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The universality of the mechanism for acoustic instability in a plasma which stems from reversal 
of the second viscosity is analyzed. 

Aleksandrov et al.' have proposed a new mechanism 
for sound amplification in a beam-driven discharge. That 
mechanism involves friction between the electrons and the 
neutral gas. However, certain results of Ref. 1 require refine- 
ment, in our opinion. 

As Ingard and Gentle have shown,2 friction between 
electrons and neutral particles does not by itself lead to am- 
plification or absorption of sound. Aleksandrov et al.' ac- 
tually analyzed the amplification (or absorption) associated 
with the finite relaxation time of the plasma density 
(7, = Y; I) and the finite length scale of the diffusive "re- 
laxation" of the electron distribution ( L ,  -D /u ,  ) asso- 
ciated with the departure from equilibrium in the medium 
caused by the propagation of a sound wave. In this paper we 
retain the notation of Ref. 1. 

The first process leads to a temporal deviation from lo- 
cal behavior and gives rise to a second viscosity. When sound 
waves a exp( - iwt + ikr) propagate in a relaxing medium, 
the pressure perturbation P' differs from the equilibrium 
pressure P :, : 

Here g ' is the complex second-viscosity coefficient, whose 
imaginary part (Im c')  determines the dispersion of the 
sound velocity, and whose real part (5 = Re 5 ' )  determines 
the absorption of the sound. 

The second process is characterized by spatial relaxa- 
tion, and it determines the spatial deviation of the medium 
from local behavior. For isotropic media with a dispersion 
which is linear in the harmonic approximation 
(d  'w/dk ' = OoraP1/dt = - const 6'P1/8x), however, this 
process can also be reduced to a relation like (1)  with a 
corresponding value of 6 '(w). For acoustic perturbations it 
is thus appropriate to discuss this process in terms of the 
second viscosity, combining these effects under the common 
name of "relaxation viscosity," which characterizes dissipa- 
tive processes which occur in a medium because of the finite 
time required for the pressure to become steady following 
compression or rarefaction in a sound wave. The sign of the 
coefficient is determined by the sign of the feedback between 
the density perturbations in the wave and the relaxing para- 
meters of the s y ~ t e m . ~ , ~  

By explicitly introducing the relaxation-viscosity coef- 
ficient, we can write the dissipation coefficient F in the sim- 
ple standard form 

where 

is the sound velocity, and w + ir. 
In the model of Ref. 1, for example, we find the follow- 

ing results from Eqs. (7)-( 11 ) ') of Ref. 1 for transverse 
perturbations (we are ignoring diffusion terms): 

r -- a p e  

52 - 2P7. (4+aZ) ' ' 

The growth rate (5)  found here agrees to within a factor 
of 1/2 with that given in Ref. 1 [see expression ( 12) of that 
paper]. 

Correspondingly, for longitudinal perturbations we 
find 

Expression (6)  differs from the corresponding growth rate 
in Ref. 1 by a factor of 1/2 and in the appearance of T, in 
place of a one. These discrepancies can apparently be 
ascribed to misprints. 

The important point is that growth rates of the form (5)  
and (6)  were found in Ref. 1 in an inappropriate model: The 
primary friction effect-the entrainment of the plasma by 
the gas-was not considered. Working from the transport 
equation for the ion momentum, 

we find 

This expression must be taken into account in the bal- 
ance equation for the ion density [Eq. (5) in Ref. l l. As we 
will see below, when this expression is now written in the 
form 

it gives rise to a change in the relationship between the per- 
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turbations ii and the quantities Rand g. It also changes the 
sign of the dissipative coefficients ( 5 ) and (6). 

For a quasineutral plasma (varM 4 1), the relation 
written in Ref. 1 (the ion current and .i., are being ignored), 

is replaced by the following relation, which we find from 
(8): 

Using (9 ) , we can write the dispersion relation for an arbi- 
trary propagation direction of the sound wave as follows (in 
the limit kil, 4 1, T 4 v,, a ,  which was used in Ref. 1 ) : 

Table I shows values of the relaxation specific heats at 
constant pressure and constant volume, Ce and C,,. ( j = 0- 
3 ), for the cases in which the sound is propagating across 
( 7  = 0) and along ( 7  = 1 ) the electric field. The quantity 
rE = D /u, CO in ( 10) is the diffusion time scale, where 

The dispersion relation ( 10) has the standard form for a 
medium with two coupled relaxation processes. In particu- 
lar, with the appropriate changes in notation it applies to the 
case of a medium with a vibrational-rotational or intermode 
vibrational molecular relaxation. The relaxation-viscosity 
coefficient (3) and the sound velocity (4)  were found in Ref. 
5 for a dispersion relation like that in ( 10); these expressions 
are 

E= (ToIM) p [T, (CvoCpt-CpoCvi) 
+ T ~ ( C ~ , C ~ , - C ~ , C ~ ~ )  +S12~,ZzE(Cv3C~l-C~3C~1) I I 

[ (CVo-CV3S12~r~~)2+ ( C V ~ Q T ~ + C V Z Q ~ E ) ~ ]  (1 1) 

c2= (ToIM) [ (Cpo-Cp3Q2~,~E) (C,0-Cv3Q2.tl~E) 
+ (Cp1Q.r,+C,S2.t,) (CviQz,+Cv2Q~E)] / I  (Cvo-CvsQ2~r~~)2 

+ ( C V I ~ + ~ + C V ~ T E )  '1 . (12) 

The dissipation coefficient is expressed in terms of the 
second-viscosity coefficient and the velocity of sound in ac- 
cordance with (2). 

For 7, = 0 or rE = 0, we find from (11) and (12) the 
second-viscosity coefficient and the sound velocity in the 
ordinary form for the single-relaxation model:' 

wherep:, = rk (uf - u:)CVi/2CV, is the low-frequency vis- 
cosity coefficient (f i rk 4Cv,/Cvi), ui = (CPiTO/Cv,M)1/2 
and u, = (Cp,To/Cv,M)'/2 are the velocities of low-fre- 
quency and high-frequency sound, and i, I = 0-3 and k = r, 
E. 

It follows from ( 13), ( 14), and (2) that if the diffusion 
terms are ignored the dissipative coefficients differ from 
those in (5) and (6) : 

and 

r 
-=- Pe(&o-peo) a , q=1. (18) 
Q 2y.~"v, (4+aZ) 

We thus see that perturbations which are transverse to 
the field are not amplified as in Ref. 1 and are instead ab- 
sorbed, according to the model of this paper, with (9). Ac- 
cording to ( 18), the condition under which longitudinal 
waves are amplified is 0, < T,, i.e., the direct opposite of 
the condition found from, (6). 

Aleksandrov et al.' studied the case a < 1, 0, = 0, 

TABLE I. 

1 ) Note. Here C,, and C,, are the specific heats corresponding to the translational degrees of 
freedom at constant pressure and constant volume. The D,, DE, and DL were introduced in Ref. 
1.  
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q = 1 separately. In the limit a + 0 we find from (2),  ( 15), 
and (16) 

The coefficient ( 19), unlike the dissipative coefficient 
associated with the relaxation of the degree of ionization, 
agrees with the corresponding result of Ref. 1, since the en- 
trainment of the plasma by the gas, described by expression 
(7 ) ,  is unimportant in this limit. 

Formally we find r / R +  co as f i rE +0  from ( 19). 
However, at least three limitations are imposed on the para- 
meter nrE. 

In the first place, expression (19) was derived in the 
approximation T 4 R, so we must require 

Second, the model used in Ref. 1 assumes that the elec- 
tron temperature is quasisteady. With D, = 0, that assump- 
tion is valid if 

where 7, = (SveV,, ) -', S is an accommodation coefficient, 
and v,, is the electron-neutral collision rate. This limitation 
must be taken into consideration in (for example) a com- 
parison of ( 19) with the thermal (in the terminology of Ref. 
1 ) amplification mechanism, with the growth rate 

Since we have6 A, -urn re ,  we similarly find the follow- 
ing condition from (20) : 

Third and finally, in real physical problems it is unlikely 
that the equality 6, = 0 will be satisfied exactly. For D, 4 1, 
according to ( 15 ), relation ( 19) is valid if 

n Cvo kDz 
ueo=-<-. 

Gvz V ~ P  
(22) 

Using k/Z, 4 1, we see that the example 

discussed in Ref. 1, shows just how small 6, must be if we are 
to observe amplification (or absorption) with the rate ( 19). 
Example (23) satisfies condition (21 ). 

Itcanbeseenfrom (2) ,  (11),and (12) thatifthereare 
several relaxation processes (r,#O, rE#O) it will not be 
possible to identify dissipation coefficients which are linked 
with one specific process. This can be done only in the limits 
in which the relaxation of the corresponding degree of free- 
dom is fast or slow (in comparison with the wave period). 

For example, 
cvo CPO I r,:.%r2tp: c=uo for Q* < -, --, 
Cv1 CPl 
Cv, CPO 

Q - ,  - 
r = (  c,, c,, cpo cp2 

+  c=ul for Qr, W -, - 9  

Cv, CPi 

Here 
I 

are the low-frequency and high-frequency dissipation coeffi- 
cient~,'~' each of which is expressed in terms of a relaxation- 
viscosity coefficient associated with a specific relaxation 
process. 

In conclusion we wish to stress that the relaxation-vis- 
cosity formalism describes the acoustics of equilibrium and 
nonequilibrium media under the condition that the absorp- 
tion over a wavelength is small ( T g  R) ,  regardless of the 
particular parameter which is undergoing relaxation. For an 
isotropic medium with linear dispersion, both spatially local 
processes with a finite relaxation time (second viscosity and 
radiative thermal conductivity)' and such nonlocal pro- 
cesses as diffusion or radiationless thermal conductivity 
contribute to the relaxation viscosity. The radiationless ther- 
mal conductivity also leads to an equation of state like ( 1) 
(see Ref. 8, for example), with a coefficient 
gx = X(  l/CV, - l/Cp, ). This coefficient can be written 
in the standard form for a low-frequency relaxation-viscos- 
ity coefficient (5, = 2pp) : 

where r, = x / u ~ ~ ~  is the time scale of the thermal conduc- 
tivity, u, = (Cp, To/Cv, M)  is the Laplace velocity of 
the low-frequency (adiabatic) sound (wr, 4 1 ), 
u, = (C,, To/CvN M )  ' I2 is the Newtonian velocity of high- 
frequency (isothermal) sound ( , and 
c,, = CVN = - 1. 

The second-viscosity formalism, which makes possible 
a unified analysis of the stability of sound in a medium with 
relaxing parameters, shows its worth in an analysis of non- 
linear acoustic dynamics. Under the condition T (R, which 
we have already mentioned, the propagation of waves of 
small but finite amplitude (the second order of an amplitude 
perturbation theory) is described by a linear second vis- 
c o ~ i t y . ~  In higher orders, it is m~di f ied ,~  but we retain the 
transparent physical picture of the evolution of the acoustic 
waves in a nonequilibrium relaxing medium. 

We wish to thank N. L. Aleksandrov for a discussion of 
questions touched on in this paper. 
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