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The electrostatic correction to the electron Fermi energy in a conducting thin film is found as a 
function of the film thickness L for an arbitrary relation between L and r,, .The corresponding 
behavior of the electrostatic part of the surface energy is also found. Under the condition L )  r,, 
the size corrections to the Fermi energy associated with the kinetic energy and with the 
electrostatic energy may be comparable. For heavily doped semiconductors the electrostatic 
correction to the Fermi energy is opposite in sign to the surface correction to the kinetic part of the 
chemical potential and has half the magnitude of the kinetic part. The amplitude of Friedel 
oscillations of the electron density at the film surface is found; screening is taken into account. As 
a result, a term with a coordinate dependence different from that in the case of free electrons 
appears in the asymptotic expression for the amplitude. A mathematical by-product of this study 
is a generalization of the Euler-Maclaurin summation formula to the case of functions which have 
a pole near the real axis. 

1. INTRODUCTION 

The density of conduction electrons near the surface of 
a sample is known to differ from the bulk density, so the 
surface of a conductor is charged with respect to the interior. 
The surface charge results from a difference between the sur- 
face potential and the interior potential. This charge is 
screened by the conduction electrons themselves. As a re- 
sult, a double layer arises at the surface and has a strong 
effect on the surface energy of the sample and on its work 
function. 

The size dependence of these properties for conductors 
of finite dimensions has recently attracted much interest. A 
size dependence of the work function was first observed ex- 
perimentally for small particles in Ref. 1. This dependence is 
usually attributed to the electrostatic energy which the parti- 
cle acquires after an electron escapes from it.2 It was stated 
in Ref. 3 that an even greater contribution to this depen- 
dence comes from a spatial quantization of the orbits of the 
conduction electrons. The second of these mechanisms 
differs from the first in that it operates also in thin films. In 
the present paper we propose for a size dependence of the 
electron chemical potential a new mechanism involving a 
size dependence of the surface double layer. We will show 
that this mechanism is fully as significant as the mechanism 
proposed in Refs. 2 and 3 and that it, too, operates in thin 
films as well as in small particles. 

As we just mentioned, the double layer also has a strong 
effect on such an important characteristic of a conductor as 
its surface energy. The calculations below reveal not only 
this energy but also its size dependence, i.e., the terms of 
higher order in the reciprocal size of the sample. Finally, a 
study of the structure of double layers is important in con- 
nection with the problem of oscillations in the surface relax- 
ation. If screening is ignored, the electron density near a 
surface takes the form of Friedel oscillations with an ampli- 
tude which falls off by a power law with distance into the 
sample. Because of the electron-phonon coupling, oscilla- 
tions of this sort should also be exhibited by the displace- 
ments of the atomic layers of the This result ap- 
plies to samples with a thickness smaller than the screening 
radius. There is of course the question of whether these oscil- 
lations are also found in thicker samples. We show below 

that the answer to this question is affirmative: The surface- 
charge density found with allowance for screening also un- 
dergoes Friedel oscillations. 

2. MODEL AND CALCULATION METHOD 

As in Refs. 4 and 5, we consider a plane-parallel sample 
with a plane face of area Sand  with a thickness L <S In 
the self-consistent-field approximation, and in the jellium 
model, the problem reduces to one of solving the one-particle 
Schrodinger equation and the Poisson equation for the po- 
tential p of the self-consistent electrostatic field: 

for 0 < z < L. Here 4 and 4+ are electron operators in the 
coordinate representation, no is the density of the "ion back- 
ground" in the jellium model, and &, is the dielectric con- 
stant of this background. If the sample is electrically neutral, 
a nonvanishing charge density p and the electric field e, 
which it creates arise because of a perturbation of the elec- 
tron subsystem by the surface of the sample. As a boundary 
condition on the function e, it is sufficient to require that the 
potential be symmetric with respect to the middle of the sam- 
ple and that the average potential over the thickness of the 
sample vanish. As in Ref. 4, we will be restricting the discus- 
sion to the simplest boundary condition on the wave func- 
tions: 

9 (0) =lp (L) =o. ( 3 )  

To put the problem in a form which we can solve ana- 
lytically, we adopt the condition that the Coulomb interac- 
tion is weak. It holds, in particular, for heavily doped semi- 
conductors: 

where ?c (4e2mk,/&,fi2a) ' I2 is the Thomas-Fermi param- 
eter, and fik, is the Fermi momentum. Constructing the 
electron wave function in ( 1) in first order in the screened 
Coulomb field p, we find the following expression for the 
charge density: 
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where 
ea 

X sin knz.sin knvz.sin knzl.sin kn,zl. ( 6 )  

Here p, is a "seed" charge density obtained when the Cou- 
lomb interaction is ignored, N is the total number of elec- 
trons, which is generally not equal to the number of ions, and 
k, = m / L  are the quantum-size values of the component of 
the wave vector normal to the surface (n = 1,2, ...). As a 
result we find the following expression for the total energy of 
the conduction electrons: 

L 

where $, is the energy of the conduction electrons when the 
electrostatic interaction is ignored. Correspondingly, the 
electron chemical potential can be written 

where the term ApQ stems from the Coulomb interaction, 
and p, is the kinetic part of the chemical potential. Its size 
dependence is given by, according to Ref. 3, 

Here po = fi2k:/2m is the chemical potential of the bulk 
sample, k, = (3.rr2n0 ),", and the parameter 

is a measure of the extent to which the situation is semiclassi- 
cal. 

The approximation used above leads to reasonable esti- 
mates not only under condition (4)  but even in the case 
q- 1. One cannot, of course, expect quantitatively correct 
results in the calculations of the electron energy, but quanti- 
tative results are not the goal of this study. The goal is simply 
to determine how the electrostatic corrections depend on the 
dimensions of the sample. 

To estimate the sums over the discrete variable k, 
which arise by virtue of condition ( lo),  we use formulas of 
the Euler-Maclaurin type. In our notation, the standard 
form of these formulas6 would be 

where n, -Lk,/v and f (...) is a sufficiently smooth func- 
tion. As we will see below, this formula is valid only under 
the condition 

in which case we have r,, = 7t-'gL. If we do not adopt 
restriction ( 12), we find a modification of the standard for- 
mula in ( 11 ) and of the results found from it, as is shown in 
the Appendix. In the case in which the function f on the left 
side of ( 11 ) has poles at small values of k, for example, this 
generalization becomes 

where it is assumed that the function Qsatisfies Q(2kF) = 0. 
When condition ( 12) holds, Eqs. ( 1 1 ) and ( 13 ) become the 
same. 

It is sufficient to carry out a transformation of the origi- 
nal equation, (2),  with the help of (5) ,  which subsequently 
leads to an approximate solution of this equation, for the 
case of an electrically neutral system, in which we have 
p, = 0 in (5)  and thusp, -ps. Since the field vanishes at the 
boundary and outside the sample in this case, the solution of 
Eqs. ( 2 )  and (5)  can be written as the Fourier series 

where q, -, =q,, and k, = vn/L. From (2) ,  (5) ,  and (14) 
with n #O we find the following equation for the even coeffi- 
cients q,,, : 

The odd coefficients are zero. Here psn are the Fourier coef- 
ficients for the function p, ( z ) ,  and can be found from (5).  
The coefficient q,, is being set equal to zero (these are 
boundary conditions on the Poisson equation). 

3. CALCULATION OF THE COULOMB SHIFTOFTHE FERMI 
ENERGY 

The procedure used for the approximate solution of Eq. 
(15) is set forth below only for the case in which inequality 
( 12) holds and Eq. ( 1 1 ) can be used. In general, we should 
use Eq. ( 13 ), but since the calculations become laborious we 
will present only the final results here. 

We introduce sufficiently smooth functions q ( k )  and 
p, (k)  such that T(k,, ) = q,,, and ps (k,, ) = ps, for n #O. 
Applying Eq. ( 11) to the right side of Eq. ( 15), and retain- 
ing terms of up to first order in the parameter A in ( lo) ,  we 
find the following equation for the function ?(k) : 
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whereq(0) = l imq(k) as k+O but k #O. 
An approximate solution of Eq. ( 16) is found in the 

leading approximation in the parameter 7 in (4): 

- 4n ?LJ(k)-h~t3(0) 
cp(k)=- 

EO k 2 ~ ,  ( k )  -x2h ' 
where E, ( k )  is the Lindhard dielectric constant.' This 
expression is then used to calculate the correction gQ in (7)  
after the corresponding integral has been converted into a 
series in Fourier coefficients of the type in ( 14) for the inte- 
grands. The latter is approximated by ( 1 1 ) under conditions 
(10) and (12). Inequality (4), on the other hand, means 
that we can restrict the evaluation of the corresponding inte- 
grals to the long-wavelength asymptotic expression in ( 17) 
for the function q ( k ) ,  in which case we have I k I < ?t 4 2k, 
[we should actually assume k 2 ~ ,  ( k )  z k ' + x2 in ( 17) 1. 

To find the electron chemical potential from (8) ,  we 
also need an expression for the Coulomb energy in (7)  in the 
case in which the particle is charged. Since the electric field 
does not vanish at the boundary of the sample in this case 
[ p l ( 0 )  = -p l (L )#O] ,  Eqs. (14)-(17) cannot be used. 
However, the approach taken above in the derivation of ( 17) 
is still valid, after some modification, in this case. 

Since the total seed charge density in (5 )  is 
po = ps + p,, a similar breakup is possible for the total po- 
tential p = p, + p,. Here p, is the part of the potential 
which stems from the density p,, which in turn satisfies the 
condition of electrical neutrality, as follows from (5) .  To 
determine p, we can thus use the procedure described 
above, which leads to an expression of the type in ( 17) for 
p,. We should then write an expression for the Coulomb 
energy which follows from (7)  and from this breakup of p: 

For a charged system it is not legitimate to write the poten- 
tial in Eq. (2)  as a Fourier series in ( 14). The energy gQ, 
however, depends on p, only through the Fourier coeffi- 
cients. It turns out that these coefficients can be determined 
through the use of an expression like ( 17), in which the only 
change necessary is to replace p, p,, (k )  = - pvL.  The 
sign ofp,, is opposite that of the net charge of the sample. As 
a result we find the following expression for the Coulomb 
energy in (7)  and the corresponding correction (8)  to the 
chemical potential: 

It follows from ( 19) withp, = 0 that the Coulomb en- 

ergy of the electrically neutral system is proportional to S. 
As a result, there is a renormalization of the surface energy 
of the electron gas, which is small to the extent that the pa- 
rameter in (4)  is. Expression ( 19) also contains a dimen- 
sional correction to the surface energy. The leading term in 
the Coulomb part of the chemical potential, in contrast with 
that in gQ, is a bulk term, and the size correction is inter- 
preted as the surface part of the chemical potential. 

The physical meaning of expression (20) is as follows. 
The first term is essentially a well-known result: This term 
describes the shift of the chemical potential caused by the 
electrical double layer at the surface of the sample, with a 
charge density oc ek $ a en2" and a thickness x - I .  The dou- 
ble layer arises because under boundary condition ( 3 ) the 
electron density vanishes at the surface, while the neutraliz- 
ing-charge density does not. The second term in (20) does 
not depend on the electron charge. This result is a conse- 
quence of inequalities (4)  and (12), under which this 
expression was derived (the latter inequality forbids taking 
the limit e2 -0). It has the same structure as that of the shift 
&, in (9)  of the chemical potential, due to the spatial quan- 
tization of the electron  level^,^ differing from it only in sign 
and by a factor of 1/2. The "strength" of the double layer at 
the surface of the plate thus decreases with decreasing plate 
thickness. We should stress that both the surface component 
of the kinetic part of the Fermi energy, Ap,, and its electro- 
static analog, (20), lead to a size dependence of the work 
function of the films. The same factors should lead to a size 
dependence of the work function of small particles, but in 
their case we would also add an electrostatic energy which 
the particles acquire because of their charging as a result of 
the escape of electrons from them. 

If we lift restriction ( 12) and replace ( 1 1 ) by ( 13), we 
find the following more general expressions in place of ( 19) 
and (20): 

where 

M-LA [exp ( L A )  -I]-'. 

It can be seen from these expressions that if condition (12) 
does not hold then the expressions for gQ and Ape no long- 
er reduce to a sum of terms having a power-law dependence 
on the size of the system, L. In the limit xL+0, for example, 
it follows from (21 ) for an electrically neutral system 
(pv  = 0)  that 

In other words, the Coulomb energy converts from a surface 
energy into a bulk energy. Equation (23) corresponds to a 
calculation of the Coulomb energy without consideration of 
screening. This equation can be derived by an alternative 
rigorous approach. In addition, one can verify that the sec- 
ond term in (22), which competes with the size correction to 
the kinetic part of the chemical potential under condition 
(12), actually depends on e2 and vanishes in the limit e2+0. 
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We have not been able to derive corresponding results 
for the case of general boundary conditions on the wave 
functions (as was done in Ref. 5 without consideration of 
screening). For boundary conditions of a special type, with 
*' (0) = *' ( L )  = 0 (these conditions correspond to a sur- 
face resonance), however, a solution can be derived without 
substantial changes in the calculations. It is found as a result 
that the Coulomb correction to the chemical potential, L&, 
simply changes sign, and there is again a partial cancellation 
of the size dependence of the kinetic part of the chemical 
potential under condition ( 12). 

4. FRIEDEL OSCILLATIONS OF THE CHARGE DENSITY AT 
THE SURFACE OF A CONDUCTOR 

The charge density of an electrically neutral system can 
be written as a series like ( 14) : 

An equation forp, can be found from ( 15) by noting that we 
have p, = ( 4 a / ~ ~  )p, /k : 

Here E, is the dielectric constant of a finite-size, plane-paral- 
lel plate of thickness L: 

where t,b is the digamma function, and In1 <nF = kFL /a. 
Under condition (4) ,  an approximate solution can be 

found iteratively from the right side of Eq. (24): 

Assuming that inequalities ( 12) and also kFL, k,zb 1 
hold, and applying Eqs. ( 11) and (24)-(26), we find, in 
leading order in the parameter /2 in ( lo),  

ek, cos (2kFz) 
(')" 2nZ8. (2kF) ' z2 

- ex2 In (4kFz) 
sin (2kFz), (27) 

4n2kpem2 (2kF) 2kd3 

where E ,  is the Lindhard dielectric constant.' Essentially 
the same result would have been derived if we had immedi- 
ately considered the case of a semi-infinite sample (L - co ), 
with a continuous electron spectrum, and if we had stipulat- 
ed an appropriate procedure for regularizing the singular 
integrals in the perturbation theory. 

With regard to Eq. (27) we note that since the first term 
appears in the power-law asymptotic behavior it obviously 
does not stem from a Kohn singularity in the dielectric con- 

stant of a degenerate Fermi gas. It arises instead because of 
the nonanalytic nature of the Fourier transform of the seed 
density: 

A term of the same type arises in the absence of ~creening.~.' 
A distinctive feature of the second term in (27) is the 

appearance of a logarithmic amplitude factor. By way of 
comparison we note that in the asymptotic expansion for the 
density of the seed charge, pa (z), the second term is propor- 
tional to z - 3. The corresponding term in (27 ) thus falls off 
more slowly with increasing z, although it does stem from 
screening effects ( a x 2 ) .  The formal reason for this behavior 
is that at the point k = 2kF there are two singularities: the 
Kohn singularity of E, (k)  and the singularity of p, (k)  
which is associated with the nonanalytic behavior at 
k = 2kF. The latter singularity occurs because the seed 
charge is not a given quantity and instead results from the 
surface. 

We would expect that the lattice surface relaxation due 
to the electron-photon ~ o u p l i n g ~ . ~  would be determined by 
expression (27) when screening effects are taken into ac- 
count. 

APPENDIX 

Let us explain the derivation of Eqs. ( 11 ) and ( 13) and 
demonstrate the reason for the difference between them. The 
sum on the left side of ( 11 ) can be written as an integral in 
the complex k plane: 

where f( - k)  = f(k) ,  and the contour C encircles the val- 
ues k, to be summed. The function w must have simple poles 
at k = k, , with unit residues. This function can be chosen to 
be 

d 
o (k) = -sin (kL) . 

dk 

To find an asymptotic estimate of the integral under 
condition ( lo) ,  we deform contour C, moving its horizontal 
part in such a way that we have Imk- + co under the condi- 
tion Rek = const. An important point hkre is whether the 
contour encounters some singularity of the function f(k) .  In 
case ( 13), these singularities would be poles. Where contour 
Cencounters these poles, we should take account of the con- 
tributions from the residues at these points. The technique 
for deriving asymptotic estimates which was used in Ref. 4 
should be used for the integral along deformed contour C. 
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