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We discuss the theory of optical phenomena in quasi-zero-dimensional systems (quantum dots, 
or QD) in the presence of a magnetic field. Intraband processes (IR absorption, resonant 
Faraday effect, and inelastic light scattering far from interband resonances) are investigated 
within the framework of a parabolic model for the QD lateral potential. This model is in good 
agreement with the available experiments, and also allows us to obtain certain exact results for the 
QD as a many-body interacting system, specifically a generalization of the Kohn theorem that 
allows us to obtain the intensity of the IR absorption lines. For interband processes we point out 
the possibility of a unique "phase transition" in the absorption spectrum and in Raman scattering 
with respect to magnetic field, and clarify the structure of the exciton resonance for various 
quantum-dot models. 

1. INTRODUCTION mQ2pZ 
U(p)=- 

In recent years there has been considerable interest in 2 '  
the study of electronic processes in quasi-zero-dimensional 
systems, the so-called "quantum dots" (QD).  Current sub- 
micron technology allows structures to be fabricated in 
which the motion of two-dimensional electrons is localized 
in the plane of the boundary in both directions. Typical geo- 
metric sizes of such QD are a few thousand angstroms; how- 
ever, the characteristic diameter of the region occupied by 
electrons can be considerably smaller due to the action of the 
lateral potential. In this situation, motion in the plane of the 
boundary can be quantized to a considerable degree for semi- 
conductors with small effective masses (GaAs, InSb), so 
that in fact the QD constitutes an artificial atom in which the 
number of electrons can be controllably varied from one to 
several hundred.'-3 

The magnetocapacitance measurements of Hansen et 
al. made on GaAs/AlGaAs heterostructures proved con- 
vincingly that the structure of the QD energy spectrum is 
completely discrete (due to "superquantization" with re- 
spect to all three spatial directions). It is natural that the 
next problems of interest should involve optical phenomena 
in QD, especially in view of their possible applications to 
optoelectronics. The first experiments on infrared absorp- 
tion in QD have already been carried out,'-3 and questions 
have arisen in the context of these experiments regarding the 
relation between the frequencies of single-particle excita- 
tions and collective modes (i.e., involving the depolarization 
shift). In this paper we will explain one result of these experi- 
ments that was unexpected at first glance. We also will dis- 
cuss the theory of certain other optical effects in QD, e.g., 
Raman scattering, Faraday rotation, interband and exciton 
absorption, that have not yet been observed experimentally; 
these effects can be very useful for obtaining information 
regarding such new and interesting systems in solid state 
physics. 

2. ENERGY SPECTRUM OF QUANTUM DOTS AND 
GENERALIZATION OF KOHN'S THEOREM 

where m is the effective mass, fl is the characteristic frequen- 
cy of the parabola, and p = ( x 2  + y 2 )  is the in-plane dis- 
tance from the center of the QD. Motion along thez axis can 
be treated in the ultra-quantum limit, so that the atom may 
be considered to be planar. This approximation has been 
validated by the numerical calculations of Kumar, Laux, 
and Stern,' who solved the system of Schroedinger and Pois- 
son equations self-consistently. It turns out that this simple 
model of a parabolic QD allows us to explain a very interest- 
ing result obtained in these infrared absorption experi- 
ments-the fact that the resonant frequency is independent 
of the number of electrons in the QD (i.e., independent of its 
"atomic number"). Also interesting is the fact that this sys- 
tem constitutes a rare example of an experimentally interest- 
ing many-body system whose characteristics can be found 
exactly for arbitrary interactions between particles. 

A well-known theorem of Kohn6 proves that the reso- 
nance absorption of a uniform high-frequency electric field 
by a system of interacting electrons in a magnetic field B 
takes place at the cyclotron frequency eB /mc = w, indepen- 
dent of the form of the interaction if the latter depends only 
on the difference between particle coordinates. This result 
was originally proved for a spatially homogeneous system. 
Brey, Johnson, and Halperin7 recently showed that this "ex- 
clusion" of the interaction occurs also for particles moving 
in a one-dimensional parabolic potential. Kohn's method of 
proof,6 which was used in Ref. 7 as well as in subsequent 
generalizations for two- and three-dimensional anisotropic 
c a ~ e s , ~ . ~  was to work with the commutation relations for the 
operators of creation and annihilation in order to establish 
that the distances between exact energy levels of the many- 
particle system, which are connected by dipole optical tran- 
sitions, equal the corresponding single-particle quantities. 

Here we will use another method, which allows us to 
find not only the exact values of the resonant frequencies of 
the system of N particles in the potential U(p) and in the 
vresence of a magnetic field, but also the intensitv of the - 

The conditions for obtaining a QD must be such that corresponding lines, a result not previously derived in Refs. 
the lateral potential of the "empty atom" (i.e., the initial 6-9. Furthermore, we have discovered that it is possible to 
form of the potential well before the QD is occupied by mo- solve the problem of a QD in a magnetic and uniform electric 
bile carriers) can be approximated as a parabola field exactly. 
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Let us write the Hamiltonian of the system under dis- 
cussion in the symmetric vector potential gauge 
A =  1/2[Bp] (herewesetfi= 1): 

where u(p, - p, ) is the pairwise interaction potential, and 
H,,,, is the spin part of the system energy in the magnetic 
field. 

We introduce the variables R and XI ,  X,, ..., X ,  , in 
place ofp, ( k  = 1,2, ...), allowing us to extract the motion 
of the center of mass; these quantities are normalized in a 
special way (see Ref. 10): 

N 

XN-, = 
pi+pz+. . . - ( N - l ) p N  

( (N-1) N)'" 

The t~ansformation (2)  preserves that part of the Hamilto- 
nian H which does not contain the interaction Bii(p, - p,; 
furthermore, after the transformation to these new variables 
this part of the Hamiltonian does not contain any depend- 
ence on R. Then the new Hamiltonian has the form 

H ( R ?  Xi, . . . , XN-1) =Ho ( R )  +H' ( X i ,  . . . , XN-i) ,  

where the combined frequency is 5 = (fl' + wf /4) 'I2, and 
X, Yare the components of the vector R. 

Thus, the coordinate part of the wave function of the 
system has the form 

Y=$,,)nM ( R )  @ ( X i ,  . . . , XN-1). 

where $,, is a solution of the Schroedinger equation for a 
two-dimensional isotropic oscillator in a magnetic field nor- 
mal to the plane of oscillation; n and Mare respectively the 
radial and azimuthal quantum numbers, while the energy 
level is given by the expression (see Ref. 11 ) 

We remark that $,, ( R )  is always symmetric with respect to 
all the particles; therefore, the Pauli principle must be satis- 
fied through the function @ and the spin factor. From Eqs. 
( 3 )  and (4)  it follows that for arbitrary electron-electron 
interactions the intervals between levels of the energy spec- 
trum of the system are the same as in the analogous single- 
particle problem (of course, many other intervals are also 
present, corresponding to the excitation of the internal de- 
grees of freedom XI , ..., X, , ). 

In the dipole approximation the interaction with the 
electromagnetic field is described by the Hamiltonian 

Bi..=eF ( t )  L=ef'N'laR, 

which does not contain the variables XI ,  X,, ..., X, -  , and 
therefore is diagonal with respect to the quantum numbers of 
the function @. Consequently, the optical absorption of this 
system of N particles will be the same as the absorption of a 
two-dimensional isotropic oscillator in the field of a wave 
with amplitude N '12F. This question will be discussed in Sec. 
3; for now let us find the polarizability of the QD in an arbi- 
trary constant electric field FIB. For example, let the field be 
directed along the y axis. Then the wave function can be 
written in terms of $(R) and @(X, ,..., X ,  - , ) in the follow- 
ing way: 

where 

The change in the system energy corresponds to an 
overall shift of all the levels by the quantity 

AE= -eZF2N/2mQ2.  

Thus, the polarizability of the QD (in its plane) does not 
depend on magnetic field, interelectron interactions, or the 
state of the "atom" (i.e., the electronic configuration of the 
QD) ,  and for any F i t  equals the N-fold polarizability of the 
harmonic oscillator e2/mf12. 

3. INFRARED ABSORPTION 

By solving the problem of the interaction of the QD 
with an electromagnetic field within perturbation theory, we 
obtain the values of the resonant frequencies in the dipole 
approximation: 

0 c  O e  
a+=* + -, 0-=a - - 

2 2 '  

for transitions with An = 0 and AM = + 1, respectively 
(waves with left- and right-handed circular polarizations are 
absorbed at different frequencies). These selection rules ex- 
haust the possible dipole transitions from the ground state of 
the QD, for which we must have n = M = 0; this follows 
from the positivity of the energy E,,, in (4) .  Thus, the IR 
absorption spectrum consists of two lines at w + and w _ , 
whose position does not depend on the number of electrons 
in the QD; this fact was also noted in Ref. 1. The intensity of 
these lines is determined by the oscillator strengths 

In the region of strong magnetic fields w, $0 we have the 
asymptotic forms 

f ( 0 , )  +const. f ( 0 - ) c  B-2 ,  

both intensities increase linearly with N, i.e., the number of 
electrons in the dot. 

Within the framework of the parabolic model we can 
proceed further and find the intensity of IR absorption in a 
field F ( t )  of arbitrary intensity (although uniform as be- 
fore). 

Let us begin with the case B = 0. Then the variables 
separate in Cartesian coordinates and the problem reduces 
to a uniform oscillator whose point of suspension moves ac- 
cording to a specified law 
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-eF ( t )  N" 
Ro ( t )  = * mQ2 

In this case the solution to the time-dependent Schroedinger 
equation has the form (see, e.g., Ref. 12) 

P ( t )  =-eN1* j F ( t r )  cos (O ( t- t ' )  ) at1, 
10 

t 

where qho is the wave function at the time to when the field is 
first switched on. If we now calculate the current density in 
the state Y ( t ) ,  we obtain 

j(R,t)=-- e p ( t )  I t 0  (R-r ( t )  1 2 ,  
m 

( 8 )  

from which it is easy to find the work done by the field F( t )  
on the system. For adiabatic switching-on of a monochro- 
matic field 

F ( t )  =Fo exp ( io+6)t  

the total energy absorbed by the system within the time T is 
given by the expression 

Ne2F,Z exp (26T) Q2+02+62 
Q ( T ) =  4m (02-Q2-6"z+40262 

(9)  

We can proceed analogously for the case where a mag- 
netic field is present. The equations of motion for the Heisen- 
berg operators corresponding to the coordinatesx, y are clas- 
sical in form, and as a consequence of their linearity are easy 
to solve. From their solution we find the current operator by 
averaging it with respect to the initial state and calculating 
Q( T). The result depends on the sign of the circular polar- 
ization of the wave. Thus, for the field 

F ( t ) = F l e m  ( i  cos ot+j sin o t ) ,  

where i, j are unit vectors for thex and y axes respectively, we 
obtain 

Ne2F12 exp (26T)  Q2+02+62 
Q-(TI= 2m 

(o-o-)2(o+o+)2+62 (20+oc)2 ' 

where F, is the amplitude of the circular wave (correspond- 
ing to F0/21'2 in Eq. (9)  for linear polarization). The reso- 
nance in Eq. ( 10) is reached for w = w - . For the opposite 
polarization we must substitute - w for w in Eq. ( 10); then 
the resonance will occur at w , . In both cases 

i.e., the widths of the resonance equal S. 
The energy absorbed per unit time (dQ /dT for S -+ 0) 

naturally gives the same value for the oscillator strengths as 
Eq. ( 6 ) .  For example, at the resonance w = w + , we have 
from (10) 

Thus, the exact quantum mechanical expression for the 
power absorption is linear in the intensity of the wave and 
contains only the one-photon resonance w + , which coin- 
cides with the first-order perturbation theory result. In this 
case, however, the occupation of all the levels is different 
from zero at any instant of time; the distinctive feature of the 
parabolic model is the fact that the power absorbed averaged 
over time corresponds only to transitions with frequency 

* * -  
4. DEPOLARIZATION SHIFT 

The depolarization shift of the IR absorption resonance 
arises because of dynamic screening: the effective field acting 
on an "individual" electron is different from the field of the 
incident wave due to electron-electron interactions. It is suf- 
ficient to include these within the framework of the self- 
consistent field approximation. Thus, the mechanism for the 
effect is the same as that which establishes the dielectric per- 
mittivity; however, it was shown in Ref. 14 for the example 
of a quantum film that the resonance is shifted in an inhomo- 
geneous system, so that the frequency of IR absorption is 
larger than the distance between the single-particle levels of 
the system (e.g., the film subbands). These level spacings 
can be found from measurements that do not involve high- 
frequency electric fields, e.g., from the Shubnikov-de Haas 
effect. Consequently, the depolarization shift is the differ- 
ence between the collective and single-particle excitation 
frequencies. For intersubband transitions its magnitude is 
proportional to the surface density of electrons for the case 
of a quantum film or an inversion channel, and to the line 
density for a quantum wire. The results of Secs. 2 and 3 imply 
that for a single QD with a parabolic lateral potential this 
depolarization shift is exactly equal to zero. 

However, the system probed by the experiments of 
Refs. 1-3 was a square lattice of QD's. Of course, this system 
as a whole is not described by the parabolic model; conse- 
quently, it should exhibit some depolarization shift. In these 
experiments the period of the QD lattice was sufficiently 
large (0.25-1 pm)  that tunneling could be neglected; hence, 
the only coupling between QD that requires modeling is 
electrostatic. Thus, the problem reduces to finding the Lor- 
enz-Lorentz correction for the two-dimensional system con- 
sisting of dipoles induced in each QD by an incident wave 
and by the fields of the other QD. Because the wavelength of 
the excitation IR wave is much larger than the period of the 
QD lattice, we will neglect retardation effects. 

Assume that a uniform effective field F,, exp( - iwt) 
acts on the QD whose position is given by the lattice vector 
a,. The wave function of the N-body system including the 
field F,, is given by Eq. ( 7 ) ,  and can be written in the form 

N'" x ( p l + . . . + p N  - N1IaA ( t )  ) (3 (X,, . . . 
where 

-eF.,, exp ( - io t )  
A ( t )  = 

m (52'-02) 

Returning to the old variables p ,  ,...,p,, we verify that the 
function V, depends only on the differences 
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p ,  - A(t), ...,p, - A(?) .  Therefore, the charge density in 
the QD excited by the field F,, can be written in terms of the 
unperturbed density no (p)  : 

This result is valid only for a field that is uniform within the 
QD, so that we must assume that the electronic radius of the 
QD is much smaller than the period of the lattice. In the 
experimental systems fabricated to date this condition is ful- 
filled, although not by a large margin (roughly one order of 
magnitude). In what follows, we will neglect effects that are 
nonlinear in the field; if we expand the difference 
no (p - A) - no (p) ,  we find that the value of the induced 
dipole moment of the QD is determined, as it should be, by 
the dynamic polarizability of the latter: 

The equation used to determine the effective field self-con- 
sistently has the form 

a a ( o  (am-ar) 
Fe,, (a,,,) =Fa exp (ikad - - Fet ,  (81) aa, ,+, lam-at l 3  

Here k and Fa are respectively the wave vector and ampli- 
tude of the incident wave. In the long-wavelength approxi- 
mation we find from ( 1 1 ) that 

and for a planar square lattice 

L  is the lattice period, and the dash implies that the sum does 
not include the point n = m = 0. The position of the IR ab- 
sorption resonance can be determined using the expressions 
derived in Sec. 3 by making the substitution Fa - F,, . Then 
for the position of the absorption resonance we have 

Thus, for a system of "parabolic" QD's we expect a negative 
depolarization shift (which contradicts all of the experimen- 
tal examples known up to now). The reason for this is easy to 
understand: there is no internal depolarization field in the 
parabolic QD model, since all the particles shift as a whole, 
while it is well-known that polarization effects from outside 
a dielectric body enhance the action of an external field 
(hence we have Few >Fa in Eq. (12) for a (w)  > 0, i.e., for 
w < R ) .  We also note that in this case the shift 6: is propor- 
tional to N / L  3, and not to the average surface particle den- 
sity N/L 2 .  

In the experiments involving QD on InSb (Ref. 1 ), for 
which we have L  = 0.25 pm, R  = 7 meV, and N,,, = 20, we 
obtain the estimate 6 i / R 2  <4%. For the system based on 
GaAs investigated in Ref. 2, we have L = 1 pm, R  = 2 meV, 
N,,, = 210, which implies 6 i / R 2  < 2%. The depolarization 
shift calculated here is finite in zero-dimensional (QD) and 

one-dimensional (quantum wire) systems; however, it 
equals zero for a multilayer lattice of quantum films (quan- 
tum wells) with a parabolic potential. In fact, a shift of the 
electronic distribution in the direction normal to the film 
which preserves the uniformity in the two other directions 
does not change the electric field outside the film, so that the 
layers of the superlattice remain electrically "uncoupled." 
Therefore, if we do not include tunnelling, absorption by 
intraband transitions in a superlattice has a resonance at the 
single-particle frequency R .  

Including the effect of a magnetic field reduces to calcu- 
lating the dynamic polarizability of the QD for B #O. In this 
case, by analogy with what was given above, we find an effec- 
tive field F,,. Using the same Heisenberg operators intro- 
duced in Section 3 for the coordinates, we find the dipole 
moment of the QD induced by a circularly-polarized wave; 
then for the polarizabilities a ,  (0) we obtain 

for the cases of right- and left-handed circular polarization 
respectively. The equation for the resonance frequencies 
differs from the analogous equation for the case of a single 
QD only by the renormalization R2-  R2 - 6:. Thus, the re- 
sonances are spaced according to 

In this sense the magnetic field does not affect the depolar- 
ization shift. 

For the case of a linearly-polarized incident wave, the 
relation between the effective field and the "bare" field is 
tensorial. In this case the value of the depolarization shift is 
determined by mixing of the other polarization into the ef- 
fective field. Thus, for Fa (where Fox = cos wt, 0)  we obtain 

O O , ~ ~ ~ F , ,  sin o t  
(Fa,,) v= 

(Q2-6p2-02)2-020,2 ' 

of course the positions where resonances occur (w,,, ) + are 
again given by Eq. ( 15 ) . 

5. ADDITIONAL MODES AND DEVIATIONS FROM THE IDEAL 
MODEL 

Let us note here that our generalized Kohn theorem is 
valid only for ( 1) a parabolic potential and bounded motion 
of the particles, and (2)  a uniform high-frequency exciting 
field. Violation of either of these conditions leads to the ap- 
pearance of additional resonances in the IR absorption and 
(or) to a dependence of the positions of the resonances on 
the number of particles in the QD. It is also interesting to 
consider the possibility of crossing or pseudocrossing of 
terms of the QD as the magnetic field changes; such cross- 
ings were observed experimentally in Ref. 4 in the magneto- 
capacitance dependence and in Ref. 2 in the IR absorption. 
In this case, perturbations in the absorption spectrum of the 
QD are analogous to well-known corrections in molecular 
spectroscopy, e.g., the Fermi resonance. However, there is 
an obvious advantage to studying the QD system, namely 
the possibility of controllable variation of all the important 
parameters of these effects. 

A splitting of the IR absorption resonance associated 
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with pseudocrossing of terms is possible only when nonpara- 
bolicity of the lateral potential is included. If the conditions 
under which the QD lattice is fabricated result in QD with 
square symmetry, the first nonparabolic correction to the 
potential U(p) has the form 

where a and b are constants. For a # b the perturbation U, is 
associated with states with AM = + 4. For example, a Fer- 
mi resonance between the terms n = 0, M  = 1, and n = 0, 
M =  - 3 occurs for w, = 2fl/31/2, so that we have 
w,,, = 31/2R. This additional resonance is excited by a uni- 
form field from the state 10,O) because of a sniall (for 
U, < U!) admixture of the function IC,,, into the upper state, 
which is a superposition of the states 10,l) and 10, - 3). The 
intensity of this additional resonance is smaller than the in- 
tensity of the ground-state transition 10,O). . . - 10, I),  where 
the corresponding parameter of smallness is 
(a - b) 2/m4R6. 

The same additional resofiance, now corresponding to 
the transition j0,O) - .  . -, 10, - 3), can be observed if the field 
that excites it is nonuniform in the system plane (in this case 
the nonparabolicity is inessential). Such nonuniformity can 
arise as a consequence of polarization effects discussed in 
Sec. 4. 

Nonuniformity of the field F,, is a small effect if the 
electron radius of the QDp, is much smaller than the lattice 
period L. For a QD lattice having a center of symmetry, the 
next term after the uniform field in the expansion of F,, is of 
order a (w )p;F,/L '. The corresponding correction to the 
interaction Hamiltonian for electrons with the IR wave has 
the following form for the case of a square lattice: 

x. ~nt- eph:i5@) [ (Fe:?),+i!F.rr) y l  exp (3i(pk), (17) 
k= l 

where p,, p, are cylindrical coordinates of particles in the 

QD. 

(here we have calculated the octupole contribution to Hi,, 
from each QD, assuming that the latter is acted on by the 
fields of the remaining QD which to the required degree of 
accuracy can be treated as dipoles). An estimate of the ratio 
of matrix elements for these transitions gives 

in the resonance region, where a(o) - L ' [see Eq. ( 12) 1. In 
this case we assume that the resonance y is rather narrow, 
yR < 6; , so that the depolarization shift must be included. In 
the opposite limiting case the ratio of matrix elements has an 
additional small factor S;/Ry. In both cases the intensity of 
the additional peak falls off as B - with increasing magnet- 
ic field in the region o, > 0 .  

Both of the mechanisms leading to the appearance of 
the additional resonances discussed in this section are asso- 
ciated with perturbations that depend not only on the co- 
ordinates of the center of mass R, but also on X I  ,..., x,- , . 

Therefore, along with higher modes of the collective oscilla- 
tions discussed here (w = 2w + , 3w, , etc. ), in principle we 
should also observe absorptionlines associated with individ- 
ual electrons due to excitation of the internal degrees of free- 
dom X,. Observation of these lines would give information 
on the electronic structure of the QD analogous to that given 
by spectroscopy of ordinary atoms. 

6. FARADAY EFFECT 

In the presence of a magnetic field the dynamic polariz- 
ability of the QD is a tensor even without including the de- 
polarization effects. Therefore an initially linearly-polarized 
wave becomes elliptical after passing through a plane con- 
taining a QD lattice." In the most real experimental situa- 
tions there exist two small parameters that determine the 
effect, (a, T )  - and Nse2r/mc = uo/c, where T is a phenom- 
enological relaxation time for the electrons and N, is the 
average surface density of mobile carriers: N, = N/L  2. The 
electrodynamic problem to be solved is that of the passage of 
a wave through a plane in which surface currents are distrib- 
uted that give rise to the same wave. This problem is com- 
pletely analogous to the passage of a particle through a one- 
dimensional delta-function barrier. For a normally-incident 
wave, the angle of rotation of the large axis of the polariza- 
tion ellipse 6' and the degree of ellipticity a are given by the 
following expression far from resonance ( (w - w * IT ,  1 ) : 

The change in the sign of a for w = R implies a change in the 
phase of the ratio F,,/F, by a factor of a. The angle of rota- 
tion of the ellipse changes sign twice as w varies from w g w - 
to w % w + . In the region w - <w < w + , which is nonempty 
when the condition w, > R holds, 6' depends only weakly on 

The magnitude of 6' reaches its maximum value near the 
resonances w + (but not at the points w = o , themselves!): 

max 10, I =n'oo/2c. 

The quantity a has two maxima 

at the points w + , and is very small outside the neighborhood 
of these resonances [of order a , / ( ~ w , r ) ~ ] .  Based on these 
estimates, the peak values of 6' and a (both of order u,/c) 
should be comparatively easy to measure for the QD struc- 
tures available at this time. Thus, in the GaAs system inves- 
tigated in Ref. 2, we have N, = 2-  101° cmP2, so that for a 
relaxation time T corresponding to the rather moderate mo- 
bility 1 .  lo5 cm2/V.sec we obtain 

18rnaxI-I&rnax1 "i0-2. 

7. RAMAN SCATTERING 

It is well known that a linear harmonic oscillator cannot 
cause inelastic light scattering, at least the dipole approxi- 
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mation, which corresponds to a second-order treatment of 
the term Ai  in the Hamiltonian for interaction of light with 
electrons (A is the vector potential of the optical field, and i 
is the velocity operator of an electron). The same assertion 
applies to the two-dimensional magnetic oscillator (4 ) ,  
which corresponds to a collective mode of the QD. As we 
showed above, this is the only degree of freedom excited by a 
uniform field; taking into account selection rules for dipole 
transitions it is easy to verify that to second order in (A?) 
on1 y elastic processes are possible: 
~O,O)...-~O, * I)...-j0,O) . 

However, inelastic scattering becomes possible when 
we take into account the finite value of the photon momen- 
tum, in which case the primary contribution to the effect 
comes from the term A in the interaction Hamiltonian, 
which should be expanded with respect to kp,, where 
k = k,  - k, is the momentum transfer during scattering. 
Thus, 

where a:, , a , ,  are photon creation and annihilation opera- 
tors. Raman scattering is obtained in first-order perturba- 
tion theory with respect to the interaction ( 19); it is subject 
to the same selection rule as IR absorption, i.e., AM = & 1, 
and corresponds to a frequency transfer A o  = w ,  - w ,  
= w . . The scattering cross-section is 

where e , ,  e, are polarization vectors for the incident and 
scattered waves, respectively. In a spatially uniform system, 
the A ' scattering described here is caused by fluctuations in 
the charge density, i.e., plasma waves are excited in the elec- 
tron gas. As we will see, in a QD the analogous collective 
modes w + and w are excited. 

All the statements in this section apply to nonresonant 
Raman scattering, when we have w ,  , o, < E,, the width of 
the bandgap. The usual enhancement of the effect for 
w ,  + E, that is used in experiment takes us out of the frame- 
work of a purely parabolic model, and will be discussed in 
the next section. 

8. INTERBAND PROCESSES 

In this section we will discuss interband magnetoab- 
sorption, resonant inelastic light scattering, and exciton ef- 
fects in a QD. Since states of the valence band now enter into 
the process, the electron-electron interactions cannot be 
"eliminated" by any transformation of coordinates, and the 
parabolicity of the QD potential no longer plays a significant 
role. Nevertheless, we will use this model in the usual single- 
electron formulation of the problem in order to reduce the 
calculations to their final (rather simple) expressions. It is 
hoped that the results we obtain will be adequate to describe 
the experiments, since interband processes do not depend 
critically on the form of the lateral potential of the QD. The 
QD magnetoabsorption is calculated in the usual way (see, 
e.g., Ref. 15), obviously including the spatial nonuniformity 
of the QD electric field. In the absence of a magnetic field, 
the envelopes of electron and hole wave functions overlap 
weakly, since the QD is a potential well for one type of car- 
rier and a barrier for the other. A cursory investigation of the 

form of the "effective potential energy" [a  "magnetic" pa- 
rabola mwfp2 plus an electrostatic parabola U(p)  ] shows 
that when the magnetic field exceeds a certain critical value 
B,, the motion of the holes becomes finite, and is localized in 
the same region of the QD as the electrons. This critical 
magnetic field is determined by the relation 

where m,,  mu are effective masses or the electrons and holes, 
respectively, and o,, is the cyclotron frequency for holes. For 
B > B, the interband absorption is caused by discrete-to-dis- 
Crete transitions, and its spectrum consists of a set of lines 
labeled by the three quantum numbers n,,  n, . ,  and M (here 
we are talking about the quantum numbers of an individual 
electron). The selection rule in this case is simply AM = 0; 
An = n,  - n,  is arbitrary since the envelope wave functions 
of the c- and u-bands are eigenfunctions of different Hamilto- 
nians if m, #mu. The frequencies of the lines are given by the 
expression 

o (n, ,  n,, M )  =Eg+2 (n,*,+n, i~,)  

Thus, we should observe a unique phase transition with 
respect to magnetic field in the interband magnetoabsorp- 
tion spectrum, consisting of "ignition" of the straight lines 
with frequencies (21 ) in the region B > B,. Near threshold 
the intensity I of these lines depends on the magnetic field 
according to the law 

This result follows from the normalization of the envelope 
function of the holes, which become localized for B > B, . 

Raman scattering corresponds to the process illustrated 
in Fig. 1; it can only occur when the QD is occupied by 
elections (in contrast to absorption, where the transitions 
are possible even for an "empty" QD). The matrix element 
for the process is quadratic in the overlap integral of the 
envelopes; accordingly, the intensities of the Raman lines 
behave like (B  + B ) I M  + ' with respect to magnetic field 
near threshold and contain the resonant enhancement factor 
(Ei - w: ) - 2 .  The energy transfer in this case equals 
25An, ,  where An, = 1,2, ...; as before, the condition 
AM = 0 should hold. Thus, inelastic light scattering consti- 
tutes a direct method for measuring the spacing between 
those energy levels of the QD that are not associated with 
allowed IR transitions. 

Turning now to a discussion of exciton effects in a QD, 
we must first address the question of whether or not an exci- 
ton can "survive" in the very strong field caused by the later- 
al potential, i.e., it is necessary to discuss the probability of 
tunneling ionization of the exciton. In view of the large num- 
ber of characteristic we cannot treat this prob- 
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FIG. 1 .  Electron transitions for resonant light scattering in a QD. 

lem in its most general formulation, which would require too 
much space; we therefore limit ourselves to the case of exci- 
tons based on heavy holes, whose subband is closest to the 
conduction band since it is least affected by size quantization 
along the z axis. We will discuss the two systems that were 
investigated experimentally in Refs. 1 and 2. In both of these 
systems the following conditions are fulfilled: a*<L, 
Ry* < U,, where Uo is the characteristic depth of the poten- 
tial contour of the QD lattice, and a* and Ry* are respective- 
ly the effective Bohr radius and Rydberg energy in the con- 
duction band. These conditions allow us to assume that the 
field that destroys the excitons is uniform at sufficiently 
large distances from the center of the QD. The central para- 
bolic region requires a separate discussion. 

Let us begin with the case of a uniform field, while still 
assuming that Bo = 0. The problem can be solved in the qua- 
siclassical approximation when the external electric field is 
much smaller than F,*, = Z/aZ2, i.e., the effective Coulomb 
unit of field intensity; Z is the effective charge, which in- 
cludes the effective dielectric permittivity of the medium. In 
the two-dimensional case it is convenient to introduce planar 
parabolic coordinates: 

for which the Schroedinger equation for an exciton in a uni- 
form electric field admits separation of variables. The calcu- 
lations are completely analogous to the case of field ioniza- 
tion of a hydrogen atom (see Ref. 16). We obtain the 
following expression (in effective Coulomb units) for the 
decay probability of the ground state of a planar exciton: 

The exponent in this exponential is eight times as large as its 
three-dimensional analogue, because the logarithm of the 
transmission coefficient of a triangular barrier is proportion- 

FIG. 2. Potential energy of an exciton in the parabolic model. 
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a1 to E :l2/F, where E, is the energy distance from the top of 
the barrier to the level from which the ionization takes place; 
in two dimensions Eo is four times as large as in three dimen- 
sions. 

We next investigate the parabolic region. The QD sys- 
tems based on InSb of Ref. 1 and GaAs of Ref. 2 require 
different approaches, since 0 ) Ry* holds in the first case, 
while in the second case we have Ry*)R. For the case 
0) Ry* (InSb) the electron is a fast subsystem and gener- 
ates the adiabatic potential V,, for heavy holes (see Ref. 17). 
Calculating this potential 

using the function ICr, (p, 1 for the ground state of a two- 
dimensional oscillator of frequency 0 ,  we find 

wherep, is the radius vector of the hole. Since the repulsion 
of the hole potential of the QD is 

it is clear that in the case fl)Ry* under discussion an exci- 
ton cannot form in the central part ofthe QD. For the system 
based on InSb this assertion is also valid for regions at the 
periphery of the QD, where Eq. (23) is applicable: estimates 
show that the exponent in the exponential of (23) equals 
approximately 0.4, i.e., W, % 1. 

For the case of GaAs (fl<Ry*) it is convenient to 
transform to coordinatesp = p, - p, and R, i.e., the exciton 
center of mass. The fast system now corresponds to the rela- 
tive motion of the electron and hole. The total potential ener- 
gy has the form 

E 2  m,Q2 
U (R, p) = - - + y - p2+ m,Q2 (pR) . 

I P I 2 

where 

In the adiabatic approximation, R in (24) is treated as a 
parameter, and depending on its absolute value the potential 
U(p,R) can have the forms shown in Fig. 2a or Fig. 2b. 
Breakup of the exciton is possible only when 

2yXa'Ry' 
R>R, = 

i2 ' 

when there is a certain direction p (such that p i  tR)  for 
which the minimum of U(p,R), which equals 
- rn,C12R 2/2y, is sufficiently low, and when the level of 

zero-point oscillations in region 11, which equals 

becomes lower than the ground state level of the exciton 
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E,, = - 2Ry*. Ionization of the exciton in this case consists 
of a transition from region I to region 11. The exponent of the 
tunnelling exponential that describes this process, which 
equals 

becomes of order unity only for 

which corresponds to approximately 8500 A under condi- 
tions of the experiment in Ref. 2. The QD in Ref. 2 are 
formed by cylindrical elevations on the surface of the GaAs 
whose radii are smaller than this value, so that the excitons 
have a rather long lifetime over the entire region of the QD. 

Let us turn now to the motion of the exciton center of 
mass. When the condition R &Ry* is fulfilled, the last two 
terms in (24) can be treated by perturbation theory. The 
term m, R2pR corresponds to the following uniform electric 
field acting on the exciton: 

In the general case of a QD system with an arbitrary poten- 
tial contour, in view of the condition a* & L we can obviously 
introduce a locally uniform field F(R) ;  then to second order 
in perturbation theory we obtain the potential energy of the 
center of mass in the form 

- a F 2  ( R )  
U ,  = 

2 '  

where a is the polarizability of the exciton. For the ground 
state of a two-dimensional exciton we have a = 21/128 a*-'. 

The probability of forming an exciton is determined by 
the factor 

where @ is the wave function of the center of mass, which 
describes motion in the potential U, (R).  If we assume that 
the parabolic approximation to the QD potential under the 
conditions of Ref. 2 is valid up to the lateral surface of the 
cylinder, then the motion of the exciton as a whole takes 
place in an annular region bounded by the rectangular bar- 
rier of the work function for R = d (the radius of the cylin- 
der) and by the parabola - a (m, RZR) */2e2 from the 
small-R side (see Fig. 3 ) .  Thus, excitons should "condense" 

FIG. 3. Effective potential well for an exciton in a QD. 

near the surface of the cylinders that make up the QD lattice. 
This naturally imposes rigorous technological requirements 
in order to avoid capture at surface defects and accelerated 
recombination that may hinder observation of the exciton 
lines. 

It is easy to estimate the number of levels for a particle 
of mass m, + m, in a potential well like the one shown in 
Fig. 3 for d - (3-4) .  10' A (see Ref. 2).  The number turns 
out to be rather large, so that the quasiclassical consider- 
ations are applicable; then we may approximate U, near 
R = d by a linear function in the Schroedinger equation for 
@(R) .  Separating out the angular variable 

and assuming (where possible) that R = d, we obtain for 
* ( f  1 

Here Me, = m, + mu. 
The quasiclassical spectrum and the wave functions of 

Eq. (25) are easily found. Obviously we must set 1 = 0, since 
if this is not true then P = 0, i.e., only those exciton states can 
form for which the wave function of the center of mass is 
axially symmetric. Calculating Pusing the quasiclassical so- 
lution to Eq. (25), we find the following intensity distribu- 
tion I, of components of the exciton transition (n > 1 ) : 

where 

The position of the nth component is determined by the spec- 
trum of the energy of radial motion 

If we now make a lattice of QD from GaAs, while 
bounding the motion of the electrons with a smooth (L $a*) 
potential contour (analogous to the situation in Ref. I ) ,  the 
points where F2(R) is a maximum also form a lattice, at 
whose vertices excitons should "conden~e."~' For a square 
lattice, U, ( R )  corresponds to the potential energy of an iso- 
tropic two-dimensional harmonic oscillator near these lat- 
tice sites, with a certain frequency w,. Then we can show 
that the "fine" structure of the exciton transition is made up 
of equidistant lines of the same intensity, i.e., P does not 
depend on the radial quantum number (the azimuthal quan- 
tum number, as before, should be equal to zero). The inte- 
grals between components of the structure equal 2w,. 

Finally, let us investigate the effect of a magnetic field. 
We will assume that B is large enough that the magnetic 
length is much smaller than a*, and that d is even larger. In 
the Appendix we show that in this case the motion of the 
center of gravity of the exciton is described by the effective 
Hamiltonian (AlO), which for the quantum-dot potential 
takes the form 
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The quantities a,, M,, and E, are determined in the Appen- 
dix. This equation is written for an exciton that is in its 
ground state. 

Because the operator ( [ B F ] ~ )  is proportional to the 
derivative with respect to angle, the solution may once more 
be sought in the form exp(ilp)$(g). The equation for $({) 
is analogous to (25) with renormalized values of the polariz- 
ability and exciton mass (a-a,,  M-M, ). Then we will 
have the following energy spectrum ( I  = 0)  : 

c m , ~ ~  m,zg4 
En=&,,+-y--ao- d2+ W,. 

B e 2eZ 

The intensity of the absorption is given by the expression 

The quantity W,, is determined by Eq. (6)  with the replace- 
ments a - a,, M- M, . The spacing between discrete quanti- 
zation levels of the exciton in the QD potential changes with 
magnetic field according to the law B "*,while the intensi- 
ty satisfies I ,  a B 3/2. 

APPENDIX 

Let us consider the problem of the motion of a magne- 
toexciton in a slowly-varying weak external field with poten- 
tial p ( R ) .  In this approximation the exciton may be consid- 
ered as a particle moving in an effective potential. The 
Hamiltonian of the system electron-plus-hole is written in 
the form 

Here r , ,  are the electron and hole coordinates, respectively. 
In Eq. ( A l )  we first transfer to the new coordinates 

Following Refs. ( 19) and (20), we will seek a solution to Eq. 
( A l )  in the form 

Then we arrive at the following equation for the function 
$(R,p): 

-eq(Et + % p ) ] @ = ~ $ .  Me, 

h 

Here P = - i V,; the operator H, describes the internal 
motion of the exciton: 

momv 
y=-a 

Me. 

We introduce an orthogonal system of functions: 

and expand the $-function in terms of them: 

Substituting (A6) into Eq. (A3), multiplying by p,,.,. , and 
integrating with respect to R and p, we arrive at the follow- 
ing system of equations for C,,: 

In this expressionp,.,, and V,., .,,,, are matrix elements of the 
operators p and 

V = , ( R - ~ p ) - p ( ~ + ~ p )  
Me, Me, 

with respect to the system of functions p,, . If we assume that 
the size d of the QD is much larg2 than the size of the exci- 
ton, we can expand the operator V in the series 

Here F = - Vp(R) .  The size of the exciton in the magnetic 
field is 

I,,-min ( a * ,  aB) , as= (cleB) " I .  

In perturbation theory Eq. (A7) can be diagonalized by 
transforming - to a new system of envelope functions 
C,, - C,, (Ref. 21 ). Transforming to R-space, we obtain 
the following equation for the envelope function: 

Assuming that the state is n-fold degenerate, we have 

P Uij [PBI i [ P B I ~ )  ---(Fi + - ) ( ~ i + ~  [ 2Ma 2 Mexc 

This equation contains only terms of leading order in the 
quantities el,,F/(&, - E, ) and I,,/d. The polarizability is 
determined by the expression 

aij=2e2 z (nIpilm)(mlpjln) 

tnf n Em-En 

Equation (A8) describes an exciton in an arbitrary magnetic 
field. For the case of large magnetic fields (a, <a*) we can 
neglect the Coulomb energy in Eq. (A4); then the wave 
functions p,, are harmonic oscillator functions whose ener- 
gies are 

~ n = m c  (s+'/Z ( 1  s'l -ysl+l) ), n= (s, s'), 
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The polarizability in the ground state has the form 
(s = s' = 0) 

where a, = M,,c2/B 2. Neglect of the Coulomb energy in 
calculating a, leads to the disappearance of the kinetic ener- 
gy in Eq. (A8). In order that the effective mass of the exciton 
be finite, it is necessary to include the Coulomb energy via 
perturbation theory.20 Calculating p,, , E ,  using perturba- 
tion theory, we find the following correction to a, for 
s = s' = 0: 

Then Eq. (A8 ) leads to the expression 

(A101 
Here 

is the energy of the exciton ground state in the absence of the 
lateral potential. The quantity 

h 

is retained in the eq~ation only for the terms P2 ,  E,; for the 
operators F2 and FP this parameter can be neglected. Eq. 
(A10) is valid with respect to the parameters 

1046 Sov. Phys. JETP 72 (6). June 1991 

Strictly speaking, the transmitted wave is broken up into individual 
beams, because the QD system acts like a diffraction grating. It is clear, 
however, that because of the large wavelength of the IR radiation 
(kL< I) the primary contribution is given by the zero-order spatial 
Fourier harmonic of the transmitted radiation, which we now are dis- 
cussing. 

2' This was in fact the situation realized in Ref. 18; however, the authors of 
this paper investigated the IR spectrum but not the exciton transitions. 
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