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The total radiation emitted by a nonrelativistic charge in a medium, consisting of the 
bremsstrahlung plus the transition radiation, is analyzed. The interference between these 
radiation components is calculated. The range of applicability of macroscopic electrodynamics 
for the transition radiation emitted by a nonrelativistic charge is found. The dependence of the 
radiation spectrum emitted by a nonrelativistic charge on the direction in which the charge enters 
the crystal is predicted. Specific calculations are carried out for a cubic crystal. 

1. INTRODUCTION dt  
~ ~ ( r . o ) = j ~ ~ ~ ( y , ~ . f -  

The radiation emitted by a charge in a medium results - 
from a transfer of momentum to the medium due to interac- 
tion with an electron (bremsstrahlung) or with an emitted = erp(zF) :& E. (y, z, t' )exp ( iotr) ,  (1) 

photon (transition radiation, in the broad sense of the term). 
These two emission mechanisms are usually examined sepa- since the field of the charge depends on the difference 

rately, so the role played by interference between them can- between the radius vectors of the charge, vt, and of the obser- 

not be evaluated. However, while a joint analysis of brems- vation point, r. The factor exp(iwx/u) shows that E, varies 

strahlung and transition radiation is a complicated matter in substantially over distances -Av/c. 

the general case, it becomes a comparatively straightforward One consequence of this circumstance is that a macro- 

matter in the case of a nonrelativistic charge. It is worth- scopic description of the transition radiation emitted by a 

while to derive a general expression for the angular and fie- charge crossing an interface between media is 

quency distribution of the radiation for a fixed law of motion under the 

of a nonrelativistic charge in a medium, with both brems- 
strahlung and transition radiation being taken into account. 

When this approach is taken, it is found that the length 
scale for the excitation of the transition radiation is not the 
wavelength A of the photon, but the far shorter length Au/c, 
where u is the velocity of the charged particle. This circum- 
stance has some nontrivial consequences in the transition 
radiation emitted by a nonrelativistic particle. In particular, 
in a crystal the transition-radiation spectrum (the intensity 
integrated over all directions) in the optical frequency 
range, for which the crystal is always assumed to be homoge- 
neous, turns out to depend on the direction in which the 
charge enters the crystal. A similar orientation dependence 
of the emission spectrum, but caused by other physical fac- 
tors, has been predicted theoretically1 and observed experi- 
mentally2 for ultrarelativistic particles. The transition radi- 
ation emitted by relativistic particles was studied in Refs. 3- 
5 .  

Let us show that longitudinal distances ("longitudinal" 
meaning parallel to the velocity) on the order of Au/c are 
important for the excitation of transition radiation with a 
wavelength A by a nonrelativistic charge in a medium. Since 
the change in the velocity of the charge over a distance Av/c 
can be ignored, it is sufficient to prove this point for a charge 
in uniform motion. 

Transition radiation results from scattering of the field 
of the charge by the atoms of the medium. In a stationary 
medium the frequency of the field does not change, so the 
frequency w of the emitted photon is equal to the "frequen- 
cy" q-v of the Fourier component of the field of the charge 
which is responsible for the emission. The Fourier transform 
of this field can be written (xJJv) 

where a is a distance on the order of an atomic distance. This 
inequality is considerably more stringent than the condition 
for the applicability of a macroscopic description of the 
propagation of a field through a medium. The latter condi- 
tion is 

as was pointed out in Ref. 6.  
Below we consider the formation of transition radiation 

with frequencies higher than atomic frequencies, in which 
case we can analyze the electromagnetic field in the medium 
by a method similar to that used in the theory of x-ray dif- 
fraction in crystals.' The following inequality must hold: 

We also note that in region (4) there is a narrower region, 

in which the frequency is in fact high in comparison with 
atomic frequencies, while the wavelength is still large in 
comparison with atomic dimensions. 

2. ANGULAR AND FREQUENCY DISTRIBUTION OF THE 
RADIATION EMllTED BY A NONRELATlVlSTlC CHARGE IN A 
MEDIUM 

At frequencies higher than atomic frequencies, the elec- 
tromagnetic field in a medium satisfies the equation 
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4nna 
eo=I - - 4n6n (r) 

rno2 7 x(r)= 
rno2 ' 

no is the number density of electrons, averaged over the vol- 
ume of the medium, and no + 6n ( r ) is the microscopic num- 
ber density of electrons in the medium, averaged over the 
quantum-mechanical distribution of electrons in the atoms 
and over the thermal vibrations of the atoms (no average is 
taken over volume in this case). 

In this case we have x 4 1, and we can use perturbation 
theory in X. In the zeroth approximation we can set x = 0. 
Equation (6) then becomes the same as the equation of mac- 
roscopic electrodynamics, and the expressions for the fields 
become 

The equations for the first-approximation fields, 

are the same as the macroscopic Maxwell's equations in a 
homogeneous medium with permittivity e, and a given cur- 
rent density 

6j (r, o )  = (io/4n) ~ ( r )  E,(r, a ) .  (10) 

A solution of the equation for the first-approximation fields 
thus differs from (8)  by the substitution H, -6H, E, -6E, 
j, +6j, so that, for example we have 

6H(r, w)= I d3q bH (q, o)exp (iqr). (11) 

6H (q, o )  =-4nic [q[q6j(q7 @)I1 
q2c"dE0 ' 

where 

The angular and frequency distribution of the radiated ener- 
gy is given by (r- co) 

In the particular case in which there is no radiation in the 
zeroth approximation, H, (r,w) falls off more rapidly than 
l/r at large r, and as r+ co we are left with only SH(r,o) in 
( 15). To determine the asymptotic behavior of SH(r,w ) at 
large distances, it is convenient to work from the known 
asymptotic equation 

which is valid at kr) 1 for functions f(q) which have no 
singularities. The use of ( 16) requires consideration of an 

infinitely small positive imaginary part of E,. It then follows 
from (16) and ( 12) that at kr, 1 (k= kn) we have 

If we are interested in the problem in which there is 
radiation even in the zeroth (macroscopic) approximation, 
then the quantity SH(r,w) receives contributions both from 
the scattering of the field of the particle, accompanied by the 
formation of transverse waves, and from the scattering of the 
radiation present in the zeroth approximation. The contri- 
bution from the scattering of the radiation can be ignored, 
since it leads to small corrections on the order of a/A 4 1. 

When we substitute E,(l,w) into (17), however, we 
need consider in E, (1,w) only the field of the charge, for 
which we can assume qc, w in (8). We thus find 

and 

8n3 
SH(r,o)=-- 

[kll 
exp (ikr) 1 d3i T(ljo (1, o )  ). 

CEar 

On the other hand, writing H, (r,w) in accordance with (8) 
as 

and again using the asymptotic equation ( 16), we easily find 
the following result in the limit r+  co : 

From (IS), (19), and (20) we find 

d2E (n, o ) -- = - 
d o  dQ 

(2n)" [kj. (k, wj ] 
CEO'' 

Since the functional dependencex(r) is determined by 
irregularities in the electron distribution in the atoms, the 
effective values of k - 1 in ~ ( k  - 1)-for which ~ ( k  - 1) is 
nonzero-are equal in order of magnitude to l/a: 
I k - I/,, - l/a) k. The effective values of I in the integral in 
(21) are thus large in comparison with k. We can thus re- 
write (21) as 

d2E (n, o )  
= '2"'' 1 [kj, (k, o )  ] 

d o  dQ ceo'" 

Since we have 

[kj,(k, o ) ]  = (-io/8n3) [kd(o ) ]  (23) 

for a nonrelativistic particle, where 

a ( @ ) =  (2n)-' J d t  er,(t)exp ( iot)  (24) 

is the Fourier transform of the dipole moment of a charge 
moving in accordance with the law r, ( t ) ,  we can transform 
(22) to 
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e 2 0 4 e ~ 1 ~  
d2E ( n ,  o )  = --- 

4n2c3 I [ n ( d ( o ) + Q ( o ) ) l  I2du dQ, (25) 

where 

Here, in contrast with (23), we cannot ignore the quan- 
tity il*ro in the argument of the exponential function, since 
we have I -  w/v and wt - 1-r, . 

In the limit Q --+ 0, expression (25) becomes the usual 
formula for dipole radiation. The quantity Q(w ) can thus be 
thought of as an effective correction to the Fourier trans- 
form of the dipole moment of a charge which is made to 
reflect the presence of irregularities in the medium. An inte- 
gration over the emission direction n leads to the emission 
spectrum 

3. RADIATION BY ACHARGE IN UNIFORM MOTION IN AN 
AMORPHOUS MEDIUM 

For a charge moving at a constant velocity vo 
(rO = v0 t), the Fourier transform d(w ) vanishes at nonzero 
frequencies, so we have 

where 1, - 1  - v(vl)/v2, and (25) becomes 

d% (n ,  o ) - - ezo4  dzl,  x [ -1 , -vo /vZ]  
d o  dQ 4 n 2 c 3 v Z e ~  

We consider an amorphous medium, and we assume 
that the atomic shells of neighboring atoms do not overlap. 
(Even in condensed media, the interatomic distances are 
usually larger than the atomic diameters by a factor of 3 to 
5.) If only a small fraction of the total number of electrons 
participate in valence bonds, this is a reasonable approxima- 
tion. For many-electron atoms, these assumptions hold, so 
the number density of electrons in the medium can be writ- 
ten 

where F ( r  - R, ) is the number density of electrons in an 
atom whose center of mass is at the point R,, and F( r  - R, ) 
is found by taking an average over the quantum-mechanical 
state of the atomic electrons and over the thermal vibrations 
of the atom. The number of electrons in an atom is evidently 

It is convenient to introduce 

f ( k )  = d3r F ( r ) e x p  ( - i k r ) ,  

which differs from the Fourier transform F by a factor of 
( 2 ~ ) ~ .  From (30) we have f(0) = Z.  Then from ( 7 )  and 
(29) we find 

and, by virtue of (24), 

The quantity x (q),  and correspondingly, the radiation 
energy (28) depend on the coordinates of the atoms, R,. 
Since the specific coordinate values of the atoms of an amor- 
phous substance are unknown-all that is known is that they 
are distributed uniformly in space on the average-we can 
average this expression over the positions of the atoms for 
the calculation in (28 ) . 

Assuming that the coordinates of different atoms are 
independent, we can average over the coordinates of the 
atoms in the following way: 

(x erp  (- iqR.1)  =no (2n)'6 ( q )  . (34) 
a 

It  follows that ( ~ ( q ) )  = 0. 
Substituting in (33) and (28), we find the appearance 

of double sum over atoms, in which the diagonal and off- 
diagonal terms of the sum should be averaged separately: 

We thus find 

<% ( q ) ~ '  (q ' )  )=no (4neZ/mo2)2(2n)-36(q-q'). (36) 

The substitution gives rise to a factor 

where T is the total observation time. We then have 

An integration over the emission angle yields the radiation 
spectrum 

We assume that the distribution of electrons in an atom 
is spherically symmetric. Then f(q) does not depend on the 
direction of q; i.e., f (q)  r @ ( q 2 )  or 

Integrating over the directions I,, and introducing the new 
integration variable u = I  : + (w/v) ', we can put (38 ) in the 
form 
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The quantity f(q) is nonzero in the region q 5 l/a. The 
integral is thus negligible for o/v> l/a. Since we have 
f(q) - Z in the limit q + 0, we can assume, for an order-of- 
magnitude estimate of the integral, that we have 4) ( u ) = Z 
f o r ~ < ( l / a ) ~ a n d @ ( u )  =Of~ru>( l /a)~ .Thespectrum 

then vanishes for u <am. 

4. RADIATION BY A CHARGE MOVING THROUGH A CUBIC 
SINGLE CRYSTAL 

In a single crystal, the number density of electrons, 
ne( r ) as well as x ( r ) are periodic functions of the coordi- 
nates, so we should replace ( 13 ) by the expansion 

where g(N,.2?r/b,,Ny .2rr/by,Nz.2?r/bz) is a system of re- 
ciprocal-lattice vectors; b, , by, b, are the periods of the lat- 
tice along directions x, y, z; and N,, N,, N, are arbitrary 
integers. The substitution 

allows us to easily find the following result from (26): 

For a charge in uniform motion we have 

The 6-function in (43) means that for a given direction of 
the velocity of the charge emission is possible only for dis- 
crete values of the frequency: 

If the velocity is directed along one of the crystallo- 
graphic axes, e.g., the x axis, we would have 

If this frequency is to lie in the interval under consideration, 
( 5 ) , we must impose the inequalities 

Substitution of (43) into (25) leads to the following result 
for the radiation emitted by a nonrelativistic charge in uni- 
form motion in a crystal: 

d" (n, o )  
= T  G (o-gv). 

do dS2 

Noting that for g#O we have 

xg= (4ne2/mo2) ngr, 

we find 

d2E (n, o )  
= T Inte l2-  6 (0-gv). (47) 

d o  dS2 g4 

An integration over angle leads to the emission spectrum 

It can be seen from (48) that the emission spectrum 
varies with the direction of the initial velocity of the charge 
with respect to the crystal. This change also occurs in the 
frequency interval ( 5  ) if the wavelength of the radiation is 
large in comparison with the lattice constant, and the crystal 
can be regarded as homogeneous for the propagation of such 
radiation through the crystal the crystal. Expression (48) 
thus describes a new, previously unrecognized type of orien- 
tation effect for the radiation spectrum emitted by a nonrela- 
tivistic charge in a crystal. 

5. EMISSION BY A NONRELATlVlSTlC CHANNELED ION 

As an example of the transition radiation emitted by a 
charge in nonuniform motion, we consider the radiation 
emitted by an ion in a regime of planar channeling with a 
nonrelativistic velocity (this case is possible if the wave- 
length of the ion is short in comparison with the lattice con- 
stant b). For a heavy ion, the transverse motion in the aver- 
age lattice potential can be treated as a classical motion in a 
parabolic 2 0  potential well.' The transverse motion then 
constitutes a harmonic oscillation, and the law of motion of 
the charge is 

ro(t) =vt+ a cos oat, (49) 

where the vector v is parallel to the crystallographic planes 
forming the channel, and the vector a is perpendicular to v 
and comparable in order of magnitude to the lattice constant 
b. 

For a motion of this type, the bremsstrahlung can be 
treated in the dipole approximation. The frequency of the 
radiation will be the same as the frequency (w, ) of the trans- 
verse oscillations of the ion in the channel. The bremsstrah- 
lung component of the total radiation is described by the 
term d (w ) inside the absolute-value sign in (25 ) . 

To estimate the transition-radiation component, we 
need to find Q(w). Substitution of the law of motion (49) 
into (42) leads to 

*=m 

where we have used the well-known formula for the expan- 
sion of an exponential function in Bessel functions J,: 

s = m  

exp (-in cos rp) = (-i)a18 (u)exp (- iq) .  (51) 

The value of the reciprocal-lattice vector g in (50) is unrelat- 
ed to the channeling of the ion; it is related to the interaction 
of the field of the charge with the lattice. The direction of g is 
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thus not associated with the orientation of the channel. The 
argument of the Bessel function in (50), however, depends 
on the orientation of g with respect to a. If p a <  1, all the 
Bessel functions with s#O are small in comparison with 
J, (pa ) ,  and the radiation becomes monochromatic with the 
frequency w = w,, like the bremsstrahlung. In the case glla 
the minimum value of the argument of the Bessel function, + 

p a  - 2 ~ ( a / b ) ,  is of order unity, since the amplitude a of the 
transverse oscillations of the ion in the channel is compara- 
ble in magnitude to the lattice constant and to the width of 
the channel. In this case we cannot ignore the value of J, in 
comparison with J,, and, in contrast with the bremsstrah- 
lung case, there is a substantial emission of higher harmonics 
with frequencies w = so,. 

A qualitative result of incorporating the transition radi- 
ation is thus the appearance of radiation at higher harmon- 
ics. In examining the harmonics we can completely ignore 
the bremsstrahlung and consider only those vectors glla 
which make the greatest contribution. For values p a >  1, the 
Bessel functions become rapidly oscillating functions, con- 
tributing little in the integration over the frequency interval 
dm. In evaluating the intensities of the harmonics, it is thus 
sufficient to consider only the terms with pa -  1 near the 
minimum values of g. It thus becomes a straightforward 
matter to derive the angular and frequency distribution of 
the energy of the transition radiation emitted by a nonrela- 
tivistic channeled ion from (25): 

d2E (n ,  o )  ePo' 
= T 

d o  d~ ( ~ T C ) ~ C ~ E ~  
% [na12 

where Tis the total observation time, and vlglla. We need to 
stress that at frequencies w #o, expression (52) gives the 
total radiation emitted by a channeled ion. An integration 
over angle gives us the spectrum of the transition radiation, 

which is the same as the total radiation spectrum for fre- 
quencies w # w, . 

6. DISCUSSION OF RESULTS 

The most interesting result of this study is the predic- 
tion of a new orientation effect: a dependence of the radi- 
ation spectrum emitted by a nonrelativistic charge in a crys- 
tal on the orientation of the initial velocity of the charge with 
respect to the crystal. When photons whose wavelength /l is 
much greater than the lattice constant b are emitted, it is 
usually assumed that orientation effects are proportional to 
the ratio b /A and thus negligible. In the process of the transi- 
tion-radiation emission of such waves, however, the field of 
the charge is involved, and the "wavelength" of this field is 
on the order of Av/c, i.e., much shorter than A. This interac- 
tion of the field of the charge with the crystal depends on the 
orientation of the crystal, and this dependence becomes im- 
portant at Au/c-b. The latter circumstance has the conse- 
quence that the orientation effect is determined not by the 
small parameter b /A but by the large parameter bc/vA, so the 
orientation effect becomes appreciable. The existence of this 
effect has been demonstrated only in frequency interval (5),  
but the general nature of the effect leads us to expect that it 
would also occur at lower frequencies (although it would of 
course be seen at lower velocities). Since this effect is asso- 
ciated with transition radiation, the best choice for a study of 
this effect would be heavy particles, for which bremsstrah- 
lung is slight. 

I would like to take this opportunity to thank S. L. Du- 
darev for a discussion of questions treated in this paper. 
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