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We show that the peak velocity up with which vertical Bloch lines move in twisted domain walls 
of films with perpendicular anisotropy is given by up - (sup ) '"Q 1 ' 4 ~  -'I2, wheresis the domain- 
wall (DW) flexural-oscillation velocity, up is the peak DW velocity, Qis the quality factor of the 
material, and CZIT /~ .  The mechanism that limits the velocity of the Bloch-lines (BL) is their 
clustering into groups of five BL or more., The velocity limit of a BL-cluster velocity is discussed 
qualitatively. 

1. A Bloch line (BL) is a magnetization-field vortex z=z ,=h( l+e2) -I  - .  
filament that can move along a domain wall (DW) under (Fig. ), where is the film thickness. 
the influence of an external magnetic field directed along the As the velocity is increased, the horizontal BL moves 
DW Or the gyroscopic force produced the motion the from the surface (from the point = into the interior of 
DW itself.' It is shown in Refs. 1-4 that the maximum BL the sample all the way to a point = z2 = + velocity is reached when the velocity becomes comparable with the so- 

Ulrm=s=y  (8nA)",  ( 1 ) called Slonczewski peak velocity. 

where y is the gyromagnetic ratio and A is the exchange- v,=23,8yAlhKU", (2a) 
rigidity constant of the material. The mechanism that limits 
the BL velocity in this case is dynamic transformation of an 
isolated BL into a cluster of five BL with no change of the 
initial topological charge. This BL velocity limit is similar in 
a certain sense to the Walker velocity limit1 for a domain 
wall, and likewise takes no account of the influence of the 
demagnetization fields of the surface magnetic charges. 
Allowance for the latter is of fundamental importance for 
magnetic films with a perpendicular anisotropy, the behav- 
ior of BL in which has recently attracted much attention in 
connection with the development of a solid-state memory for 
super-dense information storage. 

The domain walls in such films are "twisted" by the 
demagnetization fields, i.e., their structure varies in a direc- 
tion perpendicular to the film plane. Equation ( 1 ) was de- 
rived for untwisted DW, which are formed in very thin films 
having uniaxial anisotropy perpendicular to the film plane, 
when the influence of the demagnetizing fields of the surface 
magnetic charges on the DW structure can be neglected, in 
films (slabs) with planar anisotropy, etc. The velocity limit 
of twisted DW is known' to be lower than the Walker veloc- 
ity, owing to the generation and subsequent stability loss of 
horizontal Bloch lines. 

2. Let us examine the effect of DW twisting on the BL 

where K is the uniaxial-anisotropy constant. 
The horizontal BL breaks at a velocity u = up whch, 

according to Slonczewski, is in fact the maximum (peak) 
DW velocity. In this case, as seen from Fig. 2, a cluster of five 
BL is produced in our case, just as in bulk mechanism, de- 
fined by Eq. ( I ) ,  which limits the BL velocity. The subse- 
quent evolution of the BL and DW dynamics depends on the 
actual conditions. 

In particular, the sag may slow down and the cluster 
can stabilize, or else new horizontal BL loops are generated 
and eventually break up, etc., i.e., BL lines accumulate and 
form a "stack." Similar processes are known in the dynamics 
of magnetic bubble domains. 

Note that dissipative processes can alter somewhat the 
considered behavior of the BL near the velocity limit. The 
point is that dissipation makes the leading edge of the DW- 
sag wave accompanying the moving BL steeper than the 
trailing edge (Refs. 2,4,5,7) ." The nucleation and breaking 
on the leading front will therefore occur earlier than on the 
trailing edge. If the dissipation is large enough one can ex- 
pect the BL velocity to be limited by the dynamic transfor- 
mation of the BL into a cluster of three rather than five BL. 

3. Let us analyze in greater detail the conditions for 

velocity limit. A BL moving in a DW bends the latter by a 
gyroscopic force. It is obvious, as well as verified by compu- 
t a t i ~ n , ~  that if the BL velocity is high enough HBL are gener- U 
ated on the bent section (see Fig. 1 ) . 0 

Let such a bent section be moved with velocity u along 
an immobile DW, say by an external field directed along the M + 

DW (parallel to the x axis). '' The DW velocity component 
normal to the DW wall at an arbitrary point A is then 

11,=uq'(l+ (q ' )2) - 'h ,  (2)  
HBL 

where q(x)  is the profile of the DW sag, and the prime de- VBL 
notes differentiation with respect to x. FIG. 1 .  Horizontal BL loops on the leading (a )  and trailing (b)  

It the S1Onczewski that for u n  > edges of a sag wave produced by a moving VBL. f,-gyroscopic 
a horizontal BL is produced in the DW at the point forces acting on the horizontal BL. 
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dynamic equilibrium of a moving horizontal BL loop. This 
can be compared with the mechanical problem of equilibri- 
um of an elastic filament acted upon by definite forces and 
moving over a curved surface. Note that such a mechanical 
system is nonholonomic, as is also the BL problem. This 
means, in particular, that a more natural approach to the 
derivation of the BL-equilibrium equations that takes auto- 
matic account of the nonholonomy of the constraints is a 
Newtonian approach based on the notion of forces, in con- 
trast to the Lagrangian (energy-based) approach in which 
allowance for the constraints leads to complications. How- 
ever, the Lagrangian formulation of this problem, being 
more physical for the situation considered, can be consis- 
tently applied here if a common procedure is used to derive 
the equations for the DW and the BL dynamics. The difficul- 
ties with the nonholonomy of the constraints are then eli- 
minated, but at the expense of more cumbersome computa- 
tions and more system degrees of freedom. 

We project the components of the forces acting on the 
horizontal BL a)  along the normal to the DW surface and b)  
on a plane tangent to the DW. The former (normal) forces 
are balanced by DW reaction forces. Since we are not inter- 
ested in small distortions of the DW profile along the normal 
to the film, i.e., in its deviation from cylindrical (this is 
usually permissible in similar problems of the theory of DW 
in magnetic films), we disregard hereafter these (perpendic- 
ular) force components. The tangential force components 
acting on the horizontal BL can also be subdivided into 
forces along a tangent to the line itself, and forces acting 
along what is known as the geodesic vector or the tangential 
curvature. It is in fact the condition that these latter forces be 
in equilibrium which determines the sought horizontal BL 
profile and the conditions for its stability. 

FIG. 2. Schematics of the horizontal BL break mecha- 
nism for a vertical BL moving in a DW (projection on 
the zx plane): a-nucleation of horizontal BL loops, 
(b)-"pre-breakthrough" situation, c-break 
through horizontal BL loops and formation of a clus- 
ter of five vertical BL. 

Let the DW surface be defined by the equations (in a 
parametric form) 

The vector normal to this surface is then 

The horizontal BL equation can be defined as 

x=x, y=q (x), z=zL (2). ( 5 )  
z, is the position of the horizontal BL center). The unit 
vector tangent to this curve is 

where 

p=( l+(q ' )2+(~L ' )2) -"2 ,  

and the curvature vector of the curve is 

~L"=(d,p, dSq1p, dSzL1p) =P ( 3 % ~ ~  axq'p, ~ ~ z L ' P ) .  ( 6 )  

The direction of the normal to the horizontal BL in the 
tangential plane is specified by the unit vector. 

The geodesic curvature of the horizontal BL is then 

A horizontal BL is acted upon in a moving DW by the 
following forces. a )  The dynamic-reaction (gyroscopic) 
force' 
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where M, is the magnetization, @, is the increment of the 
azimuthal angle $at which the magnetization emerges from 
the DW plane on going through the HBL along its normal, 
and u = (u,O,O) is the horizontal BL velocity. 

b)  The pressure force on the horizontal BL, due to the 
non-uniform dependence of its linear energy density I ,  onz:' 

C)  The surface tension force, also determined by the 
horizontal BL linear density. 

d )  The dissipative force f,,, , which will not be speci- 
fied. 

Projecting on these forces along the horizontal BL geo- 
desic curvature we obtain 

or 
bkQ- (alL/az) cos a=2M8y-'@,uq' (I+ (q ' )  2)-"+fac4., ( 12) 

where 

cos a= [ ( I+  (q l )=) / ( l+  (q')Z+(~L)2)]'h, 

a is the angle between the geodesic-curvature vector and the 
z axis. For 19'1 4 1 we have 

To solve ( 12) we must calculate q(x) ,  i.e., the DW pro- 
file defined by the equation 

where uW is the DW energy density, - flq is the restoring 
force that ensures at u = 0 the stability of a planar DW to 
flexural perturbations (it can be produced, in particular by a 
nonuniform magnetic field, and then fl = 2M, H ', where 
H ' = dH, /dy is the magnetic field gradient), and p , is the 
DW mobility. The term in the right-hand side is the gyro- 
scopic force applied to the DW by the moving BL. 

4. To determine the velocity limit it suffices to consider 
the nondissipative approximation. In addition we neglect q' 
compared with 1, which can be readily verified to be valid for 
all velocities up to the limit of u. The solution of (13) can 
then be written in the form4 

m 

where 

G(x)=(2b)-'exp (-blxl), 

is the Green's function and b = (fl /aw ) ' I 2 .  To calculate the 
profile using ( 15) we neglect the influence of the horizontal 
BL loop on the form of the profile. This is justified in part by 
the fact that the integral topological charge of the horizontal 
BL loop is zero, so that the DW deformation is cancelled out 
by the different sections of the horizontal BL loop. We take 
therefore into account only the DW sag due to the initial 
vertical Bloch line. Putting $, = @,S(x) (@, is the in- 

crease of the angle $ after going through the vertical BL), 
which accords with the BL approximation and is fully justi- 
fied for b 4 1, and substituting this expression in ( 14), we 
obtain 

q(x) =qo exp (-bJxJ) .  16) 

Equation (12) with a right-hand side determined by (16) 
can be solved only numerically. To simplify the procedure 
we use a piecewise linear approximation for the q(x)  profile, 
namely 

q0(1--bIz]), lxl<b-', 
0, lxl>b-'. 

In this case Eq. ( 12) on the actual interval u,(u<up, where 
the horizontal BL breaks when the velocity limit is reached, 
takes the simple form. 

This equation relates the position of the flat section of the 
horizontal BL loop with the vertical BL velocity u (Fig. 3). 
Strictly speaking, Eq. (18) can be used only in a definite 
velocity interval u , <u (up, in which the location of the hori- 
zontal BL loop is stable. It can be seen from Fig. 3 that as the 
vertical BL velocity u increases the vertex of the horizontal 
BL loop shifts towards the film surface and the horizontal 
BL becomes unstable at z = 2,. The corresponding value of 
the vertical BL velocity can be taken to be the peak vertical 
BL velocity, in full analogy with the determination of the 
peak velocity of a plane DW. The left-hand side of ( 18 ) is 
equal at z = z, to the Slonczewski peak velocity up (2a). 

Equating the right-hand side of ( 18) to up, we get 

where 
Q=KU/2nM,2, 

and up is the Slonczewski peak velocity given by (2a) for a 
plane DW.3' For an isolated vertical BL the constant is 
C = 712 and can reach a larger value (3?r/2) when account 
is taken of the influence of the vertical BL loop on the DW 
sag. It is easy to verify by directly substituting (20) in ( 14) 
that (q ' )24  1 for u&up. 

We conclude the section by estimating the peak BL ve- 
locity for iron-garnet films. Putting Q = 4, s = 500 m/s and 

FIG. 3. Dependence of the form dl, /dz on z. The solid and dashed lines 
show the HBL corresponding respectively to stable and unstable equilibri- 
um. ' 
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up = 10 m/s we obtain up = 100 m/s, close enough to the 
experimental data of Ref. '3. 

5. The equations for clusters consisting of a small num- 
ber of BL can also be qualitatively generalized. For a cluster 
having NL BL the value of @, is increased NL times. The 
right-hand side of ( 18) is also increased by N, times and the 
peak velocity for a cluster decreases according to (20) by a 
factor N L", i.e., 

This scaling is obviously valid so long as Jq'l remains much 
smaller than 1, i.e., for N, 4 (s/up )Q 'I2. 

It turns out in fact that Eq. (21) continues to hold also 
for q' 2 1. We demonstrate this by using Eq. ( 13) in the non- 
dissipative approximation, and also by assuming, as in Sec. 
4, that A, 4 L - I ,  A, = ( A  / ~ T M  %) 'I2. 

The shape of the DW is described then by the equation 

with boundary conditions 

Equation (22) has a first integral 

( I +  ( q ' ) 2 ) - ' h = l - ( q b / A L ) 2 .  

We have already used the boundary condition (23) here. 
Since the function a (x)  must be even in the absence of dissi- 
pation, it follows from (24) that 

q l /  ( I +  (q')  ')" Ix=x!,+U=nN~/2~Q'b (26) 

Integrating Eq. (25) with allowance for (26) we obtain for 
q (x )  (if ?rNu/2sQ 'I2(  1 ) an equation in the form 

where q, = NruA, /2bsQ 'I2  is the amplitude of the deflec- 
tion of the DW at q = q(x = x, ), i.e., at the center of the 
cluster. Together with ( 12) Eq. (2)  determines the shape of 
the horizontal BL loop. 

The maximum value of q'( 1 + (q')') - ' I 2  is reached as 
x-x, + 0 and is equal to ?rNu/2sQ 'I2  so that according to 
(2)  and (26) the peak velocity of the vertical BL is deter- 
mined also in this case by Eq. (20). 

For parameter values rNu/2sQ 'I2 > 1 (i.e., for Jq'J $ 1  ) 
it can be concluded from the qualitative arguments ad- 
vanced at the beginning of the article that the peak velocities 
of a vertical BL cluster and a DW should be close to one 
another. 

It can also be assumed that there is no need to insert in 
the resultant Eq. (20) the peak velocity determined just by 
the Slonczewski equation. It seems sufficient to substitute 
the actually observed maximum DW velocity at which the 
self-similar motion of the DW is disturbed. Such approxima- 
tion equations for up, which describe the experimental data 
well, are given, for example, in Refs. 7 and 8. 

"The results are easily extended to a more general situation, when the BL 
motion is caused by the gyroscopic force due to motion of the DW itself. 

''This conclusion is confirmed also by recent BL-dynamics computations 
based on the Landau-Lifshitz  equation^.^ 

"To be exact, it must be noted that Eq. ( 12) and the corresponding equa- 
tion ( 18.2) of Malozemoff and Slonczewski' have different forms of the 
q(x) profile. But since q'( 1 holds we can determine up by using up 
values that are valid for a plane DW. 
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