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An efficient method is developed for calculating the coefficients of the l/Nexpansion of 
arbitrarily high orders both for the ground states and for the radially excited states of the discrete 
spectrum of the Schrodinger equation. The method is based on a semiclassical interpretation of 
the l/Nexpansion. The explicit use of expansion in Planck's constant clarifies the reason for the 
complementarity of the l/Napproach and the WKB approximation. Going over to the Riccati 
equation and using the f i  expansion make it possible to apply the quantization conditions to take 
account of the nodes of the wave function, and this leads to simple recursion relations. For the 
example of the funnel potential calculatio~is are given of the first ten coefficients in the l/n- 
expansion scheme for the energy for different values of the orbital and radial quantum numbers. 

1. INTRODUCTION 

Recently, one of the most widely used methods for in- 
vestigating the bound states of the Schrodinger equation 

has been the l/Nexpansion, the present state and the history 
of the development of which are reflected in the reviews in 
Refs. 1 and 2. At the basis of this semiclassical method is the 
analysis of the classical motion of a particle at the bottom of 
the potential well formed by the effective potential 

of Eq. ( 1 ), with subsequent allowance for quantum fluctua- 
tions and anharmonicity effects. 

There exist two equivalent approaches to the construc- 
tion of 1/N expansions. In one of them the passage to the 
classical limit is executed by letting the dimensionality of 
space tend to infinity (D+ cu ). The expansion is performed 
in the small parameter 1/(1 + D / 2 )  (Ref. 3) or 1/ ' 

( I  - a + D/2) (Ref. 4) (1 is is the orbital angular momen- 
tum and a is a shift parameter that improves the conver- 
gence). The physical dimensionality of space is restored in 
the final formulas by the substitution D = 3. 

Another approach, proposed in Refs. 5, uses the pas- 
sage to the classical limit as the orbital angular momentum 
tends to infinity. But, for a fixed radial quantum number n,, 
if I - +  co the principal quantum number n = (n, 
+ I + 1 ) + oo as well. The resulting small parameter l/n is 

chosen as the expansion parameter, and this is why this 
method is called the l/n expansion. 

Both these methods, which differ in essence only in the 
choice of the expansion parameter, take anharmonicity ef- 
fects into account by using the l ~ ~ a r i t h m i c , ~ . ~ , ~ ~ '  the Ray- 
leigh-Schr~dinger,~-'~ or the hypervirial,I1-l3 perturbation- 
theory scheme. The resulting 1/N expansions often diverge 
asymptotically,3 and, for the application of the latest meth- 
ods of summation of divergent series, high orders of the ex- 
pansion have to be evaluated. However, corrections of high 
orders have been considered only for a narrow class of poten- 
t i a l ~ , ~ ~ ~ ~ ' ~ ~ ~ " ~ ' ~  in view of the difficulties that arise in their 
calculation. As noted in Ref. 1, when Rayleigh-Schrodinger 
perturbation theory is used it is difficult to advance beyond 

the first few terms of the 1/N expansion. Logarithmic per- 
turbation theory, based on the Riccati equation, leads to 
simple recursion relations in the case of the ground states, 
but becomes very unwieldy in the description of the radial 
 excitation^.^,^ Here, complications arise because of the se- 
paration of the zeros of the wave function in the form of an 
individual factor. 

There is, however, another way of taking the zeros of 
the wave function into account-namely, by introducing the 
quantization by analogy with the WKB ap- 
proximation. This approach requires the explicit use of ex- 
pansions in Planck's constant. Together with the results of 
Ref. 17, it enables one to understand better the semiclassical 
nature of l/Nexpansions. In addition, it should clarify why 
the 1/N expansion and the WKB approximation, as semi- 
classical methods, are complementary to each other. 

The present paper is devoted, first, to a semiclassical 
interpretation of 1/N expansions that explicitly uses expan- 
sion in fi, and, second, to an account of a method of simple 
recursion relations that permit one to calculate 1/N correc- 
tions of arbitrary order for the energies of both the ground 
states and the radially excited bound states. 

The proposed technique is a further development of the 
*-expansion method recently appliedI8 to an investigation of 
bound states in the (I, E )  plane. 

2. THE +EXPANSION METHOD 

Because of the nonuniqueness of the passage to classical 
mechanics, following Ref. 14 we write 

which brings the Schrodinger equation ( 1 ) to the form 

Next, after certain simplifying substitutions, the solution is 
usually constructed in the form of a series in powers of 1/11. 
Here, the specific variant of the 1/N method is determined 
by the choice of the parameters A and B; in particular, 
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A=h(l+ p) [Ref. 31, 

D 
~ = ~ ( l - a +  - 2 ) [Ref. 41, 

A=-I, B=O, A=A(l+l) [Ref. 51, 
A=O, B=O, A= [fi21(lf I ) ]  " [Refs. 14,191 ,- 

However, as can be seen from Eq. (3),  A appears in the 
expansion parameter in the combination WA. Consequent- 
ly, it is possible to choose another route and to perform the 
expansions in powers of Planck's constant. 

Using logarithmic perturbation theory, after the substi- 
tution C(r) = fiU1(r)/U(r) we go over from Eq. (3) to the 
Riccati equation 

We represent the function C(r) and the energy E in the form 
of asymptotic series in fi: 

m 

In the classical limit (fi-0), which specifies the zeroth 
approximation, for the energy we have 

which corresponds to the motion of a classical particle in a 
stable circular orbit. The radius ro of this orbit is determined 
by the position of the minimum of the effective potential, and 
is found from the equation 

Substituting the expansions (6) and (7) into (5), we arrive 
at the chain of equations 

COT (r) +ZC.(r) C1 (r) = (< ) 'y,-2m~,, 

c:-, (r)+ z C i  (r) c,, ( r )  = ($ ) r.-2m~k, 
2-0 

where 

To take anharmonicity effects into account it is conven- 
ient to move the coordinate origin to the point r = ro and to 
expand the effective potential in a Taylor series in 
x = ( r  - ro )/ro. Then the first equation of the system (10) 
gives 

where the minus sign ensures fulfillment of the boundary 
conditions and we have introduced the notation 

At the same time, for C, (x)  we have 

It  is clear that the recursion relations (14) coincide 
with the relations obtained by means of the standard 1/N- 
expansion technique for ground In the standard 
approach, however, complications appear in the description 
of the radial excitations. Application of the fi expansion 
makes it possible to circumvent these difficulties using the 
quantization conditions. 

In the case of a radially excited state the wave function 
U(r) of Eq. (1)  has exactly n,  real zeros. Therefore, its 
logarithmic derivative C(r)  has n,  simple poles at these 
points. Taking into account that the residue at each of these 
poles is equal to 6, we arrive at the well known Zwaan-Dun- 
ham quantization  condition^'^*'^ 

where the integration contour encloses only the above-men- 
tioned nodes of the wave function. 

The conditions ( 15) are exact, and are used to find cor- 
rections to the WKB approximation.16*20 But in the WKB 
method the passage to the classical limit is implemented us- 
ing the rule 

Being complementary to the WKB approximation, the 1/N- 
expansion method under consideration requires that the rule 
for passage to the classical limit be 

In this case, after substitution of the expansion (61, the 
quantization conditions ( 15) give 

A further applicatibn of the theorem of residues to the expli- 
cit form ( 14) of the functions C, (r) solves the problem of 
describing the radially excited states. 

From the expression ( 1 1 ) it can be seen that for the 
function Co (x) the point x = 0 will be a simple zero. But 
then the function C, (x) has a pole of order 2k - 1 at this 
point, and consequently can be represented in the neighbor- 
hood of this point by a Laurent series: 
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- 
Using the coefficients CaO, Co ', and Cgk - , , given by the 

ch ( x )  = x i - 2 k z  Cakxa. ( 19) expressions (20), (21 ), and (23), from Eq. (26) we find all 
as-o the remaining coefficients C, for a # 2 k  - 2. 

According to the theorem of residues, the quantization con- If, however, a = 2k - 2, from ( 14) we have, for k = 1, 

ditions ( 18), expressed in terms of the coefficients of the 1 00 
Laurent series ( 19 ), take the form ~ e s  c , ( o ) =  - - 2 0 0  [ y ,  + - - 2 m ~ , ] ,  

To 
(27) 

nr Res C , ( O ) = C O t = - - ,  
To 

(20) 

Res c , ( o ) =  c ~ : - ~ = o ,  kZ1. (21 

To unify the notation, we write the expansion ( 11 ) of the 
function Co (x) as 

Co (.)= . ~ C a 0 X " .  (22) 
0-0 

where the coefficients CaO are related to wo and a, by 

cO"- mot C,0=-moa, /2r  

a-i 

Substituting the expansions ( 19) and (22) into ( 14) and 
equating coefficients of equal powers of x, for a#2k  - 2 we 
have 

h a 

where we have introduced the Heaviside function 

1,  a>O, 
0 ( a )  = 

0, a<O. 

From this we obtain a recursion formula for C, k: 

TABLE I. Accuracy of the I/n expansion for the funnel potential. 

which, after application of the condition (20), gives 

In the case k # I ,  after application of the condition 
@ik - ,  = 0, it follows from the expression ( 14) that 

' 0  B= 1 

. . 
(29) 

Thus, the expressions (26), (28 ) , and (29) fully solve 
the problem of constructing the recursion formulas and of 
the expansion of the energies of the bound states in Planck's 
constant. 

3. CALCULATION OFTHE ENERGY 

We write out in explicit form the first terms of the ti 
expansion for the energy E = Eo + +iE, + +i2E2 + ... : 

The passage to any variant (4) of the 1/N expansion 

is implemented using the formula 

As an example, we shall consider the l/n expansion of 
the eigenvalues of the Schrodinger equation in the case of a 
funnel-type potential 

Note. f ::) are successive sums of terms of the I/n expansion: f 6:) = + ~ ( l ' n - '  + . . . ~ ( ~ ) n  - k;  

(7' is the numerical solution of the Schrijdinger equation.'' 
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V ( r )  =-x/r+r/a2. 

Using the notation v(r) = - V ( r ) ,  

and setting l/n = h /A = l / (p + 1 + I ) ,  wherep = n,, we 
convince ourselves that for m = fi = 1 the coefficients of the 
fi expansion lead to the expressions for the l/n expansion 
that were obtained in Ref. 2. 

The rate of convergence of the l/n expansion can be 
seen from the table, in which successive sums of terms of the 
series in powers of l/n are presented. Here, the Schrodinger 
equation with the potential (33) was first brought to the 
standard form 

where R. = x(2ma) 2/3, 6 = (2ma4) ' /3E,  and the calcula- 
tions were performed with the following values of the pa- 
rameters: 2M = 1.84 GeV, x = 0.52, and a = 2.34 GeV, 
which corresponds to R. = 1.37623. 

It can be seen from the table that the accuracy of the 
description of the energy spectrum of the Schrodinger equa- 
tion by means of a sum of low-order terms of the l/n expan- 
sion increases with increase of the orbital quantum number 
and decreases slightly with increase of the radial quantum 
number. The states with 1 = 0 are described least accurately. 
We note that the energy values calculated to order ( l/n) 
inclusive, and given in the second row of the table, coincide 
with the values obtained in Ref. 2. 

Thus, a semiclassical interpretation (using expansion 
in Planck's constant) of the 1/N method has made explicit 
the reason why this method is complementary to the WKB 
approximation. The reason lies in the difference in the pas- 
sages to the classical limit. The WKB approximation, using 
the rule fi-0, n, - CQ , finin, = const, becomes more accurate 
with increase of the radial quantum number, whereas for the 
1/N expansion the rule for passage to the classical limit is 
fi-0, fin, -+0, n, = const. Here, the classical limit, which 
gives the principal contribution to the expansion, is reached 
more rapidly for states with small radial quantum numbers, 
which explains the more accurate description of the nodeless 
states. 

In addition, application of the fi expansion has made it 
possible to construct a new, effective algorithm for deter- 
mining the coefficients of the 1/N expansion, based on the 
use of the quantization conditions. The recursion formulas 
obtained can be programmed easily, giving in analytical or 
numerical form the coefficients of any order for the 1/N 
expansion of the energy of both ground states and radially 
excited bound states. We note that the proposed algorithm is 
quite universal. Passage from one variant of the 1/N expan- 
sion to another reduces entirely to replacing the initial coef- 
ficients in the recursion relations. 

The authors are grateful to G. M. Zinov'ev for his inter- 
est in the work and for useful discussions. 

' A. Chatterjee, Phys. Rep. 186, 249 ( 1990). 
'V. D. Mur, V. S. Popov, and A. V. Sergeev, Zh. Eksp. Teor. Fiz. 97,32 

(1990) [Sov. Phys. JETP 70, 16 ( 19901. 
'L. D. Mlodinow and M. P. Shatz, J. Math. Phys. 25,943 (1984). 
4U. Sukhatme and T. Imbo, Phys. Rev. D 28,418 (1983); T. Imbo, A. 
Pagnamenta, and U. Sukhatme, Phys. Rev. D 29, 1669 ( 1984). 

'V. S. POPOV, V. M. Vainberg, and V. D. Mur, Pis'ma Zh. Eksp. Teor. 
Fiz. 41, 439 ( 1985) [JETP Lett. 41, 539 ( 1985) 1; Yad. Fiz. 44, 1103 
(1986) [Sov. J. Nucl. Phys. 44,714 (1986)l. 

6S. Hikami and E. BrCzin, J. Phys. A 12,759 ( 1979). 
'A. D. Dolgov, V. L. Eletskii, and V. S. Popov, Zh. Eksp. Teor. Fiz. 79, 

1704 ( 1980) [Sov. Phys. JETP 52, 861 ( 1980) 1 .  
A. V. Kudinov and M. A. Smondyrev, Teor. Mat. Fiz. 56, 357 ( 1983) 
[Theor. Math. Phys. (USSR) 56, 871 ( 1983) 1. 

9A. Chatterjee, J. Phys. A 18,1193,2403 (1985); Phys. Rev. A 34,2470 
(1986). 

1°C. H. Lai, J. Math. Phys. 28, 1801 (1987). 
"S. A. Maluendes, F. M. Fernindez, E. A. Mesbn, and E. A. Castro, 

Phys. Rev. D 34, 1835 (1986). 
''A. Chatterjee, Phys. Rev. A 35, 2772 ( 1987). 
"R. Sever and C. Tezcan, Phys. Rev. A 37,3158 (1988). 
I4V. M. Vainberg, V. D. Mur, V. S. Popov, A. V. Sergeev, and A. V. 

Shcheblykin, Teor. Mat. Fiz. 74, 399 (1988) [Theor. Math. Phys. 
(USSR) 74,269 ( 1988) 1. 

l 5  A. Zwaan. Thesis. Utrecht ( 1929). 
'9. L. ~ u n h a m ,  Phys. Rev. 41, 713 (1932). 
"V. D. Mur and V. S. Po~ov, Zh. Eksu. Teor. Fiz. 97, 1729 (1990) [Sov. 

P ~ Y S .  JETP 70,975 ( 1690 j I .  
18N. A. Kobylinsky, S. S. Stepanov, and R. S. Tutik, Phys. Lett. B 235, 

182 (1990); Z. Phys. C 47,469 (1990); J. Phys. A 23, L237 (1990). 
19B. Baumgartner, H. Grosse, and A. Martin, Nucl. Phys. B254, 528 

(1985). 
"E. C. Titchmarsh, Eigenfunction Expansions Associated with Second- 

order Differential Equations (Clarendon, Oxford, 1946) [Russ. transl., 
IL, Moscow, 19601. 
A. M. Badalyan, D. I. Kitoroagk, and D. S. Pariiskii, Yad. Fiz. 46,226 
(1987) [Sov. J. Nucl. Phys. 46, 139 (1987)l. 

Translated by P. J. Shepherd 

230 Sov. Phys. JETP 73 (2), August 1991 S. S. Stepanov and R. S. Tutik 230 


