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The problems of the diffraction and inelastic scattering of nonrelativistic fast electrons in crystals 
are solved for the case in which the angle (9) between the momentum vector of the particle and a 
crystallographic axis is many times the Lindhard angle. The solutions are analyzed. At certain 
values of 9 ,  a resonant coupling may arise between states of quasifree motion of the particle and 
Bloch states from the low-lying narrow band in the energy spectrum of an electron in the 2 0  
transverse periodic potential of the crystal. The onset of a resonance of this type in the final state 
of the inelastic-scattering problem may be responsible for the anomalies which have recently been 
seen in experiments on the transmission and reflection of electrons from crystalline targets. 

INTRODUCTION 

In research on the motion of fast electrons in crystals it 
is generally assumed that the periodic potential has a strong 
effect on the shape of the trajectory only if the angle between 
the particle momentum p and the atomic plane or axis is less 
than or equal to the Lindhard angle: 

where n i s  on the order of the internal crystal potential, and 
E~ is the energy of the particle.1 In a quantum-mechanical 
formulation of the scattering problem, inequality ( 1) is the 
condition of a pronounced restructuring of a plane wave in- 
cident on a crystal, accompanied by simultaneous excitation 
of a large number of Bragg diffraction  reflection^.^-^ In par- 
ticular, when condition (1) holds, the whole set of the coeffi- 
cients in the expansion of the electron wave function in a 
perturbation-theory series in Fourier components of the pe- 
riodic crystal potential, which correspond to a certain plane 
of the reciprocal-lattice vectors orthogonal to the particle 
momentum p become anomalously large (Ref. 2).  From the 
geometric standpoint, condition ( 1 ) is equivalent to the con- 
figuration in Fig. la, in which the Ewald sphere7 p2 = 2 m ~ ,  
is tangent to this plane of reciprocal-lattice vectors. 

However, it is not difficult to show that the relative po- 
sitions of the Ewald sphere and the three-dimensional sys- 
tem of reciprocal-lattice sites in Fig. l a  do not account for all 
the cases which might correspond to a pronounced dynamic 
restructuring of the wave function of the particles incident 
on the crystal. In particular, the configuration in Fig. lb also 
corresponds to the case of the simultaneous excitation of 
many diffraction reflections-a number of reflections com- 
parable in order of magnitude to the number of features in 
case la. We denote by g the distance between successive 
planes of reciprocal-lattice vectors. It is a straightforward 
matter to derive the angle a,, between the momentum vector 
of the electron and the crystal axis, for the case correspond- 
ing to Fig. lb: 

6 , = 2  arcsin [ ( g / 2 p ) " ] .  ( 2 )  

of Ap- (2pg) I/'. Since the matrix element of the periodic 
crystal potential corresponding to a diffractive reflection by 
a certain reciprocal-lattice vector G contains a Debye- 
Waller factorZ exp( - 1/2 ( ( Gu) 2, 1, a11 processes with a 
momentum transfer Ap 2 ( (u2) ) - are suppressed (here 
and below, we are using a system of units with f i  = 1 ). Com- 
parison of the latter inequality with (2)  leads to an upper 
limit on the energy of the electrons: 

Under ordinary conditions the right side of (3)  would be 
some tens of kiloelectron volts, suggesting that a special mo- 
tion of the fast electrons in the crystal might arise at nonrela- 
tivistic energies in the scattering geometry in Fig. lb. 

As we will see below, for a motion of this type a 
multiwave resonant coupling typically arises between (on 
the one hand) free semiclassical states of the particle which 
correspond to relatively large angles between p and the lat- 

I 
The ~robabilitv for the excitation of Bram reflections in case 

ww 

lb  can be estimated in the following way. The angle (2)  FIG. 1.  Relative positions of the Ewald sphere and the system of recipro- 

through which the electron is deflected in the course of the cal-lattice sites of the crystal. a-The electrons are incident approximate- 
ly normally on the crystal surface, and inequality ( 1 )  holds; b--a 

scattering corresponds to a momentum transfer on the order multiwave resonance arises in the solution of the diffraction problem. 
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tice axes and (on the other) "bound" Bloch states corre- 
sponding to narrow bands of transverse motion in the 2 0  
periodic potential of the crystal. In particular, under the 
conditions of this multiwave resonance there may be a com- 
plete "capture" of a nonrelativistic electron from a plane 
wave into a bound state of transverse motion, localized near 
atomic axes of the crystal (by way of comparison, the proba- 
bility for the filling of bound states in the case in which elec- 
trons are incident normally on a target is no greater than 
- 50%; Ref. 8).  

Special motivation for analyzing multiwave resonant 
scattering comes from some anomalies recently seen experi- 
mentally in the angular distributions of electrons scattered 
inelastically through relatively large angles with respect to 
the lattice axes of a ~ r ~ s t a l . ~ - ' ~  Some nearly regular intensity 
rings were observed in Refs. 9-1 3 in addition to the custom- 
ary angular distribution of the scattered particles (a  pattern 
of intersecting lines and bands3f4 ). These rings appeared 
both in experiments on the passage of fast electrons through 
thin crystals1' and in experiments on reflection9s12 and 
backscattering13 from bulk samples. The expression derived 
below for the differential cross section for inelastic collisions 
of fast electrons in a thin crystal makes it possible to work 
from ideas concerning a multiwave resonance to explain the 
experimental results of Refs. 9-13. In several cases, it be- 
comes possible to find a good quantitative agreement be- 
tween the theoretical intensity profiles and the observed an- 
gular distributions of inelastically scattered particles. 

1. WAVE FUNCTION IN THE ELASTIC-SCATTERING 
PROBLEM 

The motion of a fast electron in matter can be represent- 
ed as a diagram sequence of events of elastic scattering by a 
periodic crystal potential averaged over thermodynamic 
equilibrium, 

uo (r) = 2 e-~J'<n 1 U (r) 1 n> , (4)  
55 9, 

and of inelastic collisions in exciting internal degrees of free- 
dom of the target.2 The summation in (4)  is over the eigen- 
states of the electron and phonon subsystems of the crystal, 
In), with energies En;  T is the absolute temperature; and 
9 = E, exp( - E, / T ) .  In accordance with the usual ex- 
perimental situation,lO'" we restrict the analysis below to 
the case in which electrons pass through a relatively thin 
crystal, whose dimension (L )  along the direction of motion 
of the particles does not exceed the mean free path (I) of the 
electrons with respect to inelastic interactions (at E~ - lo5 
eV, for example, the mean free path of the electrons with 
respect to the excitation of the phonon subsystem of the crys- 
tal isI4 lo3 A ) .  

The wave function of the problem of elastic scattering in 
a thin crystal is the solution of the equation 

with a boundary condition for the incident wave, 

$inc (r) =eiPr. (5a) 

We assume that the crystal occupies the spatial region 
0 < z < L and that the vector p makes a small angle 8 with the 

z axis. Under condition ( 1 ) for fast particles, with 

in solving Eq. (5)  we can restrict the Fourier expansion of 
potential (4 )  to reciprocal-lattice vectors {G, } which lie in 
the xy plane.2 We seek the wave function of the fast electron 
in ( S ) ,  (5a) as a superposition of transmitted and diffracted 
waves with slowly varying amplitudes: 

Substituting (7) into (5),  we find a system of coupled differ- 
ential equations for the amplitudes p, (z) : 

where u is the velocity of the electron, E, = (p  + G, )2/2m, 
and the quantities A,, are the Fourier components of the 
periodic crystal potential, 

where no is the volume of the unit cell. 
The condition E, % In I allows us to ignore the reflected 

waves in formulating the boundary conditions on (8) ,  so we 
can write'' 

We can solve Eqs. (9)  by transforming the set of functions 
{p, (2)) to the new representation 

where the unitary matrix C,, (q)  is fixed by the condition 

A direct comparison of ( 11 ) and ( 12) with Eqs. (3 .8)  and 
(3.9) of Ref. 2 easily reveals that the matrix C,, (q) ,  which 
depends on only the projection q of the momentum p onto 
the xy plane, determines a basis of Bloch functions of the 
transverse motion in the 2 0  potential Uo (x, y )  : 

where p is a 2 0  vector with the components x, y. In represen- 
tation ( 11 ) and ( 12), the solution ( 10) becomes 

The value of pj (z) at z = 0 is the same as the known result 
from the sudden-perturbation theory:'s2 

where So is the area of the 2 0  unit cell of the crystal in the xy 
plane. 
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Using ( 13 ) and ( 14), we can write the wave function of 
scattering problem ( 5 ) as 

where k = p  cost?. In particular, for the density of particles 
in the crystal we find [see Eq. (4.5) of Ref. 21 

Equations (7 ) - (  16) completely solve the problem of the 
scattering of a fast electron in a crystal under the condition 
that the angle made by the momentum of the particle with 
the crystal axis is no greater in order of magnitude than 9, in 
(1)  (Ref. 5 ) .  

We turn now to an analysis ofthe scattering geometry in 
Fig. Ib. At angles in the intermediate region, 

the electron wave function is a plane wave perturbed slightly 
by Bragg diffraction reflections of higher orders. A new and 
radical change occurs in the nature of the electron motion 
when the angle 9 reaches the value 9,. At 9=: a,, reflections 
corresponding to reciprocal-lattice vectors {G,  )with a non- 
zero z projection, for which we have 

play an important role in shaping the wave function. 
In describing the electron motion in this case, it is not 

possible to distinguish between independent "longitudinal" 
and "transverse" degrees of freedom of the particle. We now 
have to take account of the z dependence of potential (4)  in 
Eq. (5) .  It might appear at first glance that at 9- 9, the 
diffraction problem would become substantially three-di- 
mensional and that the solution of the problem, like that 
given in Ref. 16, should contain a set of arbitrarily oriented 
reciprocal-lattice vectors { G ,  1. As it turns out, however, at 
9 ~ 9 ,  inequality (6)  allows us to restrict the analysis to 
three terms in the expansion of the potential, 

Uo (r) =U-, (p) e-'#'+ Uo (p) +U, (p) eiE', (19) 

and two terms in the wave function, 

Y (r )  =e'kzYo(p, z) +e'(k+R)zYi (p, 2). (20) 

As can be seen from Fig. Ib, at 9- 9, the elastic scattering is 
characterized by a relatively large momentum transfers 
Ap- (2pg) which correspond to small Fourier compo- 
nents of potential ( 10). For this reason, incorporating the 
next [in terms of exp(igz)] harmonics in expansion (19) 
leads to the appearance in the wave function of only small 
terms on the order of ImA/Gpl, which can be ignored for fast 
particles according to condition (6) .  

Substituting (19) and (20) into (5),  wefindasystemof 
two coupled equations for the functions Yo (p,z) and 
Y, (p,z): 

+Uo (p) Yt+ Ui (p) Y o = ~ p y i ,  

with the boundary condition 

The quantity U, (p )  in (21) describes a diffraction by a 
2 0  potential of a crystal, averaged along the z axis. The 
terms U +  , ( p) give rise to components of wave function (5 )  
which oscillate rapidly in the longitudinal direction. It can 
be seen from Fig. lb  that the diffraction reflections fixed by 
condition ( 18 ) are the ones of primary interest in Eqs. (2  1 ) . 
In other words, in solving problem (2 1 ) in the limit 9) 9, it 
is usually legitimate to ignore the effect of the potential 
Uo(p) on the first component of wave function (20) 
(PengI2 pointed out that this approximation could be used). 
Using the equality qZ + k * = 2m~, and the condition 
g /kg  1, we find from (21) 

Before we solve Eqs. (22), we would like to point out that 
the second component Y, (p,z) of wave function (20) be- 
comes comparable to the first near the point q,, for which 

Comparing (23 with (21, we see that (23) is simply the 
condition for a tangency of the Ewald sphere and the lower 
of the planes of reciprocal-lattice vectors of the crystal 
shown in Fig. 1 (in the terminology of Ref. 4, this is the plane 
of vectors of the minus-first Laue zone). By analogy with 
(8  )-( 15), we seek a solution of (22) in the form 

n, j  

where the summation over x and j is over the quasimomenta 
and indices of the energy bands in the spectrum of trans- 
verse-motion states in ( 12). Substituting (24) into (22), we 
find the following expression for the slowly varying coeffi- 
cients a (z) and ox, (z) : 

where 

868 Sov. Phys. JETP 72 (5), May 1991 S. L. Dudarev 868 



To evaluate the matrix elements on the right side of 
(25), we expand the potential U, (p )  in reciprocal-lattice 
vectors: 

We wish to stress that the series in (26) differs from the 
usual expansion (9) ,  since the vector ge, generally does not 
belong to the set of reciprocal-lattice vectors of the crystal 
(except, perhaps, in the case of a simple cubic lattice). For 
this reason we have had to introduce an additional phase 
factor exp(iAp) in (261, where Ais chosen such that the sum 
ge, + A is equal to one of the reciprocal-lattice vectors. Us- 
ing (13) and (26), we find an explicit expression for the 
matrix element on the right side of (25): 

= ( 2 n ) ' C  Ch;(x)  U i ( G l ) 6 ( A +  G , - - X - - G ~ + ~ ) ,  (27) 
4 l 

where the arbitrariness in the choice of GI and G, has been 
eliminated by the condition that the quasimomentum x is 
referred to one of the Brillouin zones. When we choose 
x = q + A, for example, we obtain GI = G , .  Denoting the 
coefficient of the 6-function in (27) by U, u), and omitting 
the first subscript in ox, for simplicity, we find from (25) 

The boundary conditions on (28) are a ( 0 )  = 1, and 
Pi (0) = 0 for all j. 

Equations of the type in (28) are well known in the 
theory of resonant ~cattering.'~." Their solution depends on 
the parameters expressing the detuning from the resonances: 

Let us consider the behavior of the quantities in (29) as a 
function of the angle between the electron momentum and 
the crystal axis. Here we make use of symmetry relations for 
Bloch wave  function^,'^^^^ 

which are valid for all reciprocal-lattice vectors which lie in 
the xy plane. 

Figure 2 shows a cross section of the multisheet Ej (q)  
surface in the first Brillouin zone, which we have calculated 
as an example of a 2 0  potential field of atomic chains which 
run along the (100) axis of a molybdenum crystal. We see in 
this figure a narrow band of states localized near the axes of 
the atomic chains, along with a system of high-lying levels 
which correspond to a nearly free transverse motion of the 

FIG. 2. Intersection of the multisheet E, ( q )  surface calculated for the 
( 100) axis of a molybdenum crystal with a ( 100) plane. The calculation 
was carried out with 29 reciprocal-lattice vectors orthogonal to ( 100); the 
Fourier components of the potential were taken from Ref. 23. 

electrons above the atomic planes of the crystal. The band 
structure shown in the nonrelativistic region of electron en- 
ergies in Fig. 2 is fairly typical of most elements in the peri- 
odic table. The corresponding curves for the crystals of var- 
ious elements differ for the most part only in the nature of the 
dispersion of the states in the lower band, Eo (q),  which 
weakens with increasing atomic number of the target atoms. 
In the case at hand (the Mo crystal), the dispersion does not 
exceed 4%, and Eo (q)  lies in the interval - 85 eV <Eo (q) 
< - 82 eV. The states in the lower band are separated from 
the spectrum of quasifree motion by an energy interval on 
the order of 100 eV. 

The dependence in Fig. 2 determines the nature of the 
solutions of Eqs. (28). Specifically, the value of D(q)  from 
(28) is negative at q = 0, and at E, = 100 keV it is given in 
order of magnitude by D(0) =: -pg/m=:  - 2.5- lo3 eV. 
With increasing Jql, the function D(q)  increases rapidly. As 
a result, the coefficients So (q) ,  6,  (q) ,  etc., vanish in succes- 
sion. Of particular interest, as we will see below, is an analy- 
sis of the behavior of solutions (28) in the region with 
ISo (q)  I 5 I U, = 0)  I. According to the E, (q)  plot shown in 
Fig. 2, the following inequalities hold in this interval of the 
vector q: 

Because of these inequalities, we can use the approximation 
of an isolated resonance" in analyzing (28).  A further in- 
crease in 141 (i.e., in the angle 9 between the electron mo- 
mentum and the crystal axis) results in the simultaneous 
vanishing of several of the parameters 6, (q)  in (29) [e.g., 
6 ,  (q ) ,  6, (q)  and 6, (q)  ] at closely spaced points, and a 
transition occurs to a resonance regime with a large number 
of overlapping levels. l 7  

Under conditions (3  1 ), Eqs. (28) reduce to a system of 
two equations: 
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with the boundary conditions a ( 0 )  = 1 ,  Po  (0) = 0.  The so- 
lution of ( 3 2 )  is simple in form: 

+ ie 
s i n [ - -  (e2+4 I u 12)*]}, 

(s2+4 ( UI2) " 2u cos * 

Z 
Xsin[- 2u cos 6 (e2+41 u~')'"], 

where we have used E = E,(q  + A )  - D ( q )  and 
U = U ,  ( 0 ) .  The unusual nature of this solution becomes 
particularly noticeable when we use the strong-coupling ap- 
proximation to calculate the wave functions of the Bloch 
states in the lower band.' Substituting ( 3 3 )  into ( 2 0 ) ,  we 
find 

Y (r) =a ( 2 )  exp (ipr) 

+ ~ ~ ( z ) e x ~ [ i ( k + p ) z l s , ~ ~ ~  expli(q+A)p*l b (p-pA), 
A 

( 3 4 )  
where the localized orbital @( p )  describes a 2 0  bound state 
in the potential of an isolated chain. The summation over A 
in ( 3 4 )  is over all atomic chains with centers at pA which run 
along the z  axis; and S, = l/v, where v is the number of 
chains per unit surface area. 

Solution ( 3 4 )  describes a periodic restructuring of 
plane wave (5a) into a highly localized state with a minimal 
transverse-motion energy, and vice versa. By way of com- 
parison, we note that a solution oscillating as in ( 3 3 )  for two 
amplitudes is well known in the theory of dynamic diffrac- 
t i ~ n . ~ ' . ~ ~  In the two-wave approximation of the dynamic 
theory according to ( 3 3 ) ,  however, the amplitudes of the 
transmitted and diffracted plane waves oscillate, in contrast 
with the situation in ( 3 4 ) .  In the case discussed above, a 
resonant coupling arises between a plane wave and a state in 
a narrow band consisting of a coherent superposition of tens 

of diffraction reflections. One might say that resonance ( 3 4 )  
represents physically an acceleration of the electron along 
the axes of atomic chains, accompanied by a simultaneous 
and sharp decrease in the energy of the transverse motion of 
the electron in the xy plane. 

Exactly at resonance, with E = 0 ,  there is a complete 
restructuring of the plane wave at a depth 
z, = .rrv cos I9 / 2 )  U  1 into a state of "channeling" along the 
axes of the atomic chains [however, the regime of motion in 
( 3 4 )  cannot be referred to as "capture into a channel," since 
the probability for finding an electron in a low-lying narrow 
band of the energy spectrum vanishes again at a depth 2z0] .  
To compare the qualitative behavior of the solutions of scat- 
tering problems under the conditions of the resonance in 
( 3 4 )  with the ordinary multiwave diffraction in ( 1 6 ) ,  we 
show in Fig. 3  the squared electron wave function at the 
equilibrium points of the crystal nuclei (R , )  versus the 
depth to which the particles penetrate into the target. As can 
be seen from Fig. 3, the electron density at the nuclei reaches 
its maximum not when the particles are incident normally 
on the crystal surface [ ( 16) ,  ( 17) ] but when there is a finite 
angle 19 between the momentum p and the lattice axis under 
the conditions of resonance ( 3 4 ) .  The reason is that when 
the particles are incident normally on the crystal surface the 
probability (C,, (p) 1 for the filling of above-barrier states8 
localized in the interatomic regions, which contribute next 
to nothing to the behavior shown in Fig. 3, is large. At the 
same time, under the conditions of resonance ( 3 2 )  there 
may be a complete restructuring of the plane wave into a 
below-barrier transverse-motion state localized at the nu- 
clei. This intensification of the localization of the wave func- 
tion of a fast electron at the crystal nuclei could cause pro- 
nounced changes in the cross sections for all inelastic 
processes involving small impact parameters: the excitation 
and ionization of inner shells, the emission of Auger elec- 
trons, the emission of characteristic x radiation, etc. 

A parameter characterizing the angular width of the 
resonance is the potential matrix element U ,  ti). We must 
stress that the value U ,  = 0 )  in the case of the isolated 
resonance of ( 3  1 )-( 34) is many times the Fourier compo- 
nent of the potential corresponding to ordinary elastic dif- 
fractive reflection through an angle if, from ( 2 ) .  The reason 
is that according to ( 2 7 )  the quantity U ,  (j) contains a fac- 
tor not present in U ,  ( q ) :  

This factor is proportional to the probability amplitude for 
the localization of the wave function of the state in band j at 
the crystal nuclei. A numerical calculation carried out for 
the (100) axis of a molybdenum crystal with the data of Ref. 
23 shows that U,  (j = 0 )  is approximately - 2  eV, or about 
five times the corresponding Fourier component of the po- 
tential U ,  ( q ) .  Estimate ( 3 5 )  leads to an important conclu- 
sion: The multiwave resonance is most strongly manifested 
for just the states of the lower transverse-motion band, since 
it is for those states, localized at nuclei, that the matrix ele- 

FIG. 3. Squared wave function of a fast electron at lattice sites versus the ment U, ti) of the channel coupling, reaches its maximum depth to which the particle penetrates into the crystal. Solid line-exact 
resonance, E = 0; dashed lind-calculated from ( 17) for motion along the value. 
(100) axis of a MO crystal. It thus follows from this analysis of the elastic-scatter- 
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ing problem that in the diffraction geometry in Fig. lb  the 5(rt1r; 0 )  
solution is resonant. This resonance may be accompanied by 
a pronounced restructuring of the electron wave function 1 =-r, (n16U(rf) / n f ) ( n f l 6 ~ ( r )  
from a plane wave into a Bloch state localized at the crystal 8; n,nf 

nuclei. In the next section of this paper we take a look at how 
the resonant elastic restructuring of the wave function alters x 6 (u+E,-E,.). (42) - 
the differential cross section for inelastic collisions of elec- The Fourier transform of (42) is proportional to the dynam- 
trons accompanied by the excitation of internal degrees of ic structure factor for inelastic excitations of the  crystal:^^.^^ 
freedom of the target. 

2. INELASTIC SCATTERING UNDER CONDITIONS OF A s (q ,k;  a ) =  q2k2 5 d3r dVr.? (r', r, a )  exp (-iqrf+ikr). 
(4ne2) 

MULTIWAVE RESONANCE (43) 
The cross section for inelastic scattering of particles in a 

medium can be expressed in terms of the nonvanishing ma- 
trix elements of the interaction potential U(r) with changes 
of the quantum numbers of the internal degrees of freedom 
of the target: 

=<nlI U(r) I n ) - 6 n . , z $ e x p ( - E ~ )  <nUIU(r) In"). 
n" 

The expression for the differential inelastic cross section in a 
thin crystal ( L  < I ) ,  for scattering accompanied by a transi- 
tion from the state In) to In'), is given by [Ref. 24, 5 1481 

where the wave functions of the initial and final states, 
Yi + ) ( r )  and Yi; ' ( r ) ,  constitute the solutions of the prob- 
lems of elastic scattering in potential (4)  which satisfy dif- 
ferent boundary conditions at infinity [Ref. 24, 5 1361 

Yp'+' (r) exp (ipr) , 
Y::) (r) exp (-iplr). 

Since the asymptotic behavior in (38) is the same as (5a), 
the wave function found above, in (5)  and (34), is actually 
one of the states Yb + ' (r) which we are seeking. In order to 
avoid having to solve Eq. (5)  with boundary condition (39) 
repeatedly, we construct the wave function of the final state, 
Y' - ' ( r )  , using a corollary of the reciprocity theorem [Ref. 

P' 

22 and Ref. 24, 5 1361 
(-) (+) 

( Y p ,  (r) ) '=Y-pf(r) ,  (40) 

After an averaging over the initial states of the target and 
summing over the final states, this result makes it possible to 
write the following expression for the differential cross sec- 
tion for the scattering of an electron into a solid-angle ele- 
ment do1: 

= (E) ' J do f J d3r d3r's (r', r; o) 
do' 

where Y' = ( pZ - 2mw) "2/m, and S(rl, r; w )  is defined as 

In the case of the excitation and ionization of inner shells of 
atoms, or in the case of phonon scattering (Fig. 3), the be- 
havior of cross section (41 ) as a function of the orientation 
of the momentum p of the incident electron is basically de- 
termined by the z dependence of the square of the electron 
wave function, IT: + ' ( r )  / 2, near the nuclei. We accordingly 
restrict the analysis below to the effect of the resonant re- 
structuring of the wave functions qy-p! ( r )  of the final states 
on the angular distribution of the particles emitted from the 
crystal. 

Let us consider the case in which the momentum of the 
incident electrons is far from a close-packing direction, 

IFp(+' (r) ==exp (ipr) , 

and the vector - p' satisfies the condition for an isolated 
resonance, ( 3 1 ) , 

(+' 
y-,, (r) =a (2) exp (-ip'r) 

+PO (z)exp ( - i k ' z + i g z ) ~ , ' ~ z  exp (-iqlpA+iApA) 8 ( p p A ) .  
A 

(44) 
The angular spread of the fast-particle flux in a crystal is 
determined primarily by the quasielastic thermal diffuse 
(phonon) ~cat ter ing.~,~ '  The structure factor for this type of 
scattering can be written in the Einstein model of thermal 
motion as a sum of independent contributions representing 
the scattering by individual crystal atoms:21 

Estimates show that incorporating the correlations in the 
thermal displacements of atomsZ8 results in this case in only 
a slight change in the distribution of the diffuse intensity 
from the results calculated in model (45). 

Substituting (4)  and (45) into (41 ) , we find the follow- 
ing expression for the angular distribution of electrons scat- 
tered quasielastically by a monatomic crystal: 

*=z{la(z,,) I~W~(~',~)+~R~B~'(~.)~(~.)W~(P'.P) 
do' a 

+Ip(za) I2J+ '2 (~ ' ,~ ) Ir  (46) 

where 

XS,'h@ (p') exp (-ipr'+iklz'-igz'), 
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x exp[-i(kf-g) (2-2') IS,@ (p) @ (p'). 

Replacing the summation over the lattice sites R, in (46) by 
an integration, 

where n is the number of atoms per unit volume, and Z is the 
surface area of the crystal, we find from (46) the final result 
for the angular distribution of the inelastically scattered par- 
ticles: 

where 

%=2LI Ul lu  cos 8,, Y = [ D ( - q ' ) - E , ( - q l + A )  ]/2jUI. 

It can be seen from this expression that the differential cross 
section for the quasielastic scattering has a sharp anomaly 
near directions which correspond to values of the parameter 
Y in the interval I Y I 5 1. Since the function E, (q)  depends 
only weakly on its argument, the equation 

determines a curve which is nearly a circle in the q: , q; plane. 
A relation similar to (48) was proposed in Ref. 10 to explain 
the geometry of patterns observed experimentally (see also 
Refs. 12 and 13). According to (48), a sharp intensity anom- 
aly arises in the angular distribution (47) of quasielastically 
scattered electrons. This anomaly takes the form of a ring 
around a close-packed crystallographic direction. An anom- 
aly of precisely this type was recently observed in some ex- 
periments on the transmission of fast electrons through a 
gallium arsenide crystal." Similar ring patterns had been 
observed previously by Peng et aL9 in the reflection of fast 
particles from a crystal surface. 

The radial distribution of the intensity near the (100) 
axis of a molybdenum crystal, calculated from (47), is 
shown in Fig. 4 (the momentum p is directed along the crys- 
tal axis). Values Y < 0 correspond to the inner region (and 
values Y >  0 to the outer region) of the ring patterns ob- 
served in the experiments of Refs. 9-13. As can be seen from 
Fig. 4, an increase in the incoherent intensity occurs near 
resonance (48) during the scattering of the particles, even in 
relatively thin crystals, in good agreement with the data of 
Ref. 11. 

As the angle 9 ' (or, equivalently, the magnitude of the 
vector q') increases in (28), there is a transition to a regime 
of overlapping resonances involving above-barrier Bloch 
states. A weakly expressed fine structure appears in an- 
gular distribution (41) around ring pattern (47). The inner 

dbldo', arb. units 
I 

FIG. 4. Intensity distribution in the ring pattern which arises around the 
(100) axis of molybdenum during phonon scattering [Eq.-(47) 1. Crystal 
thickness: 1-L = 500 A; 2-L = 1000 A; 3-L = 2500 A. 

intensity ring is separated from this fine structure by a finite 
angular whose width is proportional to the size 
of the first band gap in the energy spectrum of transverse- 
motion states shown in Fig. 2. 

3. CONCLUSIONS 

It follows from the discussion above that in the geome- 
try shown in Fig. lb  for the diffraction of fast but nonrelativ- 
istic electrons in crystals a particle motion of a new type may 
arise. This new motion is characterized by a resonant cou- 
pling of free-motion states with states of the narrow lower 
band of the electron energy spectrum in the 2 0  effective po- 
tential of the crystal. The angular restructuring of the wave 
functions under multiwave-resonance conditions can sub- 
stantially alter the angular distribution of the particles scat- 
tered inelastically by the crystal and also the extent of all 
inelastic processes with small collision impact parameters. 
Comparison of the theoretical results with experimental 
data on fast-particle scattering in thin crystals leads to the 
conclusion that the anomalies observed in the differential 
cross sections in Refs. 11 and 13 may stem from multiwave 
resonant elastic scattering on the motion of an electron in a 
crystal after an inelastic collision in the interior of the target. 
The structural features ob~e rved~ . '~  in the angular distribu- 
tion of the quasielastic-scattering intensity in experiments 
on electron reflection from crystal surfaces appear to be of a 
similar physical nature. 

I am indebted to L.-M. Peng for proposing this topic 
and for useful discussions. I thank Yu. V. Kononets and M. 
I. Ryazanov for interest in this work and for support. 
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