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The well-known solution of the electrostatic problem of finding the average dielectric constant in 
the presence of local fluctuations is extended in two directions: 1 ) in electrostatics-for an 
anisotropic medium with anisotropically distributed tensor fluctuations and 2) in 
electrodynamics-for the equally general problem of determining the correction to the effective 
dielectric constant E. In the second case the imaginary part Irn(SE) describes the well-known 
scattering-induced attenuation of a wave. The correction to the real part of the effective dielectric 
constant is calculated in detail for ordinary waves in a uniaxial nematic. This correction causes 
the phase velocity of the ordinary wave to become direction dependent, which in turn results in 
spatial dispersion. The possibility of measuring Re(S&) is discussed in connection with recent 
experiments on the passage of an ordinary wave through a nematic. 

1. INTRODUCTION 

Rayleigh scattering of light by fluctuations of the re- 
fractive index of air is perceived, even by an inexperienced 
observer, in two ways: first, as scattered light (i.e., waves 
propagating in directions which are different from their ini- 
tial direction of propagation), e.g., the blue color of the sky, 
and second, according to the law of conservation of energy, 
as attenuation of the initial waves. The latter phenomenon is 
clearly seen at sunrise and sunset as reddening of the solar 
disk owing to the elimination of predominantly blue pho- 
tons. Remarkably, however, the visible contour of the sun 
remains sharp, though it undergoes refraction in the verti- 
cally inhomogeneous atmosphere. 

The attenuation of a beam passing undistorted through 
a medium can be described phenomenologically by inroduc- 
ing a constant positive imaginary part in the effective dielec- 
tric constant. It is intuitively obvious that there are grounds 
for expecting also a correction to Re(&), i.e., to the refractive 
index; however, because of spatial nonlocality the Kramers- 
Kronig relations are not directly applicable here. This ques- 
tion was studied in detail in Refs. 1 and 2 for the propagation 
of light in a turbulent atmosphere with scalar fluctuations 
SE. 

On the other hand, the solution of the problem of deter- 
mining the effective dielectric constant of a mixture, i.e., 
once again a medium with fluctuations of E, is well known in 
electrostatics. The solution is given in Sec. 9 of Ref. 3, and 
the answer has the form 

any of these assumptions the linear functional will become 
much more complicated. 

It turns out that it is even more difficult to calculate 
Ree f f  + i lmeff  for electromagnetic waves in anisotropic 
media. The solution of this problem is given in Sec. 3 and 
incorporates the results of Sec. 2 as a special case. 

At first glance, the calculation of seems too be 
of little interest, since the corresponding integrals usually 
diverge for small values ofp, i.e., for large Fourier vectors q. 
Moreover, it is usually impossible to determine E ,  separate- 
ly, i.e., without corrections, from experiment. 

In this respect nematic liquid crystals provide a rare 
possibility. First, it is well known that in nematics strong 
fluctuations of the orientation of the director are present 
and, as a consequence of this, strong scattering of light oc- 
curs. Second, and most important, neglecting the fluctu- 
ations, a nematic is an optically uniaxial uniform medium. 
In the latter medium, as is well known, the phase velocity of 
the ordinary wave (0-wave) does not depend on the angle 
between the axis n and the wave vector k,. This assertion is 
the basis of the previously predicted4 and recently observed5 
effect in which an ordinary wave passes virtually undistort- 
ed, though with appreciable attenuation owing to scattering, 
through a thick ( - 5 mm) cell. 

The absence of parasitic distortions suggests that it may 
be possible to measure the small difference of the refractive 
indices for different angles between n and k,; this difference 
should be due precisely to fluctuations. The calculation of SE 
for an ordinary wave in a nematic is presented in Sec. 4. 

2. EFFECTIVE STATIC DIELECTRIC CONSTANT OF A 
MEDIUM IN THE PRESENCE OF LOCAL FLUCTUATIONS 

It is obvious that in the considered second-order ap- We shall study the system of equations of electrostatics 
proximation in SE the answer must be a linear functional of 

rliv D (r) =0, 
the correlation function of the fluctuations. However such a (2a) 

remarkably simple form of this functional is a consequence rot. E (r) =0, (2b) 
of three assumptions: 1 ) The spatial average of the dielectric 
constant is a scalar, ( E ; ~  ) = Faik; 2) the fluctuations are sca- Di(r)=~ik(r)Ek(r) ( 2 ~ )  
lar, SE, ( r )  = S ~ ( r ) 6 ,  ; and, 3 these fluctuations are iso- for a medium with nonuniform and anisotropic local permit- 
tropic, (aE(r)a&(r +PI )  =f( I P  ). In Set 2 we shall tivity E~~ ( r) .  We shall represent the intensity of the electric 
obtain a general quasistatic formula in the same second-or- field E and the induction D in the form 
der approximation in SE and we shall verify that if we forgo 
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where quantities without an argument r are the spatially 
averaged values. The problem is to determine E;:, i.e., the 
relation between D and E with accuracy up to terms -u2 
inclusively, by iterating Eqs. (2)  with respect to v, ( r  ) . We 
change to the Fourier representation 

f (r) = f (k) exp (ikr)d3k. 

Then 

{Ei(k) 7 Di(k) 7 

where the fluctuations 2,  B, and C are of the same order of 
magnitude in v and they do not have a S-function singularity 
at k = 0. To satisfy the equation curl E = 0 it is sufficient to 
introduce the potential E ( r ) =  -Vp( r ) .  Then 
gi (k )  = - ki@(k).  The equation div D( r )  = 0 becomes 
kiBi (k )  = 0, which, using the constitutive equation (2c) at 
k = 0, gives 

The transform @(k)  is determined from here and must be 
substituted again into the constitutive equation (2c). Be- 
cause of the spatial uniformity of the averages the correla- 
tion function of the fluctuations depends only on the dis- 
tance p: 

(vik (r) v,, (r+p) )= j Ti.,, (k) exp (ikp) h k ,  
(6)  

As a result, the relation between the average values of D and 
E assumes the form Di = E;~E, ,  where 

rf l  ,I = E  : J  - j Tipqj (k) k,hq(k.e8,k,)-' d3k. ( 7  

The formula ( 7 )  solves the problem. If all three as- 
sumptions made above are made, i.e., 1 ) E~~ = .Faik, 2) 
Tip,(k) =Sip6,T(k)and3) T(k)  = T(Ikl),thenthewave 
vector vanishes from the integrand in Eq. (7) and we arrive 
at the well-known formula ( 1 ). This calculation is conceptu- 
ally similar to the "distributed dipole" approach to the de- 
scription of spatial dispersion in the theory of the scattering 
of light6 and to the calculation of the phase velocity of waves 
in spatially nonuniform media.'z8 

If the medium is isotropic on the average but the fluctu- 
ations v, ( r )  are not scalar, then the phenomenological 
expression derived in Ref. 9 can be employed for the tensor 
Ti;.,,, (k ) .  Although in this case E; a So, the relation ( 1 ) is 
no longer applicable. 

Media in which the fluctuations of the chemical compo- 
sition are frozen, for example glass, where it can be assumed 
that vik ( r )  = Sikv(r), are of great interest. Suppose that 
glass has been heated, strongly deformed at constant volume 
(as done in the drawing of lightguides), and annealed in 
order to reliev5 the stresses. Ifc can then be expected that 
v,,, (r)ik = v(Cr)Sik, where C is the matrix of an affine 
transformation, so that the isotropic correlation function 

will become anisotropic at the outset. In particular, in the 
case when the fiber is drawn along the z axis the fluctuation 
contribution will cause E:: to become somewhat greater than 
&$ = &;;. 

Some conclusions regarding the properties of the fluc- 
tuations v(r) can be drawn by measuring the birefringence. 
These properties are also important in connection with Ray- 
leigh scattering of light in fiber-optic waveguides and mini- 
mizing the losses in them. 

3. PROPAGATION OF LIGHT IN AN ANISOTROPIC MEDIUM 
WITH FLUCTUATIONS 

We shall write Maxwell's equations for the complex 
amplitude of a monochromatic field E(r)e-'"I in the form 

0 
(rot rot E)  - - Eik(r) (E (r))*=O. 

c2 
(8 

It is assumed here that the fluctuations of the tensor 2 change 
over time intervals that are many orders of magnitude longer 
than the period of the light oscillations. We shall seek the 
solution of Eq. (8)  in the form of a plane wave with a wave 
vector k and a field A scattered by the permittivity fluctu- 
ations D(r); see Eq. (3).  We shall find the fluctuation correc- 
tion to the propagation constant or, which is approximately 
the same thing, to the effective dielectric constant. 

As was done for the quasistatic problem we shall desig- 
nate by a vector without the argument E the coefficient of 
the exponential function: 

E (r) =E exp (ikr)+A(r) . (9)  

The polarization of the wave E and the length of the wave 
vector k in a given direction are strictly determined by the 
crystal and correspond to one of the two solutions of the 
unperturbed eigenvalue equation. Taking into account the 
scattered wave A (both real and virtual) and the perturba- 
tions ir, this equation assumes the form 

where the angle brackets (...) once again denote averaging 
over an ensemble of fluctuations. As in the case of a static 
field, it is convenient to solve the equation for the correction 
to the field 

w2 w2 
rot rot A - - eA (r) = - (r)Eeikr 

c2 c2 
(11) 

in the Fourier representation 

where 

Substitution of Eqs. ( 12) and ( 13) into Eq. ( 10) gives the 
correction SE;' ( k )  in the form 

This formula gives the solution of our problem. If p is as- 
sumed to be fixed azd ( w / c )  is made to approach zero, then 
the expression for G(p) assumes the form 
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whence the quasistatic expression (7  )^of the preceding sec- 
tion is obtained. The expression for G contains two poles, 
corresponding to the contributions of waves which are actu- 
ally scattered and pass to infinity. These poles must be by- 
passed according to Sommerfeld's radiation principle, i.e., 
by making the substitutions w-w + iy and y-. + 0. The 
contribution of a pole corresponds to to the imaginary (more 
precisely, antihermitian) part of SPff and describes the scat- 
tering-induced attenuation of the starting wave. The extinc- 
tion coefficient could be obtained by calculating the scat- 
tered field A(r )  in the far zone of the coordinate 
representation and integrating over solid angles the corre- 
sponding Poynting vector. The method of calculation based 
on the treatment of the pole in Eq. ( 14) is more convenient 
in the case of strongly anisotropic media, since in this meth- 
od all effects such as the mismatch of the group velocity and 
the phase velocity, etc., are taken into account automatical- 
ly. 

The real (i.e., Hermitian) part of SE, from Eq. ( 14) is 
given by a principal-value integral and corresponds to the 
contribution of virtual-scattering processes, i.e., excitation 
of waves A(p)eip'' with the Fourier argument p which does 
not satisfy the wave equation. 

The contribution of fluctuations corresponding to 
(pi $ W/C is described by the quasistatic expression. The cor- 
responding part of the integral over d 3p in most physical 
models of media diverges as I p I - cc . It is natural to include 
this quasistatic part in (E, ) by redefining or renormalizing 
the latter. One can hope that the remaining part of the con- 
tribution from fluctuations with moderate values of 
/ql = Ip - kl -W/C will be given by a converging integral 
and depends on the magnitude and direction of the vector k. 
In this manner the contribution of permittivity fluctuations 
to spatial dispersion will be calculated in the distributed- 
dipole a p p r ~ a c h . ~  Specific calculations for nematic liquid 
crystals will be performed below in Sec. 4. 

4. FLUCTUATION CONTRIBUTION TO 6~ FOR NEMATICS 

We shall study a nematic liquid crystal, which, neglect- 
ing equilibrium thermodynamic fluctuations, we shall as- 
sume is uniform and has an undisturbed director orientation 
no. We shall write the permittivity tensor at the frequency of 
light in the form 

Here E, = E,, - cl is the difference of the two principal val- 
ues of the tensor parallel and transverse to the axis. The 
unperturbed nematic is thereby an optically uniaxial medi- 
um. We shall represent the fluctuations of the permittivity 
tensor in the form 

We note that the term &,SniSnk contains fluctuations of the 
director at one point. Its average value can be included in the 
quasistatic part of 62, and we shall neglect its fluctuations as 
higher order infinitesimals. 

Specific calculations for a nematic are based onAtwo 
considerations. First, the explicit form of the matrix G(p) 
can be found for a uniaxial unperturbed medium: 

Second, the equilibrium thermodynamic fluctuations of the 
director in a nematic liquid crystal are determined by its 
resistance to strain. If K, = K, = K2 = K, are the Frank 
constants (in ergs/cm), then in the single-constant approxi- 
mation (see Ref. 10) we have 

<sni ( r )  ank(r+p) )= J ~ ~ , ( q )  e i q p  a3q, (19)  

where k ,  T is the temperature in energy units, whence we 
obtain without difficulty an expression for the correlation 
function (66) of the fluctuations. We thus obtain a result for 
Re(S&:;(k) ) in the form of a principal-value integral over 
d 'p, and an expression for ~ r n ( S ~ ; f ( k ) )  in the form of an 
integral over the solid angle. 

Extinction, i.e., real scattering of light in nematics by 
equilibrium fluctuations, was calculated in detail in Refs. 10 
and 11, and for this reason we shall cite the corresponding 
results here only in order to compare Re(&) and I r n ( 6 ~ ) .  

We shall be interested primarily in the corrections to 
the propagation of an ordinary wave. Real scattering from 
an ordinary wave occurs only into an extraordinary (e) 
wave. This can be easily seen from the expression ( 15) for 
v, ( r )  and the expression e, = [kno]/l [kno] / for the unit 
polarization vector e,. Since fluctuations in a nematic are 
particularly large for small values of q, scattering is strongest 
in the forward direction. Let the wave vector k, of the inci- 
dent ordinary wave make an angle a with the director (Fig. 
1 ). In most nematics the anisotropy much smaller than uni- 
ty, i.e., nu = ~ b / ~  - <0.25. For this reason for the ex- 
traordinary wave the direction of the group velocity is close 
to that of the phase velocity. For ordinary and extraordinary 
waves propagating in the same direction the difference of 
their wave vectors is Ak O Z  (w/c) nasin2a. For this reason, 
for o -. e scattering through an angle f i  the quantity 

is doubled and the deflection is given by 

On the other hand, the amplitude of o- e scattering through 
a small angle contains the polarization factor sina, and the 
intensity therefore contains the factor sin2a. As a result, the 
differential extinction coefficient near the forward direction 
is equal to 

i.e., as a - 0  it increases as (sina) -2, and the integral over 
the angles decreases approximately as 
[dR ( f l=  O)/do 1 I W I a sin2a. An approximate analytic 
expression can be obtained by integrating over the scattering 
angles, 
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FIG. 1. The geometry of real scattering of an incident ordinary wave into FIG. 3. The correction to the real part of the wave vector of an ordinary 
an extraordinary wave; no is the director vector, which is also the optic wave versus the angle a between k,, and the director for the same condi- 
axis; the circle and the ellipse are the surfaces of the wave vectors; tions as in Fig. 2. The quantity Sk (cm-' )  is obtained by multiplying 
q = k, - k, is the wave vector of the scattering fluctuation; p i s  the scat- 6k,,,, from the figure by the factor ( 1  'K,) - I ,  where R is given in mi- 
tering angle. crons and K, in units of dynes. 

1 0 2 k , T  
R ( c m - I ) = - - - n  a2 sin2 a In (n,-' sin-' a )  . (22) 2n c2 KF 

It corresponds to the well-known result that light scattering 
by molecules in a nematic crystal is weaker when the light 
propagates along the axis of the crystal. 

More accurate results can be obtained by numerical in- 
tegration. Figure 2 shows the function R (a) in the one-con- 
stant approximation for the nematic 5CB with rill = 1.71 
and n, = 1.526. 

The calculation of Re(S&") is technically more diffi- 
cult. First of all, the integral for Re(ckeff) diverges as q,,, 
for large I ql . The difference Re [S&(k, w ) ] - Re [S&(k, 
w -0) ] between the quantity we require and the quasistatic 
expression is given by an integral that diverges as In q,,, ,but 
with a coefficient that vanishes on integrating over the an- 
gles q/q. Finally, when the integral is calculated numerically 
it is necessary to add to the integrand a singular function 
whose principal-value integral over the required region van- 
ishes identically while the singularity cancels the singularity 
for the initial expression near the pole. 

The qualitative result is as follows. If the correction to 
Re(&) for the ordinary wave is measured relative to the 

same for Re(&) in the case of propagation transverse to the 
axis (a = 90"), then as a decreases from 90" to 0" the quanti- 
ty Re(&) becomes increasingly more negative. This corre- 
sponds to the contribution of the fluctuations with the long- 
est wavelengths (q-0). The extraordinary-wave photon 
virtually admixed by fluctuations would have for the vector 
p = k, + q ~ k ,  the frequency we = wn,/ne. This situation 
is analogous to the interaction of light with a resonance 
atomic transition w,, under conditions when w,, < w and 
then SE < 0. Compared with extinction, Re(&) contains an 
extra power of (k, - ke ) in the denominator, and the effect 
of SE < 0 becomes stronger as a approaches zero. 

This circumstance can also be interpreted differently. 
Thanks to the strong excitation of long-wavelength fluctu- 
ations by thermal impulses, R ~ ( S E )  is determined primarily 
by the interaction of the ordinary wave with the nearest ex- 
traordinary wave. It  is well known from quantum mechanics 
that in second-order perturbation theory interacting terms 
repel one another. This means that the refractive index de- 
creases for the ordinary wave (it was already lower, since 
n, = nil - n, > 0 )  and increases for the extraordinary wave. 
The role of small values of Iql is to enhance this effect for 
small values of a as compared with a = 90". 

Finally, for very small values of a the difference be- 
tween the ordinary and extraordinary waves is very small 
and the absolute magnitude of the contribution to Re(&) 
once again decreases. 

Figure 3 shows the results of the calculation of the 
three-dimensional singular integral for 
Re(Sk) = (w/c) ~e(6&")/2&:'~ as a function of the angle a 
between the direction of propagation k, and the director no. 

FIG. 2. The ordinary-wave extinction coefficient versus the angle a be- 
tween the direction of propagation of the wave and the optic axis of the 
liquid crystal. The value of R (cm - I ,  with respect to intensity) is obtained 
by multiplying R,,,, from the figure by the factor ( 1  'K,) - I ,  where R is 
the wavelength of light in microns and K, is Frank's constant in units of 

dynes. 

5. DISCUSSION 

We note first of all that the experimentally accessible 
cell thickness L must not be too large, so that the intensity of 
the transmitted coherent ordinary wave 
I ( L )  = Ioexp( - RL) would make it possible to record the 
correction Sq, = SkL to the phase. Taking 
I(L)/Io =:e-4 = 1.8%, we obtain Sq, = 4Sk /R. Thisraises 
the question of the choice of medium for which the quantity 
Sk /R is as large as possible. The foregoing analysis shows 
that R -nz and Sk-no, so that it is best to use a medium 
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with a moderate value of n, (for example, n, ~0.01-0.05). 
Extremely small values of n, could be dangerous in that for 
them the conditions of adiabatic trapping of the polarization 
of the ordinary wave by the director may not be satisfied. 

We shall now make some numerical estimates. Even for 
the unfavorable case of the nematic 5CB, for which 
n, = 0.25, for a = 90" we have R = 5.48 cm- ' and Sk = 0 
(the latter, by definition). For a = 30" in the medium we 
have R = 3.23 cm-' and Sk = 3.5 cm-'. Thus it may be 
possible to observe the effect even in this unfavorable case. 
Measuring the effect will make it possible to understand bet- 
ter the properties of the an ordinary wave, propagating just 
as well and virtually undistorted in nonuniform nematics. 

In conclusion we sincerely thank E. I. Kats and N. V. 
Tabiryan for discussions. 
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