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A squeezed wave packet of vibrational states can form during the electronic excitation of a 
molecule by an ultrashort coherent light pulse. The pulse length must be small in comparison with 
the vibration period, and the spectral width small in comparison with the width of the absorption 
band. In this case the squeezing occurs in a system with a linear electronic-vibrational interaction. 
It stems from the small change in the phases of nonequilibrium vibrations which are excited 
during the application of the pulse. The time-dependent Wigner function of the nonequilibrium 
vibrational state is calculated. The mechanism for the spreading of the wave packet is discussed. 
The time evolution of the wave packet which arises modulates the spectral characteristics of 
optical processes associated with subsequent electron transitions from the excited state. The 
squeezing effect is manifested in this case as pulsations in the linewidth. A decrease in the 
fluctuations of the spatial coordinate corresponds to narrowing of the lines to a width smaller 
than the equilibrium value. 

1. INTRODUCTION 

In molecules, different nuclear potentials correspond to 
different electronic states. In the course of optical electron 
transitions, molecular vibrations are accordingly excited. If 
monochromatic light is absorbed, one vibrational level is ex- 
cited in a transition from the ground state according to ener- 
gy conservation. The electronic excitation of molecules by 
ultrashort (femtosecond-range) laser pulses,'-8 with a 
length T shorter than the period of molecular vibrations 
( T ~ w ;  I ) ,  has recently attracted much interest. Since the 
spectrum of such a pulse definitely overlaps several vibra- 
tional levels, the molecule is put in an unsteady vibrational 
state by the electron transition. This state represents a wave 
packet: a coherent superposition of vibrational eigenstates. 
In the limit of instantaneous excitation by a very short pulse, 
one can assume that the transition occurs with fixed nuclei 
and that the wave packet which arises is simply the initial 
vibrational wave function of the molecule, referred to the 
system of nuclear potentials of the excited electronic state. 

Our purpose in the present study was to learn how the 
properties of a wave packet of vibrational states of a mole- 
cule formed as the result of an electronic transition are relat- 
ed to the characteristics of the actual laser pulse, i.e., to the 
shape of its envelope and to the nature of its phase modula- 
tion. Topics of this sort are of particular interest in the 
strong-coupling case, which is typical of many complex mol- 
ecules and of impurity centers in crystals, in which cases the 
widths of electronic-vibrational absorption bands are more 
than an order of magnitude greater than the typical vibra- 
tion f requencie~ .~~ '~  For electronic-vibrational systems with 
strong coupling, the pulse spectrum may partially overlap 
the absorption band, while the condition T < w; holds quite 
accurately. We restrict the present paper to results on the 
excitation of a molecule by a Gaussian pulse with a spectrum 
determined by its envelope (we will not discuss the modula- 
tion of the pulse phase' ) and to results on a Franck-Condon 

transition resulting exclusively from a spatial shift of har- 
monic nuclear potentials. It follows from the results that, 
when the spectral width of the pulse is smaller than the width 
of the absorption band but much larger than the frequency of 
molecular vibrations, the vibrational ground state of the 
molecule transforms into a squeezed state in the course of 
the e ~ c i t a t i o n . ' ~ ' ~ ~  If there is only a single vibrational mode, 
this result means that the quantum uncertainty in the vibra- 
tional coordinate immediately after the electronic transition 
is smaller than that in the ground state. The limiting case of 
an instantaneous excitation which sends the molecule into a 
coherent vibrational state'"I6 is realized if the pulse spec- 
trum spans the entire absorption band. The physical mecha- 
nism underlying this new squeezing effect is a small change 
in the phases of the nonequilibrium vibrations excited dur- 
ing the pulse. 

A squeezing of molecular vibrations due to a change in 
frequency associated with an instantaneous Franck-Con- 
don transition has already been discussed in the litera- 
t~re ." -~ '  That squeezing mechanism differs from the one 
which we will be discussing here in a fundamental way. In 
the first place, it is of a geometric nature and occurs simply 
because the wave function of the ground state of a simple 
harmonic oscillator, when examined with respect to a poten- 
tial curve with an altered vibrational frequency, looks like a 
squeezed state. Second, it does not lead to a genuine reduc- 
tion of the quantum uncertainty in the vibrational coordi- 
nate in comparison with the smaller of the uncertainties in 
the vibrational ground states of the potentials involved. 

The squeezing effect of the present paper can be ob- 
served by virtue of its spectral manifestations in femtose- 
cond laser experiments of the pump-(probe signal) type. 
We will show below that the time evolution of a packet of 
molecular vibrational states which arises as a result of pulsed 
pumping modulates the spectral characteristics of the prob- 
ing processes associated with subsequent electronic transi- 
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tions from the excited electronic state. The motion of the 
packet as a whole leads to oscillations of the Stokes param- 
eter, and the squeezing effect is manifested as pulsations in 
the linewidth. A decrease in the coordinate uncertainty cor- 
responds to a narrowing of the line to a width smaller than its 
equilibrium value. In the limiting case of instantaneous 
pumping, the line-squeezing effect disappears, and the pat- 
tern of temporal oscillations in the spectrum agrees with that 
found previously.22~23 

2. THE MODEL 

We consider a system specified by the Hamiltonian 

Here Ho is the simplest Hamiltonian in the theory of elec- 
tronic-vibrational transitions which describes the shift of the 
average values of the normal coordinates of the set of simple 
harmonic oscillators associated with a change in electronic 
state. The operators ai in (2)  are electron operators, 6, are 
phonon operators, E~ are electron energy levels, w, is the 
frequency of a phonon of mode A, and Ci, is the dimension- 
less electron-phonon interaction constant. The multimode 
model is being used here because it is typical of the strong- 
coupling case. The Hamiltonian H ,  ( t )  determines transi- 
tions between levels. We assume that a classical external 
electromagnetic field is responsible for the transitions. We 
take the interaction with this field into account in the reso- 
nance approximation: 

i > i  

where 

pi]- ( t )  =pij-e, ( t )  exp (-iQkt), pij-=dijEok*i2, 
pji+(t)=pij- ( t ) ' ,  
ek(t) =n-Ih exp [-u,2 (t-tk)Z/2], 

(4)  

and dV is the dipole matrix element of the electronic transi- 
tion. We assume that dv does not depend on the phonon 
variables. In (3)  and (4)  we have allowed for the circum- 
stance that a resonant interaction with Gaussian momenta 
with various amplitudes E, , average frequencies a , ,  
lengths u, I ,  and repetition times t, corresponds to transi- 
tions between different pairs of levels. Using the unitary 
transformation 

in the ~amiltonian ( I ) ,  we go over to the convenient new 
representation 

where 

This unitary transformation of Hamiltonian ( 1 ) eliminates 
the electron-phonon interaction from the zeroth part of the 
Hamiltonian, Ho, and moves it to H I  in such a way that the 
vertex representing the interaction with the electromagnetic 
field which corresponds to a transition from level j to level i is 
additionally multiplied by the shift operator (5) .  

3. EQUILIBRIUM ABSORPTION SPECTRUM FOR A SHORT 
LIGHT PULSE 

As an auxiliary problem we will calculate the equilibri- 
um absorption spectrum which arises as the result of an elec- 
tronic-vibrational transition caused by a short light pulse. 
We assume that at the initial time t = - CQ the molecule is 
in electronic state li), and its vibrations are described by an 
equilibrium density matrixp,. At the time t = 0, a light pulse 
in resonance with the transition i-j is applied to the mole- 
cule. The population of level j at time t calculated in second- 
order perturbation theory is then given by the expression 

where S = .Ej/fi - Si/fi - a .  The averaging in ( 6 )  is carried 
out exactly, and the expression found as a result is well 
known.24 The result of the averaging of the more complex 
expressions which include the product of an arbitrary num- 
ber of shift operators D is given in Ref. 25, among other 
places. Carrying out the averaging in (6) ,  we switch to the 
new integration variables T = (t ,  + t2)/2, 7 = t, - t2 for 
convenience. As a result, (6) becomes 

where 

h 

and n, are the equilibrium occupation numbers of the 
phonon modes. To evaluate the integral in (7),  we expand 
the function (8)  in 7 and retain small terms up to second 
order: 

A 

As a result we find 
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In ( lo ) ,  w,-, (a) is the spectrum for the absorption of the 
light pulse, and F ( t )  is the preexponential factor which 
arises from incorporating the limit of the integration range 
in the integral (7).  The factor F ( t )  is normalized by the 
condition F( cc ) = 1; it approaches unity even for t 2 u - ' . 
The explicit expression for F ( t )  is unimportant for the prob- 
lems of this paper, so we will omit it. 

To rigorously analyze the conditions for the applicabili- 
ty of ( lo) ,  we should incorporate the following terms of the 
expansion in (9).  However, since the expansion is carried 
out near the origin, it is sufficient to require 

ly. As a result we find the following expression for this char- 
acteristic function: 

where 

P(r ,  F ,  t )  =2 xj:h sin o h ( t - r )  [ (nr+l )e im~"'-n~e- im~"8] ,  
where 770 is a saddle point.26 From (7 ) and ( 9 ) we find 

In ( 12) we can assume IS + A  I - (2B + u2)  ' / ' .  The in- 
equality ( 1 1 ) then becomes the strong-coupling condition: Substituting ( 18) into ( 16), and integrating over v andp, we 

find 

Analysis shows that under the strong-coupling condition the 
Gaussian region in which ( 10) holds extends substantially 
beyond the half-width of the absorption band. Everywhere 
below we assume that the average frequency of the exciting 
pulse is in the Gaussian region of the absorption band. 

4. WIGNER FUNCTION OF NONEQUlLlBRlUM MOLECULAR 
VIBRATIONS In calculating the Wigner function from ( 19) and (20), we 

are interested in times t > u. We assume that the conditions 
stated in the preceding section of this paper hold. Using ex- 
pansion (9)  for the function g ( l ) ,  we divide by Sp[R ( t )  ] in 
(20): 

As a result of the electron transition caused by the short 
light pulse, nonequilibrium molecular vibrations are excit- 
ed. In the Schrodinger picture, the unnormalized density 
matrix of the nonequilibrium phonons is 

N2u (2B2+uZ)'" 
W ( P ,  4)= (2nB) " j d r  j dg erp [ - u 2 2  u2 R (1 )  = 1 d r  dg exp ( -u'? - k ' + i s ~ )  

-m - 2 ( t - ~ l  

To analyze the properties of the state describ5d by t2e den- 
sity matrix ( 14), we introduce the operators Q and P: where v0 is given by ( 12). We evaluate the integral in (2 1 ) in 

the Gaussian approximation. For this purpose we use the 
functions P and Q in series form: 

where 

These operators signify the collective dimensionless coordi- 
nate shift of the oscillators in the course of the i- j  electronic 
transition and the momentum associated with it by the ca- 
nonical commutation relation. We use the density matrix 
(14) to construct a Wigner distribution function for these 
quantities: 

Q. ( t )  = - 2 x  x:iLoA2 sin 0 ~ 1 .  

The coefficients Pi ( t )  are found from the corresponding co- 
efficients Qi ( t )  by adding 1~/2 to the arguments of the trigo- 
nometric functions in the latter. We introduce 

where x (p ,v )  is the generating functional (characteristic 
function), given by 

The averaging in the numerator in ( 17) is carried out exact- 
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As a result we find the following expression for the Wigner 
function: 

Expression (24) can also be written in a form in which the 
quadratic form in the argument of the exponential function 
is referred to principal axes: 

where 

1 2aI2 
cp = - arctg ------ . 

2 ail--azz 

Expressions (24) and (25) are typical of a Wigner function 
which describes the superposition of a coherent squeezed 
signal and a thermal noise. The only difference between 
expression (24), (25) and the corresponding Wigner func- 
tion for a single vibrational mode is that the coefficients in 
(23) have an anharmonic time dependence. A characteristic 
function x(p,v)  equivalent in physical content to Wigner 
function (24) was derived in Refs. 27 and 28. 

All the coefficients in (24) and (25) are functions of the 
time. At t = 0, i.e., immediately after the excitation, the co- 
efficient al ,  vanishes, and the system of oscillators is in a 
squeezed state with reduced fluctuations of the collective 
coordinate Q: 

- 

Strong squeezing is achieved in the case B > u. The condition 
u So, must hold simultaneously (more on this below). The 
squeezing effect can thus occur only in the case of strong 
electronic-vibrational coupling. The limiting value of the 
measure of dispersion of the collective coordinate is 

In the opposite case u > B, there is no squeezing: 

The nonequilibrium phonon state with different values of A P  
and A Q  which is found from ( 14) in the limit u -- w corre- 
sponds to a unitary transformation of the original density 
matrix p,: 

We have used this expression previously, in Ref. 22. 
The uncertainty relation at t = 0 is 

At absolute zero we have N2 = 2B 2, and the square root in 
(29) has the value 1/2. This result means that if the initial 
state of the oscillators is the ground state then their excited 
state with respect to the collective variables which we have 
introduced is a minimal Gaussian packet. The uncertainty 
relation takes a particularly graphic form when all the vibra- 
tional modes have the same frequency w,. In this case, the 
uncertainty relation, understood as (A + A - ) I", holds at 
all times t: 

The packet of nonequilibrium molecular vibrations 
which appears at t = 0 spreads out as it evolves. Formally, 
this spreading stems from the collective nature of the vari- 
ables under consideration. It occurs because the various vi- 
brational modes with different frequencies lose their phase 
coherence. Mathematically, this dephasing is manifested by 
the vanishing of the coefficients in (23) as t-  UJ. In this 
limit, the Wigner function (24) tends toward its equilibrium 
form, with equal values of the measures of dispersion of the 
momentum and coordinate fluctuations in (27). We wish to 
stress that the spreading of the packet due to the dephasing 
of the modes by no means always automatically ensures a 
transition to an equilibrium state. For example, it does not 
do so in the case in which there is a change in vibration 
frequency as well as a shift of the equilibrium nuclear posi- 
tions in the course of the Franck-Condon transition. 

The analysis of the conditions for the applicability of 
expression (24) is based on the following inequalities (as in 
the preceding section of this paper): 

where {, and ro are saddle points for the integral (21). For 
simplicity we restrict the analysis of inequalities (30) to the 
initial time t = 0. We then find from (21 ) and (22) 

Using expression (24) for the Wigner function, we find the 
estimates 

As a result, the inequalities (30) become 

Consequently, expression (24) holds at u % o, . 
To conclude this section of the paper we note that the 

squeezing effect arises in this case because of small changes 
in the phases and a quantum interference of the nonequilibri- 
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um molecular vibrations which are excited during the pulse. 
That such interference is possible is a specific feature of the 
excitation of vibrations in the course of a Franck-Condon 
transition. In another example (one which also involves a 
coordinate shift)-that of the excitation of a charged har- 
monic oscillator as the result of the imposition of a uniform 
electric field-squeezing does not occur, regardless of the 
time dependence of the field.29 We continue our discussion 
of the squeezing mechanism in the Appendix to this paper, 
where we derive an expression for the wave function of the 
molecule after it has interacted with the short light pulse. 

5. TWO-STAGE EXCITATION OF A MOLECULE BY 
ULTRASHORT LIGHT PULSES 

We turn now to the problem of two successive elec- 
tronic-vibrational transitions induced in a complex molecule 
by ultrashort light pulses. In studying the interaction of a 
molecule with short light pulses we should evidently calcu- 
late the probability for a transition to the final state over a 
time greater than the time delay between the pulses. Physi- 
cally, this time is limited by the radiative lifetimes of the 
excited states of the molecule. We will assume below that the 
radiative lifetimes are much longer than all the other time 
scales of the problem, including the time delay T. We assume 
that the molecule is initially (at t = - co ) in the electronic 
state i and that its vibrations are described by the equilibri- 
um density matrix. At the time t = 0, the first pulse is ap- 
plied to the molecule. This pulse is in resonance with the 
electronic transition i-j. At t = T, a second pulse, in reso- 
nance with the transition j- k, is applied. The population of 
level k of the molecule at a time t$  T is then given by 

+m t, +m tr 

t~=n-'fi-' 1 1 ' 1 pij 1 'I dt, j dt, j dl. j at, 

Here we have set t = , in view of the discussion above. The 
quantities 6 ,  and 6,  in (3 1 ) are the detunings for the first and 
second transitions, respectively. We change variables in 
(31). We set t , - t , = l ,  t , + t 2 = 2 r ,  t 2 - t 3 = q ,  
t, + t, = 27 + 2u - 2T. As a result we find an integrand in 
(3 1 ) in which only the exponential function depends on the 
variable t, by virtue of the properties of the trace. The inte- 
gration over r can then be carried out immediately. After an 
averaging, expression ( 3 1 ) becomes 

u  u  
x [-w2u2 - Lq2 - -2- ~ 2 + i ~ z ~ + i 6 , q + g l  ( g )  

4 4 

where w2 = U: u:/(u: + u: ), the functions g, and g, are giv- 
en by (8),  in which we use the coefficients xii, and xjkl, 
which correspond to the first and second transitions; and the 
function g,, describes the coupling of the transitions: 

% 

+exp ( i o n ( ~ / 2 i q / 2 - T + ~ ) )  - exp ( - iwr (E /2 -q /2 -T+~) )  
- e x p ( - i o A ( ~ / 2 - q / 2 + T - ~ )  ) I+nn[ . . . I*) .  

(33 

The notation [...I * in (33) means the complex conjugate of 
the factor which follows nn + 1. To evaluate the integral in 
(32), we expand the functions g,, g,, and g,, in series in 
on q, and o, a, and we retain terms up to second order 
inclusively: 

At2 (TI -2 xmxj i ,or  cos whT, 

c , , L ( T ) = ~ ~  r M h ? t j i h @ :  sin orT. 
A 

As a result we find the following expression for the integral 
in (32): 

where wi,j is given by ( lo) ,  and wj,, (T) is the nonequilib- 
rium spectrum for the absorption of the second light pulse. 
In (36) we have introduced 

A2 ( T )  =A2+A12 ( T ) -  -------------. , (61+A1)B*zZ(T) 
B , 2 + ~ , 2 / 2  

u,L B1,' ( T )  C,z4 (TI BZ2 ( T )  =Bz2 + - - .+- 
2  B , 2 + ~ 1 2 / 2  2w2 ' (38) 

where the coefficients Ai and B 7 are given by (9)  for the first 
and second transitions, respectively. 

Let us analyze the consequences of expressions (36)- 
(38). We first consider the limiting case in which the initial 
excitation of the molecule is by a broad-band pulse. In other 
words, we assume that the spectral width of the first pulse is 
much greater than the width of the absorption band for the 
i+ j  transition. We also assume u , $ u,. Then we can formal- 
ly take the limit u, + co in the expression for wj,, ( T) . As a 
result we find 

In this case the nonequilibrium spectrum is described by a 
Gaussian curve with a time-dependent Stokes parameter. 
There is also a temporal modulation of the width of the dis- 
tribution. Expression (39) was derived in the approximation 
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which corresponds to an instantaneous transfer of the equi- 
librium initial vibrational density matrix to the system of 
potentials of the electronic state of the molecule which is 
excited. An instantaneous transfer of this sort is described in 
the model at hand by a unitary transformation of the density 
matrix in accordance with (28 ) . 

We turn now to the case in which the spectral widths of 
the first and second pulses are smaller than the widths of the 
equilibrium absorption bands for the corresponding transi- 
tions. In this case the time evolution of the spectrum for the 
absorption of the second pulse acquires some interesting new 
features. According to (37), the Stokes parameter now de- 
pends on the central frequency of the first pulse. If this cen- 
tral frequency of the first pulse corresponds to the center of 
the absorption band, however, the time evolution of the 
Stokes parameter is described by the previous expression. 
The absolute value of those additional variations in the 
Stokes parameter, (37) (due to the detuning of the frequen- 
cy of the first pulse from the center of the absorption band), 
for which the general expression (36) remains valid can be 
estimated by IB :, (T)  I (B + u:/2) At values 
T<w, ', the absorption spectrum for the second pulse be- 
comes sharply narrower. We set T = 0 in (38) : 

By virtue of the definitions (9)  and (35) of the coefficients 
B :, B :, and B :, (O), the last fraction on the right side of 
(40) is not negative; it is equal to zero if xkjA = sxjiA. In other 
words, the shifts of the average oscillator coordinates in the 
course of the second electronic transition for all modes are 
proportional to the displacements in the course of the first 
transition in an identical way. In the case xkjA = sxjiA, identi- 
cal collective shifts of the coordinates, ( IS) ,  correspond to 
the first and second transitions. In this case the limiting val- 
ues of the spectral width for T = 0 and T = w [i.e., for a 
value of T for which the coefficients (35) can be assumed 
zero] are 

and we have B : ( o ) ~ B : ( ~ )  if s2B:$u;/2, B:%u?/2. 
Expression (41 ) for : (0) obviously corresponds to (26). 
As in the preceding sections of this paper, we can easily show 
that the condition B: (0) %@:-a necessary condition for 
the applicability of expansion (34)-imposes a lower limit 
on the width of the spectra distribution. 

This temporal modulation of the excitation spectrum 
might find practical applications in photochemical reactions 
involving states attainable by means of two-photon transi- 
t i o n ~ . ~ ~  For example, if the equilibrium absorption spectrum 
for a transition from a photoexcited electronic state of cer- 
tain molecules in solution overlapped the absorption spec- 
trum of the solvent, the nonequilibrium spectrum could, for 
a certain value of the time delay, fall in the transparency 
region, so an efficient two-stage pulsed excitation of the mol- 
ecules would become possible. 

Temporal modulation is also seen in measurements of 

the induced absorption spectrum for the probing pulse, 
which is given by 

S = - j dt E ,  ( t )  i, ( t )  = j d t ~ ~ -  (t) P,+ ( t )  + c.c., 
-- - c0 (42) 

where P,+ ( t )  is the positive-frequency part of the cubic po- 
larization corresponding to this excitation scheme. A calcu- 
lation from (42) yields an expression which differs from that 
in (36) in the form of the preexponential factor. 

APPENDIX 

We assume that at t = - the molecule is in elec- 
tronic state li) and in the vibrational ground state 10). After 
the interaction with the light pulse, the wave function of the 
molecule is 

ilhj- 
l$ , t )=l i , t ) lO)- -  l j , t ) l u , t ) ,  

f i  u 
(A1 

where li,t ) = exp( - k i t  / f i )  l i) ,  and (u,t ) is the vibrational 
wave function of the molecule in the excited electronic state, 
given by 

+ m 

For simplicity we adopt a model of a molecule with a single 
vibrational mode. Let us analyze (A2) in the limiting cases 
u <w and u % a .  In the first of these cases, we expand the 
coherent state in eigenstates of a simple harmonic oscillator. 
Expression (A2) then becomes 

In, t )=exp( - ino t )  In). 
(-44) 

In the limit u-0, we are left with only one term in the sum 
over n in (A4). For this one term we have S + nw = 0; i.e., 
the single vibrational state In,t ) is excited. In the state jn,t ), 
the variances of the quadrature components of the annihila- 
tion operator b = 6 ,  + ib, are equal: 

' I n  
A b,2=Ab22 = - + - . 

4 2 
(A51 

To analyze (A2) in the limit u$w, we set 

exp ( z t i o ~ )  =i*ioa (A61 

in (A3). Expansion (A6) is equivalent to expansion (22) in 
the text proper. As a result, putting the operator expression 
in the integrand in (A2) in the normally ordered form, and 
carrying out the integration, we find 
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2 . 5 .  ! q=.. , . . 
I \ 

FIG. 1. Theuncertainties (e) Ab: and (0)  Ab: as functionsof 
the reciprocal pulse length u (in units of the vibration frequency 

\ W )  for x = 5 and A = 0. In the broad region u 2 2 o  we have 
* - w - Ab : 10.25, i.e., the vibrational state is squeezed. The minimum 

0,25 value Ab : = 0.075 is reached at u = 3.640. 

Using the operator identity 

exp (-fib+ - 

and Hollenhorst's formula3' 

we can put expression (A7) in the form 

which contains the product of unitary shift and squeezing 
operators. In the limit u2~2x2m2,  wave function (AS) cor- 
responds to a coherent state. At a finite value of u, the wave 
function in (A8) describes an ideal coherent squeezed state 
which minimizes the uncertainty relation. It is physically 
obvious that this squeezing should also occur at values of u 
for which the condition Ab,Ab2 > 1/4 holds. This property 
of the wave function (A2) for the particular case x = 5, 
A = 0 is illustrated in Fig. 1, which shows the results of nu- 
merical calculations based on expression (A4) for values 
t = ?rm/w, where m is a natural number. We see that squeez- 
ing of the fluctuations b, below the vacuum level is achieved 
for u 2 20, while an ideal squeezed state is achieved for 
u 2 4w. The quantities Ab, and Ab, trade places after a 
quarter-period of the molecular vibrations. An asymmetry 
Ab, #Ab2 is sufficient for temporal modulation of the spec- 
tral width; ie., modulation also occurs in the region with 
Ab,Ab2 > 1/4. 
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