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We exhibit exact solutions to a generalized version of the equation recently proposed by Zhdanov 
and Trubnikovl to describe the hydrodynamical instability of premixed flames. In a limiting case 
we show how steady solutions to the nonlinear ZT-equation can be deduced from those of a linear 
integral problem. We next present arguments suggesting that the original ZT equation possesses a 
continuum of solutions, which would be broken into a discrete set by the slightest stabilizing 
curvature effect. Finally, related open mathematical problems are discussed. 

1. Using expansions in the wrinkling amplitude, k k - cp(" = ~n [sin - (x-xa)  sin - (x-x.) I, 
Zhdanov and Trubnikovl recently obtained an equation, de- 2 2 ( 5 )  

noted by ((ZT)) in what follows, to describe how two-di- 
mensional wrinkles of an initially planar premixed flame wherex, = Re(x, ) + iIm(x, ) is a complex constant, E, is 
grow as a consequence of the well-known LandauZ-Dar- its conjugate and k is any positive real constant. We next 
rieus3 hydrodynamic instability. When written in terms of note the identities" 
suitably scaled time ( t )  and space (x) variables, the ZT - 
equation reads as follows: qda'=2k e+""lm(g'sin[nk ( x  - R e ( x a ) )  1 ,  (6) 

n-i 

(1) - 
n 

where the subscript x denotes the partial derivative /ax, sh z /  (ch z - cos x )  = 1 + 2 )  ee-nz cos nx, Z>O. 
n-f $ ~ a $ / a t ;  $ ( t ,  x)  is a scaled function representing the local ( 7 )  

angle made by the flame front to its mean location. ~ ( $ 1  From these and the definition of I( it follows that 

stands for the Hilbert transform of $: =l+i-[ d E. l n  sin--(.. k - xu)+ E. In sin-(x-r . )  
dz 2 2 - 1  

H (9) =n-' 3 ( z - x )  -'$ ( t ,  z)dz (2)  (8)  

and 1 > c > 0 is a constant parameter which approaches zero 
(unity) when the density change across the flame is very 
weak (very large). Our present purpose is to show a way to 
obtain solutions to ( 1 ). 

2. We first note that the model leading to ( 1 ) assumed a 
constant local burning speed; as an unrealistic consequence, 
wrinkles of arbitrarily short wavelengths are allowed to 
grow, so that the dynamical problem is ill-posed. A more 
complete description would acknowledge that actual burn- 
ing speeds do depend on local flame shape and flow struc- 
t ~ r e . ~ - ~  It therefore makes sense to formally augment ( 1 ) 
into the following modified equation (mZT): 

in which v$= accounts for the combined stabilizing (v>O is 
assumed) influences of front curvature and flame stretching 
by flow n~nuniformity.~ We next note that (3 )  is a differen- 
tiated form of 

where p, $ ,  and I ( .  ) = - ( d  /dx)H(. ) is the Landau- 
Darrieus operator (multiplication by Ik I in the Fourier- 
space conjugate to x) .  We shall concentrate on (4); then the 
limit v+ + 0 will lead us back to ( 1 ). 

3. For c = 0 (small density change) (4) reduces to a 
well-known equation due to Sivashinsky,' for which exact, 
relevant solutions can be found, e.g. by the method of pole- 
decomp~si t ion .~-~~ We now show that the method also 
works when c#O. 

Let us first introduce the real functions 

with E, = sign [Im(x, ) ] and E~ = - E, . The term pole- 
decomposition refers to the property that (4)  admits exact, 
spatially 2r/k-periodic solutions of the form 

a x  

.p ( t ,  X )  =-h(t) + E a .  ln sin (L (x-xa ( t )  I) , (g )  
"xi 

2 

for which the x,'s are the complex poles of p,. As p is real 
when x is, these must come in conjugate pairs in (9); their 
total number 2N is fixed, but arbitrary. That (9) solves (4) 
is shown by direct substitution. First the a,'s must be chosen 
so as to ensure that the most divergent terms-coming from 
p :, 1 2 ( p )  and p,, once (5 ), (6)  are taken into account- 
cancel each other, which implies a, = - 2v( 1 - c )  - '. One 
next uses the trigonometric formula: 

c ~ g  a  ctg b=-I+ c t g ( a - b )  [ c tg  b- c t g a ]  (10) 

with 2a = k(x - x, ) and 2b = k(x - xs ) to convert the re- 
maining products of unlike cotangents (af.6) into sums. 
The x-dependent terms still present in (4) then disappear if 
the poles move according to the 2N complex ODES: 

2Nvkc 
i, = - 

l - c  

For c = 0, the 2N-body dynamics found in Ref. 8 is recov- 
ered and again, nonperiodic patterns-representing collec- 
tions of elementary crests-and their evolution are readily 
obtained from (8),  ( 11 ) by allowing k to go to zero, x and 
the x,'s being kept fixed. Finally, the x-independent terms 
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disappear from (4) provided that h ( t )  satisfies 

(1-c) h=2vkN(l-vkN). (12) 

For steady patterns (x, = 0) h measures the increase in 
flame speed due to instability and is a convenient norm of the 
wrinkling, as 

h=-<~3)=<cp,Z>+c(I~ (cp)) 
then follows from (4) upon transverse averagiilg (denoted 
by brackets). 

4. The simplest nontrivial solution of (4)  obtains when 
N = 1. More general patterns correspond to superpositions 
of this simple one, possibly once shifted; in this sense, such 
an elementary pattern is the basic soliton for (4),  as the poles 
are indestructible. Due to translational invariance one may 
take x, = iB, x, = - iB. The evolution of B(t)  follow$ 
from ( 1 1 ), viz. 

and its fate as t- w mainly depends on vk. B may tend to a 
constant B, , easily found from ( 13), in which case the final 
expression of p reads: 

(c-l)cp(t, x)=vk(I-vk)t+2v ln[I-sechjkB,)cos(kx)] 

(14) 
up to arbitrary, constant shifts in x or p. Large values of kB, 
lead to a nearly sinusoidal wave; B may also ultimately move 
to + co . The bifurcation (B, = w ) of course corresponds 
to vk = 1, i.e., to a wavenumber which is marginal for the 
linearized version of (4) or ( 3 ) . Vanishing values of k lead to 
a cell amplitude that grows logarithmically, i.e., less rapidly 
than k - '; - (4, ) then vanishes again (even though the 
crests sharpen, the troughs get flatter and flatter as k de- 
creases); further bifurcations may occur [see ( 16) 1. 

5. Following Ref. 8, we next note that (xa - x,) 
(x, - xa ) z4vk, when two poles x, and xp get very close to 
each other in the same half plane. As a consequence, in much 
the same way as for c = 0, the poles tend to form alignments 
parallel to the imaginary axis. Let + B, (n = 1, ..., N; B, 
> 0) denote the pole imaginary parts, when perfect align- 
ment is reached in each cell. Equations ( 1 1 ) then degenerate 
into N algebraic conditions: 

vk (f,!n'm)+f?'m) ) +vkf+("*"'= ( I - c f i v ~ c k ) ,  
m f n  

k 
(15) 

n=I,  . . . N, f ~ " ' ~ ' =  (1*c)cth(- (B.*B.) ). 
2 

The B,'s may be ordered to have B, = max (B, ) < 03,  so 
that for n = N, all the above hyperbolic contangents exceed 
unity and the following constraint on N obtains: 

2NG 1+ (vk) - I ,  (16) 

which does not contain c. If (vk) - ' is an odd integer, equa- 
lity holds in ( 16) and a pair of poles branches off from infin- 
ity; hence an infinite sequence of bifurcations exists. It is 
natural to conjecture that 

N=N,,,(vk) = Int [ ( l +  (vk)-') 121 

[Int( ) = Integer Part of ( . ) ] generically corresponds to 
steady patterns obtained from sufficiently irregular initial 
 condition^'^ ("many available poles"). If N>Nma, holds at 

t = 0, Nma, - N pairs of poles ultimately escape to + i~ 
and no longer contribute to (4, ) and p in the long-time limit. 

6. If N = Nmax (vk) is indeed the relevant value for 
steady patterns, then 2 N z  l/vk- w as vk-0. As for c = 0 
one may then replace the discrete sum over the B,'s involved 
in ( 14) by an integral, with weightp(B ')/v, over the current 
pole location B ':p(B ' )dB '/v denotes the number of poles 
whose imaginary parts lie in the interval [B  ',B ' + dB '1 ; ob- 
viously p(B)  may be continued as an even function. When 
evaluated at B = B, , the continuous version of ( 15) leads to 

k 5 P (B') K(B, B') dB' - sign B=O 
- m 

with a kernel K(B,B ') defined by 

K (B, B') = (1-c sign Blsign B') cth( (B-B') k/2). ( 18) 

Once the linear problem ( 17 is solved for p (B) with the 
normalization 

1 
S p 0 @ ~ 2 ~ ~ - ,  hence k J p d ~ = i ,  (19) 

-m v vk - m 

the function p(t,x) is available: 
rn 

k 
(c-l)cp=t/2+2 p(B)ln[ sin- (r-iB) dB. (20) 

- m 2 I 
By construction, this expression solves the mZT equation in 
the limit vk-r + 0. Hence its derivative $ = p, should solve 
the original ZT equation ... but we have so far been unable to 
show this directly, upon substitution of ( 19) into ( 1 ) (due 
to the difficulty encountered when handling singular double 
integrals). Becausep depends on k only through the group- 
ing kB, the wrinkling amplitude given by (20) is proportion- 
al to the wavelength, as it should be, since no intrinsic length 
appears in ( 1 ) . 

An interesting extension would be to determine how 
( 17) generalizes to unsteady situations. Within the contin- 
uous approximation this amounts to writing a continuity 
equation forp(B, t) which, once the convection in B-space is 
evaluated from ( 1 1 ) , reads 

m 

Obviously, this is compatible with ( 17) ifp(B = I ~ I  w ) = 0. 
Unfortunately, finding a non-trivial solution to ( 17') seems 
to be even more difficult than solving ( 1 ) itself! 

7. Further remarks are due. First, that the integral 
equation (17) is an outer asymptotic one, valid for B<B, 
(and not too small) in the limit vk- + 0. Next, that the 
choice N =  N,, (vk) is rather arbitrary isofar as only 
steady patterns are looked for: any value NzuN,,,, 
O(u( 1, could in principle have been considered, provided 
that the RHS of (17) is modified into ( (1  - (1 
- u)c)sign (B) . Moreover preliminary numerical solutions 

of ( 15) seem to indicate that B, tends to a well defined limit 
as N grows, u being kept fixed. 

These remarks led us to the question: does the ZT equa- 
tion admit a continuum of steady solutions parametrized by 
u? We have no rigorous, definitive answer up to now, but we 
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suggest below what could happen. For the sake of argument 
only c = 0 is considered, in which case ( 17) is of convolution 
type and can be solved exactly by Fourier transformati~n,~ 
to give 

where d is an integration constant. For a = 1, the normaliza- 
tion (18) yields d = 0 and a pole density which vanishes at 
I B I = cu only. A smaller a would lead to a negatived, and to 
ap(B)  vanishing at I B I = B, (a ) .  Asp cannot become neg- 
ative (it is a density), and ( 17) is no larger valid when 
p(B) = 0, it is naturals to truncatep when (B (>B, , thereby 
leading to 

for (B I (B, and top=O otherwise. A way to relate B, to a 
would then be to use the normalization condition: 

in which case equations (9), ( 12) would yield 
B .  

as another "steady" solution to the "inviscid" Sivashinsky 
equation [ (4)  with v = c = 01. 

If true, even for c#O, this reasoning would mean that 
the ZT equation (vk = 0) has a continuum of steady solu- 
tions (parametrized by a ) ,  whereas the mZT equation only 
admits a countably infinite number of them (parametrized 
by N )  as vk- + 0, in a way which is quite reminiscent of 
what recently happened in theories of viscous fingering,13 
bubble rise,14 crystal growth," etc. To the best of our know- 
ledge the possibility of a continuum of solutions for infinite- 
ly-thin flames steadily propagating in tubes was first alluded 
to by PelcC.16 As ( 15 ) is a discretized version of ( 17), in a 
sense, this would also suggest that discretization-induced 
diffusion may play a quite nontrivial role in numerical stu- 
dies of pattern selection! 

8. One must finally acknowledge that the above meth- 
ods all rely on a sort of miracle, namely that (4)  admits exact 
solutions of the form given by (9). It would be nice to use 
these as a basis to incorporate extra effects as perturbations. 

However, the slightest well-chosen structural change in the 
evolution equation (4)  may preclude any simple generaliza- 
tion. For example adding a term - $,, to the RHS of (4), 
so as to account for higher-order stabilizing (E > 0)  curva- 
ture  effect^,^ prevents one from using the pole-decomposi- 
tion method, whatever the smallness of E, even though the 
modification of p clearly is small when E - + 0 and x is real. 
Problems of the same kind arise when the extra term is 
E (  ( p  ) - p) (influence of a small gravity field17 ) or - ~p 
(remote flame held around a point-source of reactantsla ) or 
is a small known forcing. It would be quite interesting math- 
ematically to set up singular-perturbation analyses to deter- 
mine how the former poles of p, get "unfolded" into more 
complicated, as yet unknown, sets of singularities. 
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