at maximum 
is g,,, - g o ) ,  the amplification process enters a qualita- 
tively new stage. The spatial and temporal scale of not only 
the envelope but also the entire structure of the wave packet 
is reduced and at the same time the amplitude of the wave 
packet increases (see Fig. 4, t 2 54.3~;  I). The amplification 
of the pulse is essentially accompanied by an increase of the 
average frequency of the pulse. The dynamics of the "in- 
creasingly bluer" wave packet at this stage is close to self- 
similar and is described by the formula (22): The frequency 
and energy of the pulse increase in proportion to the distance 
traversed in the amplifying medium. 

4. THE MB EQUATIONS AS A MODEL OF PROPATION OF AN 
ELECTROMAGNETIC PULSE IN PLANAR 
SUPERCONDUCTING STRUCTURES 

We shall study the propagation of a electromagnetic 
pulse in a planar Josephson structure and in layered high- T, 
superconductors, for example, crystals of the form 
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Y, Ba, Cu, O,,, , which essentially consist of a collection of 
parallel Josephson contacts with superconductors of atomic 
thickness. 

In the first case the field propagates in the layer 
1x1 < d /2 of a dielectric with thickness d- 10-50 A. The re- 
gion 1x1 > d+/2 is filled with the superconducting medium. 
The vector (z, t )  = n 8  (z, t)  of the field intensity is direct- 
ed along the normal to the planes at x = & d /2. 

The field-induced Josephson current 

j=njc sin cp (24) 

and the free-energy density in the d-layer 

are determined by the phase difference 

of the wave functions of the edges of the planar structure and 
the critical current density j, .I7/ 

The wave equation, containing the current (24), for 
p(z, t )  is the sine-Gordon equation ( 15 ), and for this reason 
everything said above about the dynamics of an ultrashort 
pulse in a two-level medium should also be true here. The 
dynamics of the field in a superconducting structure can 
thus be described on the basis of the nontruncated MB equa- 
tions (1)  and (2)  for particles with density N, transition 
frequency w,, and free-energy density1' 

1 - cos cp 
F,=Nhw; 

2 

When the field 8 ( z ,  t )  varies over the characteristic time 
scale r, the frequency o, must satisfy the condition 
w, <r; I, after which the particle density N will be deter- 
mined by equating of the free energies: 

We now note that the initial value of the phase po in Eq. 
(26) in they direction, perpendicular to the direction z of 
propagation of the wave and to the polarization vector n  of 
the field, can be changed, for example, with the help of a 
constant magnetic field Hz or a constant current j,,, which 
spatially modulate the wave functions of the superconduct- 
ing electrons.17 Then the range of values of y where 
po(y) z O  will correspond to the case of a noninverted medi- 
um and the region of y where p, (y) =.rr will correspond to 
the case when the particles are in the upper level of the tran- 
sition. 

We shall now discuss the electrodynamics of layered 
high-T, superconductors, which crystallize in the form of 
superconducting planes (with thickness 1- 2-3 A) ,  separat- 
ed by layers of dielectric (d- 15-20 A).  If the Landau-Ginz- 
berg equation is taken here for the starting material equa- 
tions 

2e 
Xn = - (An) d, tic 

to treat the interaction of the wave functions of neighboring 
superconducting layers, then the current density between 
the nth and (n + 1)st layers will be determined by the rela- 
tion (see, for example, Refs. 18 and 19): 

jot$,,$:+, exp (i~,)-$~'$~+l exP (-~XV.). (29) 

In Eqs. (28) and (29) $, (p, t)  is the order parameter of the 
nth superconducting layer with the coordinatesp = ( x ,  y),  
A is the vector potential of the field of the pulse, and x is a 
constant characterizing the coupling of the $, functions of 
neighboring layers. The constants a and b determine the sta- 
tionary value of the order parameter +b0 and the coherence 
length go of the superconducting electrons: 

The quantity c0 is given here as the characteristic distance 
over which a small perturbation S$ of the wave functions of 
the layers $, = $, + S$ decays. In a layered superconduc- 
tor, however, the coherence length can also be defined as the 
characteristic distance over which the functions 

decay to the value $,-an idea that is impossible for a mas- 
sive superconductor. This dependence of $, on n corre- 
sponds to a lesser degree of modulation of the order param- 
eter of the layers and a decrease of both the kinetic energy of 
the electrons of the superconductor and the coherence 
length< [12 = Silal/(lal + 21x1)]. 

We shall now discuss briefly the critical temperature of 
a superconductor. We are inclined to believe that, at least 
qualitatively, the temperature-dependent coherence length 
in the Ginzberg-Landau theory is related to the critical tem- 
perature T, of the superconductor by the relation from the 
BCS theory, where these quantities are inversely proportion- 
al to one another. In this connection, Tc a 1 / l  for the func- 
tions $, = $, + S$exp ( i rn )  can significantly exceed 
Tc a l/go (according to, for example, Ref. 19 the constant 
2 1 x 1 in can be appreciably greater than the constant 1 a 1; 
see also Ref. 20). 

The relations (24) and (26), which describe the elec- 
trodynamics, already studied above, of a pulse propagating 
in a planar Josephson structure or, under corresponding 
conditions, in a medium of two-level particles, follow from 
Eq. (29). We note that the experimental results on the re- 
flection and scattering of light from a series of high- Tc crys- 
tals can be interpreted in a manner so that the coupling ener- 
gy E, of Cooper electron pairs in the x direction lies in the 
infrared frequency range.*t/lt follows that at least up to 
pulse lengths 7, -WEc the electrodynamic processes in a 
high-T, superconductor (reflection of a pulse, transmission, 
amplification, or decay in the linear and nonlinear in 8 
cases) can be obtained from the well-known solutions of the 
MB equations. 
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CONCLUSIONS 

In this paper we studied the propagation of electromag- 
netic pulses in nonlinear media for the example of an absorb- 
ing or amplifying medium of two-level particles which can 
be described by the MB equations. It was shown that for the 
case of an absorbing medium the solution of these equations 
in the form of stationary bell-shaped pulses in the limit of 
both large and small (compared with the period of charac- 
teristic oscillations of the two-level medium) pulse lengths 
have soliton properties. Thus the equations of nonlinear op- 
tics admit the existence and stable propagation of new wave 
objects-unipolar pulses, which by analogy to Cherenkov 
bipolar pulses (see Ref. 1)  can be called half-wavelength 
pulses. 

In the case of an amplifying medium we found a new 
class of nonstationary nonlinear solutions in the form of 
wave packets, whose energy increases not as a result of an 
increase in the number of photons per pulse but rather as a 
result of an increase in the energy of each photon as the pulse 
propagates in the medium. 

An analogy was drawn between the propagation of a 
pulse in two-level media and the evolution of the electromag- 
netic field in planar superconducting (including high- T,) 
Josephson structures. It was shown that the transition from 
equations governing a two-level medium to the equations of 
electrodynamics of a Josephson structure corresponds in the 
MB equations to the limit w, -0, N-+ CO, and woN = const. 
On the basis of this analogy we introduced the concept of 
"inversion of a Josephson structure" and gave an interpreta- 
tion of it. Thus the results on the propagation of pulses in 
absorbing and amplifying two-level media can be transferred 
to the electrodynamics of the field in superconductors. 

In conclusion we shall briefly discuss the expression for 
the current induced by a medium of two-level particles in the 
case rP < w, I. According to Eq. ( 13 ), this current is equal 
to 

d P 
j = - = j e  sin Y, j c=-Npo, , .  

d t 
(30) 

The Josephson-type current (30) is unique in that it is multi- 
plied by the frequency. For this reason it is interesting to 
indicate the efficiency with which harmonics are generated 
by the current which is excited by the field 
29 ( t )  = E,cos(wt - kz). The condition under which the 
formulas (30) are applicable for a periodic field evidently 
reduces to the requirement w $ w, Then it follows from Eq. 
(30) that 

In contradistinction to the case of generation of harmonics 
under the conditions of applicability of the SVAP method, 
when the accumulated interactions can be realized for a 
fixed number of waves (usually not exceeding two or three), 
the current (3  1 ) can excite simultaneously - lo2-lo3 har- 
monics with comparable amplitudes." This follows because 

the coefficients in the expansion of j in harmonics are Bessel 
functions J,  (s), and for certain values of the parameters n 
and s = 2pE0/liw they decay very slowly. For example for 
s=:n)l,  J , (~)=;0.67n-l '~ .  

We shall now estimate the conditions under which a 
Josephson current is obtained in the optical range. Setting 
w - lo" rad/s, w, - 1014 rad/s, and p =; 5.10 - l8 cgs units, 
we obtain from the formula (31) that for radiation fluxes 
I- 1013 W/cm2 efficient generation of the tenth harmonic of 
the neodymium laser, i.e., radiation with photons liw- 10 
eV, becomes possible. 

In the case of an amplifying two-level medium the char- 
acteristic distance z at which the frequency of the photons in 
a T-pulse increases by an amount equal to the transition fre- 
quency w, is estimated from the condition 

For N=: 10'' cm -3, p=:5. 10-l8 cgs units, and w, - 1014 
rad/s this condition gives z- 1 cm. The intensity of a .rr pulse 
in this case is I >  f i * ~ ~ c / 4 1 ~ p ~ -  10'' W/cm2. 

I '  For this definition of F, (or, which is the same thing, for the definition 
of a population inversion with the help of the equality n = - cosp,) the 
angles q, = 0 and ?r correspond, respectively, to a noninverted medium 
and a completely inverted medium of particles. 
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