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Charge relaxation in layered structures is investigated, and a probabilistic interpretation of the 
results is given. The charge spreading problem in a randomly inhomogeneous two-phase medium 
is solved for arbitrary phase concentrations. It is shown on the basis ofthe scaling hypothesis that 
in strongly inhomogeneous media and near the percolation threshold the charge relaxes in a 
power-law manner in both the two- and three-dimensional cases. 

1. INTRODUCTION 

The variation of the nature of relaxation of an excess 
charge density p in inhomogeneous media, namely a 2D two- 
phase medium near the percolation threshold (with equal 
phase concentrations) in a comb structure, has been investi- 
gated in Ref. 1. It has been shown that the relaxation time in 
a randomly inhomogeneous medium with equal phase con- 
centrations is determined by the conductivity of the poorly 
conducting phase, while in a metal-dielectric mixture the 
charge relaxes according to a power law. Charge spreading 
on a comb structure also has a non-Maxwellian character. 

The purpose of the present work is further investigation 
of charge relaxation in inhomogeneous media. Layered and 
randomly inhomogeneous materials are considered in the 
effective-medium approximation. The space dimensionality 
is unimportant for this approximation. A generalization of 
the Maxwellian law is obtained for the case of layered struc- 
tures, and a probabilistic interpretation of these results is 
given. The character of charge relaxation is established for a 
two-phase medium with arbitrary phase concentrations. 
This character differs substantially from Maxwellian in the 
general case. It is also shown on the basis of the scaling hy- 
pothesis that is strongly inhomogeneous (metal-dielectric) 
media the charge relaxes by a power law in the 2-D and 3-D 
cases. 

Charge relaxation in a conducting medium is described 
by the system of equations 

2 + div j=O, div e=4np, j=oe. 
at 

The vectors j and e are the electric current and field, respec- 
tively. The permittivity of the medium is assumed equal to 
unity. This system can be transformed into equations for a 
constant current 

div j=0, j = a +- e. ( 
Consequently, the conductivity at frequency w is described 
by the expression 

Similar equations also hold in an inhomogeneous medium 
for the averaged quantities J = ( j )  and E = (e): 

div J=O, div E=4n<p). J=a,,,E. (4) 

The effective conductivity of the medium depends on 
both the frequency and the medium parameters. We empha- 

size that in this approach all the information concerning the 
medium inhomogeneity is contained in the effective conduc- 
tivity. 

Thus, according to (4), to describve charge relaxation 
in an inhomogeneous medium within the approximation 
considered it is sufficient to know the frequency dependence 
of its effective conductivity. 

2. LAYERED STRUCTURES 

Consider inhomgeneous structures obtained by random 
alternation of layers with different conductivities a, and a,. 
The law of relaxation along the layers of the structure is 
determined quite simply. In this case the field is homoge- 
neous, and the averaging is carried out easily: 

where (a) = xu, + ( 1 - x)a,, and x is the concentration of 
the first phase. An equation is correspondingly obtained for 
the averaged concentration: 

The Green's function of Eq. (6)  is 

Transforming to the t-representation, we obtain 

GI1 ( t )  =exp [-4naizt-4naz (I-x) t] . (8 

During charge spreading across the layered structure 
the current is constant and the resistance averages out. In 
this case, therefore, the effective-medium conductivity 
equals 

while the Green's function is 

For computational convenience we represent expression 
(10) in the form 

in which case we obtain in the t-representation 

GL(t) =x exp (-4nait) + (I-x ) exp (-4na2t). (12) 
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The results (8)  and ( 12) have the following probabilis- 
tic interpretation. We denote the concentration decrease due 
to relaxation in the first phase by G,, and in the second phase 
by G,. Charge spreading along the conducting layers in the 
first and second phases can be treated as two independent 
events; therefore, by the theorem of multiplying indepen- 
dent events we have 

GI' ( t )  = G , ~ G ~ - ' )  . (13) 

Differently stated, the logarithm of the concentrations is 
averaged in this case. 

According to ( 12), during charge relaxation across the 
layers the concentration decreases due to spreading over the 
first or second phase: 

G L ( t )  =xGl+ (1-2) Gz. (14) 

i.e., the concentration itself is averaged, while the decrease in 
charge density is described by the theorem of probability 
addition. 

The expressions obtained by us for charge relaxation 
are valid for 3-D structures with 2-D dependence (nothing 
depends on the coordinate 2). For charge spreading only in a 
plane and in a 3D field, relaxation has a non-Maxwellian 
character even in the homogeneous case.2 

3. RANDOMLY INHOMOGENEOUSTWO-PHASE MEDIA 

To find the frequency dependence of a two-phase medi- 
um with arbitrary phase concentrations we use the effective- 
medium approximation. For definiteness we consider the 2- 
D case. As well known, in this approximation the 
effective-medium conductivity is3 

( S , f f =  (ai--02) E+ [ ( ( J I - O Z ) ~ E ~ + U ~ U ~ ] " ~ ~  (15) 

where E = ( X  - X, )/x, is the deviation from the percolation 
threshold x, = 4. 

As noted above, the conductivity of each of the phases 
at the frequency w is described by the expression u + iw/4.n. 
Consequently, from (3)  and (15) we obtain the following 
expression for the frequency dependence of the effective con- 
ductivity of a two-phase medium: 

Correspondingly, the Green's function averaged over the 
randomly arranged phases equals 

Using the identity 

following simple transformations and integration over w we 
calculate the Green's function in the t-representation: 

446 Sov. Phys. JETP 72 (3), March 1991 

-4ne (al-a,) 1 exp [-4n ( 0 , - o , ) ~ t ]  lo (2n[a,-a,] 
0 

where I,(x) is the modified Bessel function. 
We stress that Eq. ( 18) describes charge relaxation in a 

two-phase medium for arbitrary phase concentrations. Near 
the percolation threshold E = 0 expression ( 18) transforms 
to the corresponding expression of Ref. 1, obtained by a dif- 
ferent method, by means of the general Dykhne approach. 
For E = + + one obtains, as expected, a homogeneous medi- 
um with the usual Maxwellian relaxation law. 

Equation ( 18) is quite unwieldy, and therefore it is in- 
teresting to consider some of its limits, more precisely the 
spreading above and below the percolation threshold in a 
strongly inhomogeneous medium (a, < a l ) .  For this we use 
expansion ( 16) in the form 

1 (a1+io/4n) (a2+io/4n) 
aerr(w)-(oi-c~z) I E  1 ( I f 1 )  +- 

2 ( ~ ~ - a ~ )  I E l 
(19) 

for u2/al <E' 4 1. Equation ( 19) is valid at low frequencies, 
as well as far enough from the percolation threshold. In this 
approximation the Green's function is 

i.e., in the t-representation one has 

G* ( t )  ~ { e x p  [-4nopt-8na,e2 (1*1) t ]  -exp ( -4no , t ) ) ,  (21) 

where the + ( - ) sign refers to the situation above (below) 
the percolation threshold. 

Thus, above the percolation threshold the charge re- 
laxes with a time t ,  - ~ / u , E ~  that depends on the proximity 
to the percolation threshold. Below the percolation thresh- 
old and in the dielectric-metal mixture a chrage placed in 
the metallic region remains in it: 

4. STRONGLY INHOMOGENEOUS (METAL-DIELECTRIC) 
MEDIA AT THE PERCOLATION THRESHOLD 

We treat relaxation in the 3-D case on the basis of the 
scaling hypothesis. According to this hypothesis the effec- 
tive conductivity of a strongly inhomgeneous medium near 
the percolation threshold can be represented in the self-simi- 
lar form 

where the parameter h = o,/u, < 1 is the ratio of the phase 
conductivities, and the quantity E is the deviation from the 
percolation threshold. The asymptotic behavior of the func- 
tion f is described by the exponents S, T, and Q of percolation 
theory: 

I IzI-~, z<-1 

f(z)= I ,  1z1<<1. (23) 
zT,  z B 1  
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The exponents S, T, and Q are connected by the exact rela- 
tionship 

Using (3)  and the asymptotic behavior of (22), we obtain 
the frequency dependence of the effective conductivity of a 
strongly inhomogeneous medium near the percolation 
threshold: 

The dependence (25) was also established in Ref. 4. Calcula- 
tions similar to those performed above yield the charge re- 
laxation law in metal-dielectric mixtures: 

In the 2D case Eq. (26) is confirmed by exact solution of the 
problem [ 1 1 ,  while the exponent value S = + was estab- 
lished in Ref. 5. A possible exponent value S = 3 for the 3-D 
case is indicated in Ref. 6. 

The power-law relaxation in a metal-dielectric mixture 
is a consequence of the absence of characteristic dimensions 
in the problem, since the correlation radius is infinite near 
the percolation threshold, and metallic phase inclusions are 
possible for all dimensions along which charge spreading 
occurs. 

In conclusion, the following qualitative pattern can be 
given in strongly inhomogeneous media near the percolation 
threshold, as follows from our results. At short times t&t,, 
when the charge does not emerge beyond a unit cell of the 
size of the correlation radius, the charge spreads in power- 
law fashion. At later times, relaxation above the percolation 
threshold is exponential with a time t, that depends on the 
proximity to the percolation threshold, while below the per- 
colation threshold only polarization of the medium takes 
place in a dielectric phase with metallic inclusions. 

5. DISCUSSION 

Thus, in the present article we have treated charge re- 
laxation within the effective-medium approximation. It 
might seem that if the effective conductivity ue, of an inho- 
mogeneous medium at zero frequency is known the answer 
must have a Maxwellian form: p -p, exp( - 4n-ue,t). In 
real situations, as shown above, this is not the case. 

The effective-medium method is widely used to de- 
scribe inhomogeneous media. It yields, for example, the cor- 
rect qualitative behavior for the effective conductivity of a 
two-phase system at arbitrary phase  concentration^.^ In the 
2D case and near the percolation threshold the exact solu- 
tion of the conductivity problem~emonstrates the validity 
of this approximation. Therefore, it can be expected that the 
effective-medium method also describes correctly the basic 
features of charge spreading in inhomogeneous media. 

Let us discuss the results and the validity of the effec- 
tive-medium approximation. In the simplest case of an inho- 
mogeneous medium consisting of two half-planes with dif- 
ferent conductivities (in a bicrystal) the exact solution of the 
problem coincides with the solution obtained by the effec- 
tive-medium method. Relaxation along the boundary of the 
two phases is described by expression (8) ,  while the spread- 
ing across the layers is described by Eq. (12) at a phase 
concentration x = +. 

The decrease of the excess charge density in a percola- 
tion-type randomly inhomogeneous medium (a, <a,) 
above and below the percolation threshold, as well as at the 
threshold itself, can be explained as follows. Below the per- 
colation threshold the entire charge in a dielectric phase 
with metallic inclusions goes from the metallic regions to the 
boundary, and therefore it is sufficient to estimate the charge 
variation with time at the boundary. The conservation law 
for the surface charge p, is 

Consequently, for charge relaxation below the threshold we 
have 

wherep, = E /4n. This corresponds to the result (21'). 
Above the percolation threshold charge spreads over an 

infinite metallic cluster (a  set of percolating paths departing 
to infinity). Following a single time interval r the charge in a 
conducting medium decreases by an amount a7;o,, and ac- 
cordingly after N steps we obtain an exponential decrease of 
the charge density: 

p-po ( l - o ~ ) ~ - p , ,  exp (-mN). 

The number of steps Nis proportional to the time t, but since 
the percolation paths are tortuous the charge spreads more 
slowly in a percolating system. To reach in a Euclidean space 
a distance R it is necessary to trace a tortuous percolation 
path of larger length 2. Due to the scale invariance of the 
system both lengths are measured in units of the correlation 
radius LC zz 

- . Therefore the number of steps is 

where the information about the structure of the percolation 
paths is contained in the functional dependence on the prox- 
imity to the percolation threshold, i.e., in f (6). In a two- 
phase medium f (&) = E ~ .  

The power-law behavior in a metal-dielectric mixture is 
also easily explained. Near the percolation threshold the cor- 
relation radius is infinite, and therefore metallic phase inclu- 
sions of all dimensions are possible. The absence of charac- 
teristic dimensions in the problem also leads to a power-law 
charge relaxation. We note also that for regular fractals of 
Serpinskii parquet type a similar power-law behavior was 
independently established in Ref. 7 by means of normaliza- 
tion-group transformations. (Metal-dielectric percolation 
systems are associated with random fractals.) 

Thus, the estimates performed verify the validity of the 
effective-medium method in describing charge relaxation in 
inhomogeneous media. It is also noted that with increasing 
time the charge occupies an ever increasing part of the space, 
and the averaging is over ever increasing scales. Consequent- 
ly, the results obtained within the effective-medium approxi- 
mation are asymptotically exac! in the limit of long times. 

The author is grateful to E. G. Batyev and A. 0. Go- 
vorov for a useful discussion of the results, to E. M. Baskin 
for critical comments, and to A. M. Dykhne for pointing out 
the necessity of estimates to confirm the validity of the effec- 
tive-medium method. 
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