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The role of the pure gluon part of the CP-odd effective operator of dimension six, which appears in 
various models of CPviolation, is discussed. This operator is of greatest interest in models with a 
nonminimal Higgs sector, models with a "right-handed" W, and in supersymmetric theories, 
where it can induce a dipole moment for the neutron even at the experimental bound. Methods for 
estimating the magnitude of d, are proposed and arguments are presented to the effect that the 
original Weinberg estimate, based on "naive dimensional analysis," is a significant overestimate. 
The effect of the Peccei-Quinn mechanism on the magnitude of d, , which can in general be quite 
significant, is discussed. 

1. INTRODUCTION 

The violation of CP invariance in elementary particle 
interactions is, without a doubt, a fundamental phenomenon 
which must also play a significant role in the determination 
of the surrounding world at the present stage of evolution of 
the Universe. However at the moment positive experimental 
information about its nature is confined to the two-pion de- 
cay of K O mesons, which leaves a variety of different possibil- 
ities in principle for its theoretical explanation. Indeed, at 
this time it is not even possible to say what the energy scale is 
at which the CP-odd processes giving the main contribution 
to sK act-it could be the W- or Z-boson mass scale, or the 
mass of the corresponding, much heavier, particles, in the 
range of tens of TeV. 

Significant information on the nature of CP nonconser- 
vation is provided by experiments measuring the electric di- 
pole moment (EDM) of the neutron d,. The quantity E ,  is 
determined by processes violating fermion flavor conserva- 
tion, and in that respect is different in principle from d,, 
which is involved in the physics of fermion transitions diag- 
onal in flavor. This difference leads to a broad spectrum of 
predictions for d, in a number of models of CP violation, 
even though they are all normalized to give the same experi- 
mental value of s,. The corresponding estimates encompass 
the range from the "milliweak" scale- e.cm, close to 
the experimental bound, to "superweak" values of order 

eacm. This depends mainly on whether or not the 
appearance of CP violation requires the existence of several 
generations. 

Regardless of the details of the model in a renormalized 
theory, the effects of highly virtual particles can be taken 
into account by integration over the corresponding degrees 
of freedom, which gives rise to local operators of various 
dimensions. In the simplest cases the CP-odd effects are de- 
termined by hadronic matrix elements of these operators. 
Purely dimensional considerations make it clear that each 
additional dimension of the operator leads to an additional 
power of the large mass in the denominator of the coefficient 
in front of the operator in the effective Lagrangian; then the 
matrix elements acquire a factor characteristic of the strong 
interaction scale p,,, . Consequently, in situations when the 
reduced degrees of freedom are indeed considerably heavier 
than ordinary hadrons the main effect is due to the operators 
of lowest dimension. 

The requirement that the effective Lagrangian be her- 
mitian substantially limits the possible form of the CP-odd 
operators. In QCD the lowest operators have dimension 4 
and consist of the y, -containing quark-mass terms and the 
operator ( a , / 4 ~ )  G Ev E, (the 8 term). The former can be 
eliminated by chiral rotations which change the value of 8. 
The possible presence of the 0 term constitutes the so-called 
8 puzzle, which has two aspects. In the first place, being an 
operator of dimension 4 it could already be present in the 
bare Lagrangian with an arbitrary coefficient. However even 
if for some symmetry reasons it is absent in pure QCD, the 8 
term would appear due to radiative corrections in the weak 
interaction. Depending on the specific model its coefficient 
could be logarithmically divergent in the ultraviolet region 
or could be finite. In the case of spontaneous symmetry 
breaking we certainly have the second possibility, although 
for explicit breaking of CP invariance the radiative correc- 
tions to Bcould also be finite [for example, in the Kobayashi- 
Maskawa (KM) model for g' = 01. In either case renormal- 
ization of the 8 term could give the contribution to d, ,which 
if not dominant is close to it,') and in many cases it turns out 
to be unacceptably large. Consequently the first question 
that needs answering in a broad class of models of CP non- 
conservation is the problem of suppression of the 6 term. 
Since the zero-mass hypothesis for the u and d quarks is not 
consistent with the experimental data we assume the exis- 
tence of the Peccei-Quinn (PQ) mechanism in some form or 
other. 

The one gauge-invariant CP-odd operator of dimension 
5 containing only light fields is o, = ijg,crGy,q; for chiral 
reasons its coefficient contains the fermion mass so that in 
reality it can be viewed as an operator of dimension 6. 

Even the number of CP-odd operators of dimension 6 is 
rather large. The most popular among them are the four- 
fermion operators, appearing in the simplest models with 
Higgs exchange. Estimates of the moment they induce d, 
were accurately analyzed in Ref. 3. However, the only pure 
gluon operator 

was not considered in Ref. 3. The present paper is devoted 
mainly to discussing the effects of this operator-an estimate 
of its size in certain general models of CP nonconservation 
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and the related size of d, . We also discuss the effect of the PQ 
mechanism on d, specially. We shall see that indeed the op- 
erator 0, can sometimes make a significant contribution. It is 
relevant that such effective operators could be the sole trace 
of the interaction of heavy objects in the energy region of the 
order of tens of TeV, fully decoupled from the ordinary de- 
cays of known particles. In that sense the presence of "new 
physics" even for energies that are certainly unachievable 
experimentally in the foreseeable future could quite natural- 
ly, without fine tuning, ensure a value of d, at the precision 
level of the current bound. Correspondingly further experi- 
ments on the search for the EDM of elementary particles and 
CP nonconservation in nuclei could be viewed as real at- 
tempts to "peek" into this energy region. 

It should be noted that naive estimates of the powers of 
mass entering the coefficients of these operators are only 
valid in situations, when only one mass scale of heavy parti- 
cles exists. In the general case a more detailed analysis is 
required. Thus, in Ref. 4 for the Weinberg model of CP non- 
conservation in the case of relatively light ( - 10 GeV) H 
bosons as an example of the effects of nontrivial hadron dy- 
namics at low energies, a contribution was found to d,, 
which is nonvanishing in the chiral limit and exceeds many 
times the standard contributions. In fact the operator dis- 
cussed there was the operator G ,GT; of dimension 8 with 
coefficient c,-G,/m;, although that operator also took 
into account loops o f t  quarks. Further, in the case under 
discussion the coefficient c, of the operator o, of dimension 6 
was additionally suppressed by the factor - m;/rn: (or, in 
high loops, by Higgs field self-interaction constants) in com- 
parison with the naive dimensional estimate. For m, 2 M ,  
the operator o, certainly dominates, but then the Higgs ex- 
changes by themselves cannot ensure the experimental size 
of E,. This case was recently discussed by Wei~~be rg .~  

The plan of the present paper is as follows. In Sec. 2 we 
discuss the size of the operator o, in models with right-hand- 
ed currents, Higgs exchanges, and supersymmetric particles 
to lowest order in the number of loops. In the calculations we 
use the technique of an external gluon field. The correspond- 
ing effect is also analyzed in the KM model. In Sec. 3 we 
consider QCD renormalization. Section 4 is devoted to an 
estimate of the matrix element of 0, determining d,. We pro- 
pose an alternate way of estimating it and provide arguments 
for the assertion that its initial estimate in Ref. 5 is too high 
by, at least, 1-2 orders of magnitude. In Sec. 5 we discuss the 
effect of PQ mechanism on the size of d,. For the operator 
under discussion it turns out to be suppression, but in gen- 
eral a nonvanishing e,, can lead to d, of the same size as the 
direct contribution. In Sec. 6 we discuss numerical values of 
d,, and in the Conclusion we summarize the results of this 
work. 

2. THE OPERATOR GGGIN MODELS OF CP 
NONCONSERVATION 

In this Section we obtain expressions for the coefficients 
c, of the CP-odd pure gluon operator of dimension six in the 
effective Lagrangian with QCD corrections ignored. We set 

I t  is not hard to see that all possible gauge-invariant struc- 
tures reduce with the use of equations of motion to this oper- 
ator or to the usual four-quark operators. In principle, hav- 
ing in mind the later ap~lication to the electric dipole 
moment, we should also consider the similar operators con- 
taining the electromagnetic fields. However, it can be shown 
that the only possible combination Fp,, ( G :p 8 ;,, 
- GZp c;, ), which happens to have negative C parity, van- 

ishes identically. To see that we write, for example, F', = + 
E , , ~ ~ F ~ ~  and express the product of the two E tensors in 
terms of Kronecker symbols. Then this operator should be 
expressible in terms of Fand two G ", which vanishes due to 
antisymmetry. 

Technically we calculate the coefficient c, by consider- 
ing the fermion loop with the corresponding CP-odd interac- 
tions in an external gluon field. In the models discussed be- 
low the operator o, appears in the two-loop approximation, 
except in the KM model. We briefly discuss the method of 
calculation, using as an example the simplest model with 
exchange of charged Higgs particles. 

a) Exchange of charged scalar particles 

We assume that the spinless fields Hi , which are states 
of definite mass, interact with both left-handed and right- 
handed components of quark fields of either charge. In anal- 
ogy with the simplest scheme we make use of the notation 

The general diagram of Fig. 1 corresponds to the expression 

Lee=-Tr i - ~ , d 4 ; r 2 ~ 1 ~ , 2 f r 2 ~ 2 1 t ~ i 2 ~ ,  (4)  

where GLH is the Green's function of the quark and scalar 
particle, respectively, in the external gluon field, the indices 
1 and 2 denote the coordinatesx, andx,, r,,, are the vertices 
arising from the interaction (3) ,  and Tr means summation 
over Lorentz and color (and flavor) indices. Expanding the 
quark propagators in powers of the interaction with the 
gluon field we obtain for L,, a series in powers of local 
gauge-invariant gluon operators, containing derivatives 
with respect to the coordinates. These operators are com- 
pleted to dimension 4 by inverse powers of masses of the 
internal particles. 

It is easily seen that for the interaction of the form ( 3 )  
CPnonconservation appears only when both terms are taken 
into account; for h,  = 0 or h, = 0 an additional symmetry 
appears, making possible the elimination of the phase of the 
coupling constant. Therefore the operator o, is proportional 
to h,h 2 and corresponds to the case when helicity flip occurs 
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in both quark propagators. For this reason the integrand in 
(4)  contains explicitly the product m,m,. The remaining 
factor in c, is dimensionally a fourth power of the mass in the 
denominator. In the following we make no distinction in 
dimensional analysis between the mass scale of the t quark 
and the H boson and, therefore, have just two scales: m, and 
m,. The naive expectation that the result is determined by 
the larger mass m, is, obviously, false for two and more 
loops. Indeed, the integral over the right-hand loop could be 
dimensionless and, consequently, the fourth power of the 
mass could be gotten from the propagator of the b quark, 
which would yield l /mi .  However this most singular contri- 
bution vanishes, as can be demonstrated from general con- 
siderations. 

Indeed, let us consider the right-hand loop, containing 
the t quark, as an operator of the zb-type in gyeral form. 
Then only the coefficients of the operators Ziv(y5 )b and 
6(iy,)b can not contain m, in the denominator, and requir- 
ing it to be hermitian and CP-odd leaves just the operator 
Ziy,b. Operators of higher dimension, ~ g , u ~ y , b  and others 
that are reduced to it by the equations of motion, already 
contain l/m:. Integration over the b quark in the external 
gluon field with the "insertion" biy5b gives only the operator 
GG, but no higher operators-this is one of the properties of 
the axial an~ma ly .~ '  Thus, the leading contribution in m, to 
the effective action only renormalizes the 0 term and does 
not produce the operator G G ~ .  

Direct calculation leads to the answer 

where the expression in the braces equals 1/3 for m, = m,. 
In the derivation we made use of the following identities: 

{V" GG,v)=2VaG,,Va+2ig[G,a, Ga,l-[V,, J,]+[V,, I,,], 
JV=[V,, Gval ,  

where X and Yare arbitrary functions. Note that the equa- 
tions of motion imply that the commutator J, is equal to the 
quark current: [V,,G,, 15 = gijay,$. The second of the re- 
lations given above is easily obtained by twice applying the 
Jacobi identity 

( A ,  B, C are arbitrary operators) to the commutator 
[V,, (Va,G,, ) ] with the relation gGaB = i[V, ,VB ] taken 
into account. 

b) Interaction of neutral scalars, off diagonal In generations 

In analogy with the previous case we set 

where again the presence of two chiral structures is needed 
for CP violation. The answer for c, is given by expression ( 5 ) 
with the obvious replacement of b by c. 

c) Diagonal interactions of the scalar particles 

Here CP violation appears as a result of mixing of scalar 
and pseudoscalar bosons. Having in mind as an example the 
Higgs particles of the Standard Model with a nonminimal 
scalar sector, we consider the Yukawa coupling constants to 
be biggest for the heavy quarks. We consider therefore the 
contribution of the t-quark loop and write the corresponding 
Lagrangian in the form 

Here the masses of all particles are quantities of the same 
order and the coefficient c, is given by the two-loop integral 

An expression similar to ( 10) was given in Ref. 5. For z)  1 
we have F(z)  z I n z ;  for z 4  1 ,  i.e. for m$<m:, we have 
F(z)  zz/4. However, in all realistic models this term cancels 
out in the sum of the contributions from the exchanges of all 
neutral H bosons, so that in the latter case c, is additionally 
suppressed by the factor - rn;/m: relative to the naive esti- 
mate- l/m:. Numerically, we find F z 0 . 2  for m; = m:. 

d) Models with right-handed Wbosons 

The simplest and most attractive are the so-called 
"manifestly L-R symmetric" models (see, for example, Ref. 
6 ) ,  where the discrete symmetry between the interactions of 
left-handed and right-handed fermions is broken spontan- 
eously. These models are also somewhat less arbitrary in the 
choice of parameters in comparison with the general case. 
Besides the elements of the KM matrix and a few additional 
CP-odd phases, determining the form of the right-handed 
charged current, this scheme contains yet one more CP-odd 
phase which determines in the general case the complex mix- 
ing of W, and WR . If this phase is not small then the main 
effect is due precisely to the CP violation in the W,-WR 
mixing. Starting from this assumption we consider only this 
last source and set 

with the transition propagator of Wbosons in the Rg gauge 
given by 

2 2 

p= (MWL I M W R )  sin 20, 
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where 8 is the mixing angle. 
Technically we performed the calculations for arbitrary 

{ and then let { tend to zero. Indeed, in the Rc gauge the 
mass of the unphysical "Goldstone" state is equal to M 2/{, 
and in accordance with expression (5) the contribution 
from the exchange by scalar particles dies out when their 
masses diverge. It  is interesting to note that despite the for- 
mal finiteness of the integral in the unitary gauge ({ = O), its 
literal use gives an incorrect result. 

In summary, assuming m: 9 M LR, we obtain 

e) Minimal supersymmetric model (super-KM) 

Here we discuss the minimal supersymmetric general- 
ization of the Standard Model (SM) in the low-energy form 
that is obtained when supersymmetry is violated due to ef- 
fects of supergravity. In that model all the interactions of the 
superparticles that are off-diagonal in generations are deter- 
mined in the end by the standard KM matrix and are subject 
to the same chiral selection rules as in the SM. As a result, 
the general considerations demonstrating the inescapable 
smallness of the effects being considered in the SM (see be- 
low, and also Refs. 1,7 and 8) remain largely in force, which 
ensures an extremely small value for c,. 

On the other hand, a new independent source of CP 
violation exists in a realistically broken supersymmetric 
model-the relative phase of the mass of the gauginos and 
the parameter A, determine the size of the trilinear terms in 
the superpotential in the Lagrangian of the broken theory 
(see, for example, the review in Ref. 9). The effect of these 
phases was discussed in detail in Ref. 10. The main contribu- 
tion comes here from diagrams involving the gluino, and its 

form is simplest for m, , AMQ 4 M (where i@ are the masses 
of the superparticles) : 

Here y, is a dimensionless factor determining the mass of the 
gluino mgmg = y3m3,, . In ( 15) values of a, enter for mo- 
menta - M 2. 

f) Standard KM model 

The operator 0, appears in the SM, obviously, only in 
the three-loop approximation, when two W-exchanges can 
take place. Then the value of c, and, consequently, of d,  will 
be exceptionally small independently of the details of the 
calculation and estimates of the matrix elements. We never- 
theless discuss this case and show the presence of additional 
suppression in comparison with the naive expectations. 

First of all it should be noted that CP nonconservation 
appears in the SM only in situations involving all six quarks, 
in particular the u and d quarks. Therefore, strictly speak- 
ing, it is not possible to integrate over the quark degrees of 
freedom and obtain the local 0, operator, in any event in 
taking the strong interaction into account; indeed one can 
only determine the contribution to 0, from distances small in 
comparison with the radius of the strong interactions. To 
overcome this difficulty one can formally consider the same 
six-quark system in which, however, the quarks of the first 
generation are also relatively heavy. In fact this is precisely 
how the short-range contribution can be distinguished in 
practice. The corresponding consequences for the real world 
will be discussed only later. 

We reconstruct the o, operator from the three-gluon 
vertex. Let us consider the three-loop diagram (Fig. 2a) in 
the local limit, i.e., for M,- oo and for fixed GF. After a 
Fierz transformation we arrive at three independent quark 
loops (Fig. 2b), where at the vertices stand either vector or 
axial currents. If the extreme (right or left) loop contains 
altogether one external gluon then the only nonvanishing 

8 u,c,t 4818 

b 
=,elf 

a FIG. 2. 
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contribution comes from the vector vertex, reducing to the 
usual polarization operator of the vector current. Since the 
latter is proportional to q2 and the three-gluon vertex in- 
duced by the o, operator is linear in momenta, such diagrams 
do not contribute to c,. Consequently, at least one of the 
extreme loops should be a vacuum loop with one Lorentz 
index, which vanishes in the local limit.4' Similar consider- 
ations show that c, vanishes also in the case when only one of 
the weak vertices is considered to be local. Indeed, either two 
or all three gluons should come from the "local" extreme 
loop. In the latter case the two remaining loops already give 
a vacuum object with a Lorentz index. If on the other hand 
one gluon comes from them, then they give a certain transi- 
tion correlator of the vector gluon current with a certain 
vector or axial current. This correlator is unavoidably qua- 
dratic in the momenta due to the condition of transversality 
on the gluon." 

In view of the strong suppression of the three-loop con- 
tribution the main contribution to c, evidently comes from 
four-loop diagrams of the form shown in Fig. 2c with addi- 
tional gluon exchange, just as in the case of the 0 term.' An 
estimate of the corresponding contribution gives 

as G,' 
c6-sin 0, I VUb I 1 Vcb I sin 6 - --- ml' 

rn: ln3 - . 
3n (16n2)' m? 

It is easily seen that the main contribution to (16) comes 
from momenta of the order of the mass of the heavy quarks. 
The sole exception is In (m;/m:), which in fact is deter- 
mined by the physics at large distances. In the real world 
with a relatively light s quark the contribution of the corre- 
sponding processes, for example to d, , should be determined 
by operators that explicitly contain the fields of the d and s 
quarks. On the other hand a reasonable estimate of the size of 
c,, determined by short distances, can be obtained by setting 
the ln(mf/mi ) equal to unity or even to m:/& in ( 16), 
where ,us,, is a characteristic hadronic mass scale. 

3. RADIATIVE CORRECTIONS TO THE OPERATOR 

The next step after the calculation of the coefficient c, in 
a specific model is the estimate of its matrix elements be- 
tween hadronic states entering the process of interest. Since 
the exact calculation of the matrix elements is with very rare 
exceptions impossible, one must unavoidably make use of 
some model of the strong interactions or some other approx- 
imation methods. In all these cases the field objects are pre- 
sumed normalized at the characteristic scale of the strong 
interactions ,u2 - 1 GeV2. Thus, the usual factorization is 
certainly violated by virtual gluons and refers only to opera- 
tors renormalized at that scale. Consequently, it is necessary 
for practical purposes to take into consideration the modifi- 
cation of the o, operator by gluons and quarks at short dis- 
tances. 

For virtuality in excess of m: and m& the corresponding 
processes renormalize only the coupling constants deter- 
mine the CP-odd interactions producing 0,. Taking them 
into account reduces simply to the use of the renormalized 
values. 

To discuss the region of smaller momenta we consider 
first the simplest case when 0, is determined by the t-quark 
loop (neutral Higgs exchange). In that case the relations 

given in the preceding Section fix the value of c, at q2 - m:. 
In the evolution to the low-energy region the o, operator 
could, in the first place, produce operators of lower dimen- 
sion, in particular m,qg,aGy,q. For light quarks, however, 
this effect is small. For heavy quarks, on the momentum 
scale of order m,, when the fields of the q quarks are elimin- 
ated these operators generate the o, operator, as was dis- 
cussed above. But the corresponding correction is propor- 
tional to a, (mi ) and does not contain the logarithm, i.e., it 
vanishes in the approximation under discussion. Secondly, a 
priori o, could mix with the usual four-quark operators of 
dimension 6, but it can be shown that such mixing is absent. 
Indeed, the corresponding quark operator should be P-odd 
but C-even; the only such operators are a,, X a,, y, (with or 
without color il matrices). However, as a consequence of the 
chiral-invariant form of the gluon-fermion interaction ver- 
tices such operators cannot appear without explicit factors 
in the form of quark masses. Thus in this case the evolution 
of c, is determined only by the anomalous dimension of the 
o, operator itself, which is calculated in Ref. 11 and turns out 
to be equal to - 18: 

Numerically the corresponding renormalization factor x, 
turns out to be z 0.1 for ,u2 - 1 GeV2. 

A more detailed discussion is needed if the quarks that 
propagate in the fermion loop are t and b quarks. As was seen 
in Sec. 2 the effective CP-odd interaction is determined in the 
region m: 4q2  4 m: by the operator mb&gso~y,b. Therefore 
the renormalization is governed here by the anomalous di- 
mension of this operator, equal to - 14/3:12 

or, numerically, x, -0.3. 

4. ESTIMATE OFTHE SIZE OFTHE ELECTRIC DIPOLE 
MOMENTOFTHE NEUTRON INDUCED BY THE Os OPERATOR 

Keeping in mind the definition of the electric dipole 
moment we have to calculate the nucleon matrix element 

where o - is the CP-odd operator under consideration. In 
view of the obvious impossibility of calculating it exactly we 
formulate a prescription which uses simple dimensional con- 
siderations and permits estimating the order of magnitude of 
dn. 

In accordance with ( 19) in the general case d, is given 
by the sum of the three diagrams of Fig. 3, where the one- 
nucleon-reducible diagrams a and b corresponding to a nu- 
cleon in the intermediate state are explicitly separated. Al- 
though for the P-odd operator o - such a separation of the 
"pole" diagrams is conditional, it is convenient for the anal- 
ysis.,' The sum of the diagrams a and b is easily calculated. 
Indeed, if we define 
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FIG. 3. 

then their contribution is equal to 

wherep, is the anomalous magnetic moment of the nucleon. 
In the general case the "one-nucleon-irreducible" con- 

tribution of the diagram c consists of two parts. First, it con- 
tains contributions of all low-lying levels of hadronic states 
except the one-nucleon state. This part is characterized as 
before by the typical scale of the strong interactions and 
should be close in size to the contribution (2  1 ) . In addition 
we must take into account the contribution from short dis- 
tances to the T-product of the operators in ( 19). This contri- 
bution, however, should be expressible in terms of operators 
of dimension no higher than six. It was shown in Sec. 2 that 
no such operators exist not containing quark fields. The only 
operators are the dipole moments of the light quarks, but 
their contribution to d,, being proportional to current 
masses, is small and can be omitted. 

Thus we can expect that the contribution of the CP-odd 
vertex of Fig. 3c has no particular enhancement in compari- 
son with the size of (21 ) . Since our aim is an order-of-magni- 
tude estimate of d,, it is natural to simply ignore this contri- 
bution and set 

Actually it makes sense to view (22) as an upper bound. 
Experiment shows that the "irreducible" part turns out to 
be, as a rule, of opposite sign and has a tendency to partially 
cancel the one-particle-reducible contributions. More pre- 
cisely it is easy to show that this cancellation indeed takes 
place to a large degree in the case when the CP-odd operator 
o - is GG. In that specific case the irreducible vertex exactly 
cancels the one-nucleon contribution to leading order in the 
mass of the light quarks, so that the total moment d, vanish- 
es in the chiral limit. However, for the operator G 'Gof inter- 
est to us there is no reason to expect either the vanishing of 
d, in the chiral limit or strong cancellation between the two 
contributions. 

Thus we have to determine ( N  lo,lN). Here we shall 
again rely on very simple dimensional considerations and 
write 

and then set the two mass scales introduced in this fashion 
equal to each other: 

Consequently we are in fact setting 

Relying on the estimates of the vacuum expectation values 
obtained in the framework of QCD sum rules in Refs. 13 and 
14 

(01 (us/4n) G,,aG,,a10>-3.10-3 GeV ', 
(25) 

we arrive at the result 

ph=0,36 GeV. (26) 

We note that for a particular choice of the operators 
entering (24), the relation (24) does not depend on the nor- 
malization point (in any case, in one loop). In the general 
case such an approach should be applied to operators nor- 
malized at q2- 1 GeV2, since it is precisely in that case, in 
accordance with the experience with QCD sum rules, that 
the standard assumptions such as factorization are applica- 
ble. We emphasize that the second numerical value in (25) 
corresponds to this normalization point. 

Lastly, the nucleon matrix element of the operator GG 
is easily calculated in the chiral limit. Indeed, for vanishing 
quark masses, 

where gA O is the S U ( 3 )  analog of the usual nucleon axial 
coupling constant. Collecting all the numerical factors we 
obtain 

I dNI-5,1. 10-'5[ga0+ (F-D/3) /2] [eel I GeV2 

(1 GeV) e.cm=1,8. [gAO+ ( F - D / 3 ) / 2 ]  deecm, 

where for convenience we have introduced the dimension- 
less coefficient d,: 

What value should be used for gA O? A few years ago in QCD 
sum rules for baryons the estimategA ' ~ 0 . 5  was obtained.'' 
However, recent data for deep inelastic scattering on a polar- 
ized target suggest that gA ' = 0.1 + 0.2. This result can be 
interpreted in two ways. It is possible that such a small value 
is the result of accidental cancellation of different contribu- 
tions to gA O. In that case, keeping in mind that we are inter- 
ested in the operator G 2G and not GG, it is natural to use for 
gA O + ( I ; -  D/3)/2 a numerical value -0.5. On the other 
hand, the resultgA O 4 1 can be interpreted as suppression for 
some reason of the gluon-nucleon interaction in the pseudo- 
scalar channel. In that case similar suppression is to be ex- 
pected for the operator G 2G as well and for the factor under 
consideration we should use the literal value 0.25. 
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For definiteness we use in the following the value 0.5, 
keeping in mind that this might again result in an overesti- 
mate for d, . Thus we arrive finally at the following result: 

In Ref. 5 d, was estimated using the method of Ref. 16 
called by the authors "naive dimensional analysis" (NDA) . 
It gave an estimate approximately 300 times larger than 
(30)." We consider it necessary to briefly discuss the rea- 
sons for such a large discrepancy. 

1. In the definition of the operator in Ref. 16 a factor of 
1/6 is explicitly introduced, so that aside from the obvious 
factor gi/16n2 the two definitions of o, differ also by the 
factor 1/3. In the NDA method the literal estimate of the 
matrix element of an arbitrary operator does not depend on 
the explicit form of the coefficient, included ad hoc in its 
definition; at the same time a redefinition of this factor obvi- 
ously modifies the coefficient with which the operator enters 
the effective Lagrangian automatically. This leads to an in- 
crease of the estimate of Ref. 5 by precisely a factor of three. 
The factor 1/3!, introduced by Weinberg, corresponds to the 
standard combinatoric factor, but within the framework of 
this logic the suppression of the matrix element should be 
due to the absence of factored contributions. In our ap- 
proach the ambiguity described above is fully absent. 

2. The characteristic hadronic mass scale p, is used in 
both approaches and in the final analysis the dependence on 
it in the NDA approach turns out to be a p,, while in our 
method it is a&/M,.  The size ofp, in NDA is determined 
by the expansion parameter 4aFT of the chiral Lagrangian 
and amounts to about 1.2 GeV, while in our approach the 
corresponding mass turns out to be 0.36 GeV. This leads to a 
difference of approximately a factor of ten. It should be em- 
phasized that the quantity 4aFT can hardly be used as a 
universal strong interaction scale, least of all for the descrip- 
tion of gluon operators. 

3. In the NDA approach the result is proportional to the 
cube of the QCD coupling constant g,, which enters on the 
momentum scale of typical hadronic processes. In Ref. 5 its 
value was determined from the condition for equality of the 
one-loop and two-loop contributions to the QCD P-func- 
tion, and the corresponding value of a, turned out to be z 2. 
In our approach this problem does not arise and, as was 
made clear above, the renormalization should be achieved 
on a scale - 1 GeV (a, ~ 0 . 2 5 ) .  This difference gives, appar- 
ently, a factor - 7. 

On the whole we believe that it is difficult to expect 
correct estimates the NDA method in nontrivial cases, if one 
takes into account the experience accumulated in QCD anal- 
ysis, both by sum rules and by other methods, based on the 
inclusion of nonperturbative phenomena in the instanton 
vacuum. Although the concept of reduced coefficients intro- 
duced in NDA is self-consistent in perturbation theory, it is 
hard to believe that the NDA prescriptions can describe cor- 
rectly nonperturbative phenomena. 

Without a doubt, the principal property of QCD is 
gauge invariance. At the same time it is easily seen that for 
operators containing a covariant derivative NDA gives for 
the two terms in the V operator reduced coefficients differ- 
ing by 437. Consequently, from the point of view of NDA, for 
the effects of the two terms in the covariant derivative to be 

approximately equal it is necessary that the quantity a, be of 
order 4a! (Strictly speaking, both that number and the final 
answer in NDA depend, e.g., on the representation used for 
the gauge field.) At the same time in all realistic models of 
QCD the "running" constant a, is in the region of nonper- 
turbative physics "frozen" by the nonperturbative fluctu- 
ations at the relatively small value a, 40.5-1. This stabiliza- 
tion occurs precisely because of the nonperturbative fields 
and not the equality of contributions of higher loops in per- 
turbation theory, as is supposed in NDA; these nonperturba- 
tive fields have the characteristic scale -g, ', i.e., it is pre- 
cisely the quantity g,A that is determined by the typical 
hadronic mass scale. Further it turns out, as a rule, that the 
fermions have no strong influence on the structure of the 
nonperturbative fields, and the pion loops, described by the 
chiral Lagrangian, give altogether a small contribution (we 
recall that the interaction terms in the chiral Lagrangian are 
made dimensionless by powers of the factor F; , proportion- 
al to N, in the limit of a large number of colors). For this 
reason the identification of the nonperturbative QCD mass 
scale with the parameter 4aFT of chiral perturbation theory, 
which grows with the number of colors, is unjustified. 

The method for estimating d, described in this work 
was developed to overcome the shortcomings of the NDA 
approach indicated above and is more or less free of most of 
the ambiguities. Nevertheless it is of interest to compare its 
predictions with the results of independent calculations by 
other methods. To this end one can carry out similar esti- 
mates for, say, operators of the form 

which were studied in Ref. 3 by sum-rule methods. Here it is 
not possible to literally repeat the discussion outlined above 
for the 0, operators. Indeed, in the general case the matrix 
element (N IqgsoGy5qI N ) is singular in the chiral limit, hav- 
ing a contribution a m; ' due to the pion pole. However, 
this singularity disappears from d, due to the cancellation 
with a similar contribution in the irreducible diagram (Fig. 
3c). This fact can be verified with the help of current algebra 
(more precisely, the Ward identities for axial currents). 
This difficulty can be eliminated by, for example, consider- 
ing the combination of operators Sig,uGy5q that is isosinglet 
in the light quarks or by simply applying the dimensional 
arguments to the matrix elements from which the pole terms 
were extracted. Afterwards the dimensional estimate of the 
nucleon matrix element can be carried out similarly to the 
prescription (24), using as the "normalizing" operator liter- 
ally that same operator GG, or, alternately, i;riy5q. In the 
second approach, however, the unknown nucleon matrix 
element of the isoscalar pseudoscalar density appears, so 
that for numerical answers we use only the first version. Us- 
ing the value 

(see, for example, Ref. 15) we arrive literally at the result 

which approximately overestimates that of Ref. 3 by an or- 
der of magnitude. 

We are inclined to interpret this disagreement as an in- 
dication that the diagram considered in Ref. 3 does not give 
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the main contribution to d,. 
Indeed, to estimate d, produced by the CP-odd 0, oper- 

ator we can calculate the most singular contribution in the 
chiral limit, e In m:, as was done in Ref. 17 for the 8 term. It 
is determined for mu = m, by the diagram in Fig. 4, where 
one of the pion vertices is CP-even and the other is produced 
by the CP-odd Hamiltonian. Its evaluation gives the expres- 
sion 

where h, and h, are the corresponding vertices for zero pion 
momentum. The CP-even constant h, = g,,, can be writ- 
ten with the help of the Goldberger-Treiman relation in the 
form h, = 2MNgA/f, .  The CP-odd vertex hs can also be 
expressed with the help of the Ward identities in terms of the 
nucleon matrix element ( p  ( iiig,aGd In) (see Sec. 5 ) . Unfor- 
tunately, the corresponding operator is isotriplet and little is 
known about its expectation value. If we set as our goal only 
order-of-magnitude estimates then we can use the similar 
matrix element of the isosinglet operator and set 

where r is some factor of order unity. In Ref. 18 the latter 
matrix element was related under certain definite assump- 
tions to the nucleon isoscalar density: 

Using (34) and (35 ) we obtain for the dipole moment 

where we have assumed M = m, = 770 MeV. Setting8' 
rs- 1, we arrive at practically the same result (32). Of 
course, such a close agreement between the estimates must 
be viewed as only accidental. 

In Ref. 4 in the analysis of the Weinberg model of CP 
nonconservation for relatively light Higgs particles the d,, 
induced by the operator G 2 ~ z ,  was in fact estimated. The 
method used there, also quite approximate, in effect reduced 
to considering as intermediate states in the T-product ( 19) 
of nucleon-antinucleon pairs (entering only into the one- 
nucleon-irreducible diagram of Fig. 3c) and utilizing the 
simplest factored contribution for the CP-odd vertex 
(TN) (XN) . In that case, were one to follow the prescription 

for estimating d, described at the beginning of the Section 
and use for the determination of ( N  I G 2 ~ Z !  1 N ) the naive fac- 
torization 

then the result would turn out to be approximately five times 
larger than that obtained with the help of the mechanism of 
Ref. 4. Consequently, this example confirms the correctness 
of the order-of-magnitude estimates performed by the pro- 
posed method, and illustrates the present hypothesis that the 
irreducible vertices of Fig. 3c hardly dominate in d, signifi- 
cantly. 

5. EFFECTOFTHE PECCEI-QUINN MECHANISM ON THE 
NEUTRON DIPOLE MOMENT 

As was noted in the Introduction, the term is unavoid- 
ably induced in all natural models which have the operator 
o, appear at a noticeable level. The 8 term, being an operator 
of dimension four, should give rise to a much bigger d,. 
Therefore the phenomenological discussion of the 0, opera- 
tor makes practical sense only in the presence of the Peccei- 
Quinn (PQ) mechanism, which automatically eliminates 
any 8 term introduced. In the presence of the corresponding 
symmetry the true vacuum, which spontaneously breaks it, 
is determined by minimizing the total energy with respect to 
the pseudo-Goldstonon degree of freedom, which in fact co- 
incides here with the effective value of 8 

O e f t = O  -arg det M E , ,  (37) 

where 0 denotes the coefficient of the operator (a,/ 
~T)GP,,Z*P,,  in the effective Lagrangian and M,, is the 
quark mass matrix. Since 6' is a CP-odd quantity, the point 
0 = 0 is certainly an extremum. It is natural to assume that it 
is the true minimum of energy (arguments are presented in 
Ref. 20 in favor of this being the case in QCD). However, the 
situation changes if a CP-odd interaction is present in the 
theory. In that case the dependence on Oe, of the vacuum 
energy is "distorted" and the vacuum value ee, is different 
from zero, being proportional to the introduced CP noncon- 
servation. As a result we have in specific models two contri- 
butions to d, that differ in nature: the direct contribution 
d - , independent of the presence or absence of the PQ sym- 
metry, and the contribution d,, induced by the nonzero val- 
ue of e,, . 

Generally speaking, the second contribution could turn 
out to be quite substantial. Thus, if the CP-odd weak interac- 
tion is determined by operators of the form @y,q or GG, d, 
identically cancels the direct contribution d - . Below we 
shall formulate an approach to the determination of the rela- 
tive role of d, for an arbitrary CP-odd operator o - and 
disc'uss in more detail the cases of the o, and 0, operators. 

Thus, let the CP-odd weak Lagrangian have the form 
Lo,, = c - o - . Identifying the axion field with the param- 
eter BeE (37), and leaving off the subscript eff to simplify the 
notation, we write out the vacuum energy to lowest nontri- 
vial order in c - and 0 as 

FIG. 4. where for purposes of illustration we have added the last 
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term, violating the PQ symmetry and corresponding to a 
possible explicit violation of this symmetry in the Higgs po- 
tential; 8, stands for the bare value of 8,, (37). The quantity 
M can be of the order of the electroweak mass scale, but the 
axion model corresponds to M = 0. The coefficients go in 
(38) represent vacuum correlators at zero momentum: 

where 

The vacuum value of 8, 8, is determined for M = 0 by 
the minimum of the quadratic form (38): 

and, consequently, the neutron dipole moment is now equal 
to 

where 

We have introduced the factors k - and k,,  connecting the 
neutron dipole moment to the coefficients of the o - opera- 
tor and the 8 term respectively: 

For a Higgs potential with a nonzero value of M the quantity 
8, is determined exclusively by the last term in (38) and 
8, = 8,; for 8, = 0 the additional contribution to d,  is ab- 
sent and we have r = 0. Thus the quantity r represents the 
relative contribution to d ,  of the PQ mechanism. 

In fact formulas (42) and (43) represent the contribu- 
tion to d ,  of the additional diagram (Fig. 5)  that takes into 
account exchange by neutral pseudoscalar Higgs bosons. In 
the general case the scale of the mass of the intermediate 
scalars is M,, and the corresponding corrections turn out to 
be negligible, - GFm: f : / M  &. However in the presence of 

L i' 
FIG. 5. 
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the PQ symmetry one of the states, the axion, is massless, 
and, literally, this diagram is equal to infinity. Summation of 
the "anomalous" pole diagrams of the form in Fig. 5b gives 
rise to a nonvanishing axion mass of order GFm: f ,f2,, deter- 
mined by the correlator g,,, which in the end gives the addi- 
tional contribution (43). 

In the expression (43) the coefficients g,, and k de- 
pend on the explicit form of the operator o - , and their cal- 
culation presents a nontrivial dynamical problem. One can, 
however, attempt to establish the behavior of the quantity r 
in the chiral limit, when the masses of the light quarks tend 
to zero. For simplicity we consider here the case mu = m,  
+ 0; the general case in which we have m,  -+ 0 and the ratio 
mu / m ,  is fixed but different from unity requires a more ac- 
curate analysis and leads to the same expressions. (We work 
in the basis in which the quark masses are positive and free of 
y,. The corresponding redefinition of 8 is included in 8,.) 

In the chiral limit the quantity g,, is easily calculated 
with the help of the anomalous Ward identities (see, for ex- 
ample, Ref. 2 1 ) and is linear in the quark masses: 

The chiral behavior of the coefficient k ,  was calculated in 
Ref. 17 and has the form 

ke mi In mn2= m, In m,. (45) 

The necessary relation forg,, is also easily obtained with the 
help of the anomalous Ward identities. Indeed, making use 
of the equality 

we can rewrite g,, in the form 

g12=<01 d4xiT {Q (x)o- ( 0 ) )  10)=<01j  d4xiT{ (d Ju; (x)  

-m.qiy,q(x))o-(0)) 10 )= j  d4zdu<0~ iT{ l , , ~ (x )o -  (0) )  10) 

- j d 5 6 ( x O ) < 0 l  [iQ."(x).o-(O)] 10) 

where Q :  = +ijy,y,q is the axial charge density operator. 
The first term on the right-hand side of (47) vanishes, 

being the integral of a total derivative; the last term is linear 
in the quark mass and vanishes in the chiral limit, since for 
the isosinglet pseudoscalar the pion pole does not contribute 
to the correlator. Consequently, to within terms vanishing 
for m, = 0, g,, is determined by the vacuum expectation 
value of the equal-time commutator in (47), which is easily 
calculated making use of the canonical commutation rela- 
tions and represents by definition the axial charge of the 
operator o . 

For the 0, operator, which contains no quark fields, the 
commutator with Q :  is equal to zero and we arrive at the 
conclusion that the correlator g,, is linear in the mass of the 
light quarks. As regards k -  , in accordance with the esti- 
mates of the preceding Section it does not vanish in the chiral 
limit; moreover we can see no reasons for it to vanish for 
m,  = 0. Consequently the quantity r is equal to zero in the 
chiral limit: 
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r a rn; In mZ2ac m, In m,. (48) 

Therefore it is to be expected that in the real world r should 
be small, i.e., the presence of the PQ symmetry in the theory 
should have no effect on the estimate of the neutron dipole 
moment induced by the 0, operator. We emphasize that this 
conclusion is based on two facts: the direct contribution to 
d, from the 0, operator is finite in the chiral limit and the 
axial charge of the 0, operator is equal to zero. 

The situation is different for the 0, operators. In this 
case the equal-time commutator in (47) is equal to 

8 ( X U )  [ iQSu(x ) ,  o5 (0) 1 =S4 ( x )  QigsoGq, (49) 

and in the chiral limit g,, takes the form 

g,z=(OlqigsoGq ( x )  (0) .  (50) 

As before k - does not vanish in the chiral limit. Moreover, 
the most singular contribution to d,, proportional to In m;, 
can be calculated with the help of chiral perturbation theory 
just as was done in Ref. 17 for the ordinary pseudoscalar. For 
mu = m, it is given by the diagram of Fig. 4 and determined 
by the vertex (pr- 1 0 -  In) at zero pion momentum. That 
vertex can be easily expressed with the help of Ward identi- 
ties in terms of the corresponding nucleon matrix element: 

As a result in the chiral limit the quantity r for the o, opera- 
tor is given by the expression 

We again encounter here the difficulty of estimating isovec- 
tor nucleon matrix elements. Lacking a better way we re- 
place the last fraction in (52) by the ratio of the correspond- 
ing isoscalar quantities, i.e., we set 

If we then make use of the estimates of Ref 18 for the above 
expectation values, the quantity r is found to be about 3/5, 
where this last number is simply the ratio of the canonical 
dimensions of the qq and ijig,aGq operators. Thus, in the 
case of the o, operator the effect of the PQ mechanism is 
quite substantial and the "axion" can "eat" a significant part 
of d, . 

6. NUMERICAL ESTIMATES 

It is clear from general considerations that the phenom- 
enologically most interesting consequences are to be expect- 
ed for models where CP nonconservation is due to the ex- 
change of Higgses (both in the standard form of interaction 
of H bosons with quarks like those of the Weinberg model, 
and with "horizontal" H bosons), for models with "right- 
handed" W bosons and for SUSY phases of realistic super- 
symmetric theories. We therefore start the discussion for 
just such cases. In the estimates we take the t-quark mass to 
be m, = ( 1-3) M,. 

a) Charged and neutral "standard" Hlggses 

Making use of the value MH = m, as a starting point, 
we obtain for the exchange of neutral bosons with ( lo),  ( 17) 
and (30) included 

where we have introduced the notation 

h,h,=2'"GFmt2 sin X. (55) 

based on the analogy with the Yukawa coupling constants of 
the SM. For the contribution of the charged bosons interact- 
ing with t and b quarks according to 

~m (hbh,*) = (112'") GFmbmt sin 9, (56) 

the numerical coefficient is found to be larger. 

d , ~ l O - ~ ~  sin cp e.cm. (57) 

This difference is due, in the first place, to a weaker suppres- 
sion of the QCD corrections, and also to a different explicit 
form of the coefficient functions (5) and (10). 

Strictly speaking, d, should be determined by the sum 
of the contributions (54) and (57) over all the Higgs states. 
In the most general case in the summation over all particles 
the CP-odd propagators for the neutral, as well as for the 
charged exchanges, either totally cancel in the limit q2 -. 03 

(for spontaneous breaking of CP), or appear only in higher 
order loops. It is therefore reasonable to expect some cancel- 
lations in d, when taking into account all contributions, al- 
though for m, > m, this cancellation can hardly be signifi- 
cant except accidentally. We note that in the simplest models 
the CP-odd propagators for H * and H0 are connected to 
each other at large momenta by simple relatiom4 

The notation (55) and (56) is introduced so that in the 
general case for moderate violation of CPin the Higgs sector 
the values of sin p and sin x should be of order unity. There- 
fore comparison with the experimental bound 

d,=- ( 3 2 4 )  . cm. 

indicates that in the case of an extended Higgs sector the CP 
violation in it cannot be maximal. However, for bosons 
heavy in comparison with the t quark and if we take into 
account the uncertainty in the estimates realistically, only 
the bound on the charged bosons remains, and it is not very 
stringent. 

b) SU(2), xSU(2) ,xU( l )  model 

Here we again take for simplicity the case m, = M,; for 
m, = 250 GeV the estimate of d, goes up by a factor of 1.9. 
Putting together all the numerical factors we obtain 

d,=1,5.10-2'p sin q e.cm p=(M,,2/MMR2)sin 20. (58) 

What is the order of magnitude of the CP-odd parameter 
p sin v? In the simplest, "manifestly L-R symmetric" mod- 
els the interaction of W, with the quarks is determined by 
the usual KM matrix and some additional phases. For sim- 
plicity we ignore them, as well as the ordinary CP noncon- 
servation in KM. In that case the CP-odd L-R mixing ( 12) 
completely determines the quantity E,, and at first glance 
the parameterp sin v should be of order E,. However such a 
naive estimate of the contribution of the W,- W, mixing to 
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the K O-z transition turns out for several reasons to be much 
too low, and a more accurate relation is6 

p sin q-&,/5OO. (59) 

Consequently, in these very simple models the contribution 
of the 0, operator to d, can be at the level 

d,-10-26 e.  cm, (60) 

while the bound on CP-odd W,- WR mixing turns out to be 
of the form 

p sin q40(10-5). (61) 

In accordance with the results of Ref. 3 the direct four-fer- 
mion interaction of the constituent quarks, produced by the 
CP-odd W,- WR mixing, gives a somewhat larger dipole 
moment d, - 8- 10 - sin7 e.cm. Nonetheless the estimate 
(60) is of independent interest, since that contribution is 
connected to the interaction with heavy quarks, which does 
not manifest itself directly in the physics of ordinary ha- 
drons. 

c) SUSY phases 

In accordance with ( 15) the contributions of all heavy 
quarks to c, should all be of the same order; however in view 
of the significant negative anomalous dimension of o6 the 
contribution of the lighter quarks is somewhat enhanced. 
We therefore consider here the case of the b quark. The pa- 
rameters of the supersymmetric models are fairly undefined, 
and for purposes of illustration we take "typical" values, 
obtained as a result of solution of the renormalization group 
equations for rn, --, 100 GeV. Setting a, (M ,) = 0.1 from 
(15) formg=:120GeV,M~~100GeV,andy,--,A,--,2we 
obtain numerically lo 

d,-2. lo-" sin 8 e.cm (62) 

This value is substantially larger than the direct contribution 
to d, from the electric dipole moments of the constituent 
quarks, analyzed in Ref. 22, since the latter are proportional 
to the small current masses. Thus the potential effect of the 
o, operator strongly restricts the SUSY phases for the case of 
"near" supersymmetry: 

sin 8G 10-~-10-~. (63) 

d) Models with "horizontal" bosons and the standard KM 
model 

Here in both cases the CP-odd amplitude for the transi- 
tion K O + K  O  with A S  = 2 appears, generally speaking, in the 
same order in the weak interaction as the CP-odd processes 
without flavor change. For the "horizontal" bosons they ap- 
pear in the tree approximation. Therefore, at first glance, the 
quantity c, should be extraordinarily small, at the "super- 
weak" level. However, for scalar Higgs-type particles inter- 
acting predominantly with heavy quarks, considerable en- 
hancement of d, is possible. It occurs because the coupling 
of H bosons to light quarks, present in the K mesons, is very 
weak, while for heavy quarks such suppression is absent. To 
get a rough idea of the possible magnitude of the effect we 
consider neutral spinless bosons, having all possible diag- 
onal and off-diagonal interactions of the form 

and assume that the complex coefficients f and g are of the 
order of unity and the masses of all bosons have the common 
scale M,. The exchange of these particles also gives rise to 
the transitions D O-Z and B -3 O, but the most stringent 
condition come from the parameter E,: 

Making use of this estimate we arrive at the contribution of 
the t quark 

Thus we see that such "superweak" models can give rise 
to a neutron dipole moment even at the level of the present- 
day bound! 

For vector gauge bosons the combined bound on the 
mass and coupling constant of the type (65) gives a much 
more stringent limit on the mass for a coupling constant on 
the order ofg,: M ,  2 3- lo2 TeV. At the same time, assuming 
that their coupling to quarks of different generations is of the 
same order, we obtain no enhancement for the loops with t 
quarks, and the resultant estimate for d, turns out to be 
smaller by four orders of magnitude: 

On the whole it should be somewhat suppressed in compari- 
son with the contribution of the four-fermion interaction of 
the light quarks at the tree level. We note that for the vector 
bosons the two-loop contribution to c6 appears only for the 
off-diagonal interactions and only in the presence of interac- 
tion with both chiral components of the quarks. 

For the KM model, as was noted in Sec. 2, the contribu- 
tion to the 0, operator from short distances is further sup- 
pressed due to the light quarks. Even if this suppression is 
ignored, the quantity d, turns out to be extraordinarily 
small: in accordance with ( 16) the four-loop contribution is 
estimated as 

which is substantially smaller than the standard contribu- 
tion from large distances.' 

7. CONCLUSION 

In this work we have analyzed the possible role of the 
pure gluon CP-odd operator of dimension six 

OB= (g~3/16n2)fobeGlrvaGvpbGplrc, 

which could appear in the low-energy region of the theory 
due to CP-odd processes connected with heavy objects. As 
was to be expected, this operator plays a role that is most 
significant in models with the exchange of Higgs particles 
like those of the Weinberg model. The reason for this is quite 
transparent-the interaction of H bosons with fermions is 
proportional to the quark mass, so the CP-odd interaction 
generated by them is suppressed to a tremendous degree for 
light valence quarks. At the same time, for heavy quarks it is 
of "normal" size, reflecting directly the degree of CP viola- 
tion in the Higgs sector. The generation by this interaction of 
a CP-odd gluon operator permits its "transfer" to the low- 
energy region without particular losses-the price is only 
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the presence of an additional loop and suppression due to 
hard gluons. On the other hand, operators of the type of 
quark dipole moments (electric or color) are small, since for 
chiral reasons they are strongly suppressed by the mass of 
the light quark. Restrictions imposed by the experimental 
upper bound on d, then permit one to assert that for an 
extended Higgs sector the CP violation in it cannot be maxi- 
mal, sin p 5 0.01-0.1, depending on the mass scale of the H 
bosons. Restrictions on the exchange by neutral particles are 
somewhat weaker. 

Important information results also for CP-odd SUSY 
phases in broken supersymmetric models. Although the in- 
teractions with the superparticles are universal with respect 
to generations, minimal CP-odd operators containing only 
light quarks either again contain explicitly the quark mass or 
appear in higher orders and are therefore suppressed by ad- 
ditional powers of mass of the superparticles in the denomi- 
nator. For heavy quarks the quark mass does not act as a 
suppression factor and the operators with heavy quarks di- 
rectly reproduce new CP-odd interactions. The o, operator 
again permits their transfer to the region of low energies. The 
corresponding upper bounds on the phases for typical pa- 
rameters of schemes with relatively light superparticles turn 
out to be at the level of 10-3-10-4, i.e., also stronger than 
the previously discussed effects of EDM of valence quarks. 

For models with right-handed bosons, where the source 
of CP violation is the W,-W, mixing, the effective four- 
fermion interaction has the same constant for heavy and for 
light quarks and, obviously, no chiral selection rules for light 
quarks appear. Therefore here, in complete agreement with 
expectations, the induced o, operator gives a somewhat 
smaller contribution to d ,  than the interaction of the valence 
quarks. Nonetheless, since o, is determined principally by 
the independent heavy-particle physics, its contribution is of 
separate interest as it provides information about new ob- 
jects with mass of tens of TeV. In view of the estimates of d, 
given here it is of the greatest importance to improve on the 
experimental accuracy of its measurement to a level of the 
order of lop2' e'cm. 

Of great interest is the observation that even in "super- 
weak" models with "horizontal" Higgs particles the 0, oper- 
ator can give a neutron dipole moment even at the 
e-cm level. Besides obvious consequences for experiment 
this fact imposes additional restrictions on the building of 
models required to answer the question of the origin of gen- 
erations and quark mixing with the help of "horizontal" in- 
teractions. 

In the Standard Model and for "horizontal" gauge bo- 
sons the effects of the o, operator are very small. These mod- 
els require the existence of more than one generation of 
quarks and more or less successfully imitate the "super- 
weak" model of Wolfenstein. Correspondingly the predic- 
tions for the contribution to d ,  also begin with the "super- 
weak" scale e.cm with some additional 
suppression, reflecting the specific details of the specific 
model. 

The estimate of the size of the neutron dipole moment 
generated by the o, operator is fairly unambiguous and based 
in fact on dimensional considerations. We have proposed a 
more consistent method of applying these considerations 
and as a result obtained an answer much smaller than in the 
initial paper of Ref. 5. It is not hard to trace through the 

origin of this discrepancy, and we bring arguments in favor 
of our method of action, and also verify it in the case of other 
operators investigated by other methods. 

When discussing possible models in which the o, opera- 
tor arises phenomenologically at the level of interest, one 
must always assume the presence of the axion solution of the 
Oproblem to suppress the unacceptably large contribution of 
the 8 term to d, . We have shown that in the concrete case of 
the 0, operator the effect of the presence of the Peccei-Quinn 
symmetry is parametrically small in the chiral limit and in 
the real world can hardly affect the estimate of d, substan- 
tially. At the same time this is not so for axial-charge-carry- 
ing operators, say, of the form ?jg,aGy,q, and we have pre- 
sented arguments in favor of the idea that for such an 
operator the axion mechanism could substantially diminish 
the value of d, 

In the process of formulating this work we have become 
aware of the preprint of Ref. 23, where in the framework of 
the Weinberg model of CP violation the role of the operator 
?jgsaGy,q is discussed. In accordance with the dimensional 
expectations of Sec. 4 its contribution to d, has turned out to 
be smaller than that of the o, operator by about two orders of 
magnitude. As was emphasized above the additional sup- 
pression could be due to the PQ symmetry, which was not 
discussed in that work. 

With the feeling of a pleasant duty one of us (N. G. U.) 
expresses acknowledgment to A. I. Vainshtein and I. B. 
Khriplovich for exceptionally fruitful discussions, thanks P. 
Kravchik and M. Eides, and also the coauthor of Ref. 10, A. 
A. Iogansen, for useful discussions. For discussion of the 
QCD corrections I. Bigi thanks Prof. E. Braaten. 
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In the KM model this contribution is smaller than the full d, by about 
an order of magnitude. This is connected with the fact that it is dominat- 
ed by nonlocal contributions to d,, appearing in the T-product of two 
effective weak-interaction Hamiltonians, see Refs. 1 and 2. 

31  Indeed, it can be shown that the one-loop expression for tpe pseudosca- 
lar density in the external gluon field is ( - a,/47r) G;,G,",,, minus the 
total divergence of the sum of a series of well-defined local gauge-invar- 
iant operators. This series represents an expansion in inverse powers of 
the fermion mass of the one-loop expression for the axial current regu- 
larized according to Pauli-Villars. 

4' One of us (N. G. U.) is grateful to I. B. Khriplovich for a discussion of 
this set of questions. He used similar considerations in Ref. 1. 

5' It should be noted, however, that above considerations are based on the 
assumption that all the diagrams under discussion are finite in the local 
limit, including in that number loop diagrams. Even though the general- 
ized GIM mechanism lowers the degree of divergence, a priori corre- 
sponding cancellations in the general case turn out to be insufficient. 
These remarks are also applicable to the analysis of Ref. 1. 

,' In a number of cases what turns out to be distinguished is the intermedi- 
ate state with a nucleon and a pair of soft pions, described by the dia- 
gram of Fig. 4 and leading to a unique infrared logarithm in d,. For the 
o, operator this logarithm is absent due to the vanishing axial charge 0,. 

'' It is necessary to note, however, that in Ref. 5 Weinberg has used an 
incorrect anomalous dimension of the o, operator, differing in sign from 
(17). 
We use this value, keeping in mind that (pi iiu - ad Ip) ~ 0 . 5 .  The latter 
equality follows for m, = 150 MeV and SU(3) relations for the mass 
splittings in the baryon octet; such an estimate is obtained approximate- 
ly by the QCD sum-rules method.I9 
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