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The ground state energy of a system of identical neutral bosons bound to each other by 
gravitational forces is investigated. An analysis of the Schrodinger equation shows that the lower 
bound on the energy of such a system for an arbitrary number of particles Ncan be determined 
from the solution of a purely geometrical problem on the maximum of the sum of cosines of all 
angles el,, , formed by all tripletsj, k, and Iof particles that can be formed from the Nparticles of 
the system. In this way the purely geometrical lower bound is found on the energy of a gravitating 
boson system for N = 3,4,6,8,12, and 20 and also in the limit N -  a. A more refined calculation 
of the upper bound on the energy of a three-particle gravitational system is also carried out: 
E( 3 ) < - 1.07 143 G 'm5/fiz. It is much lower than the bound calculated previously by the 
Hartree method [ E ( 3 )  < - 0.65 11 G 'm5/#.] This indicates that the lower energy bounds 
[E( 3) > - 1.125 G 'm5/fi'] determined by the geometrical method proposed here are much 
closer to the exact energy than the upper bounds obtained by integrating the Hartree self- 
consistent field equations. The geometrical method for the determination of the energy bounds 
proposed here can be modified to apply to a system of charged particles. 

INTRODUCTION 

A system of a large number of microscopic particles, 
bound to each other by gravitational forces, is of interest 
both in field theory in connection with the study of possible 
gravitational formation of particles,' and in astrophysics in 
connection with the problem of distribution of dark nonra- 
diating matter in galactic neighborhoods.' Along with this 
application aspect the problem of a system of bosons bound 
by gravitational forces presents considerable methodolog- 
ical interest, being one of the fundamental problems of theo- 
retical physics. 

In the papers of Refs. 1 and 2 the ground state of the 
system of N identical bosons with gravitational interaction 
was investigated in the Hartree method. In that method any 
correlation in the motion of the particles is ignored and the 
trial wave function for the system is taken in the form of the 
product 

N 

where f(r)  is the spherically-symmetric real one-particle 
wave function. The condition that the mathematical expec- 
tation value of the energy of the system be a minimum leads 
to the equation for the self-consistent Hartree field 

We have introduced here the potential energy of the particle 
in the gravitational field due to all the other particles: 

where m is the mass of the particle and G is the gravitational 
constant. Further, the eigenvalue of the Hartree equation 
(2) and the mathematical expectation value of the total en- 
ergy of the system calculated with the help of the trial func- 
tion ( 1 ), are connected by the relation 

It was found in Ref. 1 on the basis of a numerical solu- 
tion of the integro-differential equation (2)  that 

where y equals G'm5/fi2 and represents a natural unit of 
energy for the problem under consideration. Here the quan- 
tity (5) was taken (incorrectly) to be the total energy of the 
system, which is in contradiction with relation (4); this er- 
ror was pointed out in Ref. 2. In order to check the results of 
Ref. 1 and avoid the difficulties associated with the proce- 
dure of solving the integro-differential equation (2) by iter- 
ation, this equation was replaced in Ref. 2 by a fourth-order 
differential equation, which can be obtained by equating to 
each other the following two expressions for A U: 

and 

The first of these expressions follows from the Poisson equa- 
tion for the gravitational potential, and the second can be 
obtained by dividing Eq. (2) term by term by the one-parti- 
cle function f ( r )  and applying the Laplacian to the result. 
From (6) and (7) we obtain the fourth-order differential 
equation 

Numerical solution of this equation, followed by a calcula- 
tion of the mathematical expectation value of the energy of 
the system, gave for the self-consistent energy of the ground 
state of the system of N bosons in gravitational interaction, 
the value2 
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Taken together with Eqs. (4) and (5) this result is in 
complete agreement with the results of Ref. 1. Thus two in- 
dependent calculations of the ground-state energy of a sys- 
tem of mutually gravitating bosons by the Hartree method 
are in beautiful agreement with each other. It should be not- 
ed that only the case of a large number of particles was con- 
sidered in Refs. 1 and 2, and in this connection the coefficient 
on the right-hand side for the formula for the gravitational 
potential was taken equal to N [in place of ( N  - 1 ) 1. Simi- 
larly, the expression for the energy given in Ref. 2 contains in 
place of the coefficient N(N - 1 ) the coefficient N 3. This 
shortcoming is easily removed by scaling the function f(r) ;  
the result is formula (9), correct for all N. 

In view of the variational character of the Hartree 
method the quantity (9) represents an upper bound on the 
exact energy E ( N )  of the system of particles. The exact ener- 
gy certainly lies lower than the Hartree energy (9), and its 
lowering is entirely due to the correlations in the particles 
motion that are ignored in the self-consistent field Hartree 
method. To establish the maximum possible error in the 
Hartree value of the energy and to estimate the correlation 
energy it is necessary to know a lower bound on the exact 
energy of the system of mutually gravitating particles. We 
will show here that such a lower bound can be found very 
simply, without solving differential equations of any kind, 
from considerations of a purely geometrical problem. This 
represents a unique case, when the solution of a quantitative 
quantum-mechanical problem can be obtained by a geomet- 
rical method. The lower bound on the energy of a many- 
boson gravitational system obtained in this way turns out to 
be quite close to the (unknown) exact energy. 

LOWER BOUND ON THE ENERGY OF A SYSTEM OF 
GRAVITATING BOSONS 

A system of N identical bosons interacting gravitation- 
ally is described by the Hamiltonian 

To eliminate the unquantized uniform motion of the center 
of mass of the system it is sufficient to require that all wave 
functions depend only on relative coordinates of the parti- 
cles. For these coordinates we can take the N - 1 vectors 

Admissible wave functions should then depend only on the 
vectors pj from ( 11 ), and the integrals encountered in the 
calculations of matrix elements should be evaluated by inte- 
gration over the space of these vectors. The interparticle dis- 
tances are expressed in terms of the relative coordinates ( 1 1 ) 
as follows: 

Consider the following wave function of the system of N 
particles: 

It represents an exponentially decreasing function of the 
sum of the distances between all the particles, depends only 
on the relative coordinates ( 1 1 ) and is quadratically integra- 
ble over the space of these coordinates. The function ( 13 ) is 
endowed with the useful property of being the exact solution 
of the auxiliary Schrodinger equation 

where the auxiliary energy operator and its eigenvalues are 
given by 

We denote by Bjk, the angle between the vectors r, - rj and 
r, - r, joining thejth particle with the k th and I th particles. 
The prime on the summation symbol in ( 15) indicates that it 
is to be calculated under the conditions: k > I, j# k, j# I. The 
cosines of the angles entering this sum can be expressed in 
terms of the interparticle distances: 

cos OjkI= (rjkZ+rj12-rk?) /2rjkrj,. (17) 

It can be verified directly that Eq. (14) is satisfied-it is 
sufficient to substitute into it the wave function (13) and 
perform the differentiations. 

We shall refer to the energy operator ( 15) as the model 
Hamiltonian, to distinguish it from the Hamiltonian of the 
real system ( 10). Since its eigenfunction ( 13) has no nodes it 
describes the ground state of the model system, and the 
quantity ( 16) represents the energy of the ground state of 
this system. 

It  can be seen from Eqs. ( 10) and ( 15) that the model 
Hamiltonian differs from the real Hamiltonian by the term 

where we have introduced the notation 

for the sum of the cosines of all the angles gjkl formed by the 
N particles. The total number of these angles is equal to 

The argument 8 is symbolic of the totality of all angles 8jkl. 
Let us denote by Y, the exact eigenfunction normal- 

ized to unity and by E(N) the energy of the ground state of 
the real system described by the Hamiltonian ( 10). Let us 
form with this function the mathematical expectation value 
of the model Hamiltonian ( 15 ) . In view of the variational 
principle it lies no lower than the energy of the ground state 
of the model system. We therefore have 
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Including (16) we obtain from this the following lower 
bound on the energy of the ground state of the system of N 
mutually gravitating bosons: 

The exact eigenfunction \V, of the real system is unknown, 
hence so is the mathematical expectation value of the sum of 
the cosines of the angles that enters (22). However this sum 
is bounded for an arbitrary geometrical arrangement of the 
N particles since each of the quantities cos 8,,, has magni- 
tude not exceeding unity. Therefore we can always find 
numbers L &- ) and L &+ ) that bound the function L, (8) on 
both sides for an arbitrary arrangement of the N particles: 

It is obvious that 

Hence the inequality (22) remains in force if we replace in it 
the unknown mathematical expectation value of the opera- 
tor L, (8) by the upper bound on this operator L &+ ). As a 
result we obtain 

Therefore to find a lower bound on the energy of the ground 
state of the system of N mutually gravitating bosons it is 
necessary to solve the purely geometrical problem: to find 
the quantity L ;+ ) which bounds from above the sum ( 19) 
of cosines of the angles 8jkl, at whose vertices lie the N parti- 
cles ( j = 1,2, ..., N) and whose sides connect the given par- 
ticlej with all the remaining particles k and I .  Substitution of 
the resulting quantity L &+ ,+' into the inequality (23) then 
gives the desired lower bound on the energy. 

CALCULATION OFTHE GEOMETRICAL LOWER BOUND ON 
THE ENERGY OF A SYSTEM OF MUTUALLY GRAVITATING 
BOSONS 

Replacing in ( 19) all cosines of the angles by their up- 
per bound, equal to unity, and taking into consideration the 
total number of these angles (20) we obtain the simplest 
estimate: 

Together with (22) this gives the following lower bound on 
the energy of a system of mutually gravitating bosons: 

The estimate (26) is quite rough since it ignores any geomet- 
rical relations between the angles 8jk,. To take such relations 
into account (and obtain a better estimate of the quantity 
L, (8) and also of the lower bound on the energy) we re- 
group the terms in (19). From p particles it is possible to 
form 

groups g, each of which containsp particles, where 3<p(N. 
Let us associate with the instantaneous configuration of the 
group of p particles a polyhedron at whose vertices lie the 
particles. In each such polyhedron there are 

angles 8,,, formed by all pairs of straight lines connecting 
each particle (each vertex of the polyhedron) with all re- 
maining particles in the group (with all remaining vertices of 
the polyhedron). The sum of cosines of these angles for the 
given group of particles will be denoted by S,, (g). Both the 
geometry of the polyhedron and the sum of the cosines of the 
angles S, (g) depend on the instantaneous arrangement of 
the p particles forming the given group. Going over in ( 19) 
to summation over the described groups of particles we ob- 
tain 

The factor in front of the summation compensates for the 
possible effect of multiple counting of the contribution from 
one and the same angle 8,,, because the same particle can 
enter into different groups g. 

Different numbersp of particles in groups lead to differ- 
ent upper bounds on the sum of cosines ( 19) and different 
lower bounds on the energy (25) of the ground state of the 
system of N gravitating bosons. 

We start with the casep = 3. From (30) we obtain 

The quantity S, (g) represents the sum of cosines of the in- 
ternal angles of the triangle formed by the three particles 
entering the group g. The internal angles of an arbitrary tri- 
angle are equal to a, p and y = .rr - a - p. The sum of their 
cosines equals 

SS= cos a+ cos p- cos ( a + p ) .  (32) 

By differentiation of this expression with respect to a and p 
one readily finds that the maximum value of the sum of the 
cosines of the internal angles of a triangle equals 3 and that 
this value is achieved for an equilateral triangle so that 
a = p = y = ~ / 3 .  Replacing now in (3 1 ) the sums S, for 
each group of three particles by their upper bound, which is 
+, and taking into account the number (28) of such groups, 
we obtain the following upper bound for the sum of cosines 
of all angles Ojkl : 

Substitution of (33) into (25) gives for the ground-state en- 
ergy of the system of mutually gravitating bosons the im- 
proved lower bound 

E ( N )  2 -0 ,0625N2  ( N - I )  y .  (34) 

For large N i t  gives an improvement by a factor 2 over the 
original rough bound (27). The reason is clear: the maxi- 
mum possible value of the sum of cosines of the internal 
angles of a triangle (equal to +) is smaller by a factor 2 than 
the sum of the maximum values of the cosines of these angles 
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(equal to 3 ) . Consequently an improved lower bound ( 34) is 
obtained by taking into account the relations among the an- 
gles Ojk1. 

Further increase of the number of particles p in the 
groupsg is accompanied by further improvement of the low- 
er bound on the energy of the system of Nmutually gravitat- 
ing bosons. Indeed, when we pass to summing over groups 
containing more than three particles (p > 3) we encounter 
additional relations among the angles Ojk, (besides the con- 
ditions on the internal angles of triangles). The mutual ar- 
rangement of p particles is determined by 3p - 6 param- 
eters: this is the number of degrees of freedom after 
subtraction of the translational and rotational degrees of 
freedom of the group as a whole. In addition the angles Ojk, 
are unchanged by a simultaneous change in the scale of the 
coordinates of all p particles. Therefore the totality of the 
angles Ojk, for the group of p particles is completely deter- 
mined by 3p - 7 parameters. At the same time the number of 
such angles, equal to p(p  - 1) (p - 2)/2, grows rapidly as 
the number of particles increases; simultaneously the num- 
ber of relations among the angles also grows. Thus, for the 
valuesp = 4,6, 8, 12, and 20, corresponding to the number 
of vertices of the five regular polyhedra, the number of inde- 
pendent angles Ojk1 equals respectively 5, 11, 17, 29, and 53, 
the total number of these angles equals respectively 12, 60, 
168,660, and 3420, and the number of relations among the 
angles equals respectively 7, 49, 15 1, 63 1, and 3367. This 
means that as the number of particles p in the group in- 
creases the construction from these particles becomes ever 
more "rigid" with respect to a change of the angles Ojkl and, 
as a consequence, in the configuration of particles corre- 
sponding to the maximum value of the sum of cosines of the 
angles Ojkl the triangles formed from the particles are forced 
to deviate more and more from being equilateral. Therefore 
with increasing p the upper bound L on the quantity 
L,  (8) decreases and the lower bound on the energy of the 
system of gravitating bosons improves. 

Forp = 4 to each group of particles corresponds a poly- 
hedron with four vertices, all four sides of which are trian- 
gles. The sum S4 (g) reaches a maximum when this polyhe- 
dron is the regular tetrahedron, all sides of which are 
equilateral triangles. Therefore the maximum value of each 
sum S4 (g) equals 6. We then obtain from (30) and (29) 
again the bound (33) for the sum L,(O). Therefore the 
cases p = 3 and 4 give the same lower bound (34) for the 
energy of a system of N gravitating bosons. 

The cases when the groups containp = 6,8, 12, and 20 
particles are treated similarly. The sums of cosines of the 

angles Ojkl here reach maxima for the particles distributed at 
the vertices of the regular polyhedra (the platonic solids)- 
octahedron, cube, icosahedron and dodecahedron. The 
sums of cosines of the angles we calculated for the indicated 
regular polyhedra are given in Table I. 

Along with the sum of cosines of the angles S, we give in 
Table I the average value of the cosine of the angle for the 
regular polyhedra calculated from the formula 

( cos 0>,=S, /n (p) .  (35) 

This average value for the regular polyhedron represents the 
upper bound on the unknown true average value of cos Oikr, 
which could be calculated using the exact eigenfunction '4, 
of the real multiboson system. Also included in Table I is the 
"planar regular polyhedron3'-the equilateral triangle. In 
the limit that the number of particles grows without bound 
(N- oo ) one can consider the group containingp = Nparti- 
cles. To this group corresponds a regular polyhedron with an 
infinite number of vertices, i.e., a sphere with uniform distri- 
bution of particles on its surface. The average value of the 
cosine of the angle for this case is easily calculated. Indeed, 
in this case Ojkl is the angle between two "stars" k and I, 
which is measured by an observer at a point on the surface of 
the sphere when the density of "stars" is distributed uni- 
formly on the surface of the sphere. The point j can be taken 
without loss of generality as a pole of the sphere. Let the 
observed pair of stars have the spherical coordinates Ok, p, 
and 01, p,. The cosine of the angle Bjk, is then given by Eq. 
( 17). Going over in that formula to spherical coordinates we 
obtain 

The average value of this expression 

1 
(00s 0 ) -  - j cos Ojki sin 0 ,  sin 0 ,  dB, dB, d q ,  dq, 

16n2 
(37) 

is easily evaluated and equals 4 = 0.44444. 
It  is seen from Table I that the average value of the 

cosine of the angle Ojkl decreases with increasing number of 
vertices of the polyhedron (or the number of particles p in 
the group). Further, to each value of the number of particles 
in the group corresponds a lower bound for the energy of the 
system of gravitating bosons, that follows directly from (25) 
including (35) and (20): 

TABLE I. Sum of cosines of angles O,,, and the average value of the cosine of the angle (cos 0 ) for 
regular polyhedra. 

Triangle 
Tetrahedron 
Octahedron 
Cube 
Icosahedron 
Dodecahedron 
Sphere 

Polyhedron Number of Number of 
vertices angles 

927 Sov. Phys. JETP 72 (6), June 1991 

sum of cosines Average value of 

T. K. Rebane 927 

I I I I I I cosines 



These bounds are valid under the condition N>p. For each 
fixed value of the number of particles N in the system the 
optimum lower bound on the energy of the ground state is 
obtained by using the largest of the numbers p for which the 
average value (35) of the cosine of the angle is known and 
which does not exceed N. With this rule we obtain from Eq. 
(38), including the average values (cos 8 ), from Table I, 
the following formulas for the lower bound of the ground- 
state energy of the system of N mutually gravitating bosons: 

E ( N )  2-0,0625 N 2 ( N - I )  y for N=3 and 4, (39a) 

E ( N )  2- (0,058096N-0,008808) N (N-1)  r for N 2  12, 

E ( N )  2- (0,057088N-0,010824) N ( N - I )  for N 2 2 0 ,  

E ( N )  >- (0,055556N-0,013889) N ( N - I )  7 for N+m. 

Let us compare the lower bounds on the energy (39), ob- 
tained from purely geometrical estimates of the cosines of 
the angles, with the upper bound on the energy (9), calculat- 
ed by the Hartree method. It is seen from Table I1 that the 
disagreement between these bounds, amounting to 73% for 
N = 3, decreases with increasing number of particles and 
tends to 2.4% as N+ W .  The unknown exact energy of the 
ground state of a system of mutually gravitating bosons lies 
for all N in the gap between these bounds. The width of this 
energetic gap is determined by the sum of the absolute values 
of the deviation of the Hartree energy (9) from the unknown 
exact energy and the deviation of the lower bound (39) from 
that same exact energy. 

To clarify the role played by the imprecision of the one- 
particle approximation in the origin of this gap it would be 

desirable to have more precise variational calculations of the 
upper bound with more precise trial wave functions, taking 
into account mutual correlations in the motion of the parti- 
cles. As a simplest wave function of that type we can take the 
eigenfunction @, (13) of the model system. Taking into 
account permutation symmetry we then obtain the following 
upper bound on the energy of the ground state of the N- 
particle system: 

For N = 3 the integrals in (40) are easily calculated in pe- 
rimeter coordinates 

where the volume element for our case can be taken equal to 

d ~ =  ( u + v )  (u+w)  (w+u)dudvdw.  (42) 
As a result we obtain the following improved upper bound 
on the ground-state energy of a system of three mutually 
gravitating bosons: 

It  lies significantly deeper (by a factor of 1.65) than the 
Hartree energy (9). This means that the neglect of correla- 
tions in the particles motion is not sufficiently justified: the 
mutual correlation of the particles, which is taken into ac- 
count by the wave function ( 13 ) dependent on interparticle 
distances, makes it possible for the particles to pack much 
more tightly than in the one-particle Hartree approxima- 
tion, where they only feel each other's average fields. Hence 
it also follows that our geometrical bound on the energy 
(39a) is much more precise than the Hartree upper bound 
(9) : the gap between the improved upper bound (43) and 
the geometric lower bound (39a) is nine times smaller than 
that between the Hartree upper bound and our lower bound. 

An improved upper bound on the energy can be ob- 
tained from Eq. (40) for an arbitrary number of particles N. 
This, however, goes beyond the framework of the purely 
analytic approach we have developed, since for NZ4 numeri- 
cal methods must be used to evaluate the integrals in (40). 

With increasing number of particles the Hartree upper 
bound and our geometrical lower bound come closer to each 
other, but there remains a gap between them even for N+ w 
(see Table 11). This coming together of the bounds indicates 

TABLE 11. Bounds on the total energy E ( N )  and specific energy E ( N ) / N  in the one-particle 
calculation for a system of mutually gravitating bosons (energy expressed in units of G 2m5/fi2) .  
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a decrease of the relative (but not absolute) size of the corre- 
lation energy: for large Neach particle feels first the average 
gravitational field of all the other particles and reacts only 
comparatively weakly to the fluctuations of this field, due to 
the deviation of the instantaneous configuration of the parti- 
cles from their average distribution. Here we have every rea- 
son to believe that for a large number of particles our geo- 
metrical lower bound (39) will be, as before, much more 
accurate than the Hartree upper bound on the energy. 

In conclusion we note that the foundation of the present 
purely geometric approach to the calculation of the lower 
bound on the energy lies in the simple properties of the wave 
function ( 13), exponentially dependent on the inter-particle 
distances. Because of these properties, the model energy op- 

erator ( 15) differs from the true Hamiltonian ( 10) by terms 
that depend only on angular variables and can be estimated 
purely geometrically. Such an approach can be also applied 
to systems of charged particles with appropriate modifica- 
tions to take into account the presence of not only attractive 
but also repulsive forces depending on the signs of the 
charges on the particle pair. 
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