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The quasienergy spectrum of a two-level atom in a polyharmonic field is expressed in terms of the 
Floquet indices of a linear system of ordinary differential equations with periodic coefficients. An 
asymptotic technique is used to obtain an analytic description of the quasienergy spectrum in the 
case of a strong polyharmonic field. It is shown that "forbbidden bands" can arise for the 
quasilevel energies when the radiation incident on the atom is deeply modulated. 

1. INTRODUCTION 

The study of the dynamics of a two-level atom in an 
electromagnetic field is a classical problem of importance in 
spectroscopy and quantum optics."' A two-level atom in a 
field comprising a sum of two or more harmonics with fre- 
quencies close to that of the atomic transition is being dili- 
gently investigated theoretically and experimentally of 
late.*-" The present paper is devoted to an analysis of the 
case when the harmonics of the incident field are equidis- 
tant. This case has many physical applications for two rea- 
sons. First, it includes the particular case of a biharmonic 
field, when only two harmonics are present. No analytic de- 
scription of the quasienergy spectrum existed up to now for 
this case. Second, such a structure is possessed by multi- 
mode-laser emission, where the modulation of the incident 
radiation can be made arbitrary by using appropriate optical 
elements. 

The theoretical analysis of this physical system was re- 
stricted up to now either to simple situations, when a solu- 
tion in terms of elementary function could be obtained435 or 
a numerical procedure of constructing the solution was de- 
~ e l o ~ e d . ' ~ ~ ~ "  In the present paper are obtained explicit ana- 
lytic expressions for the quasienergy spectrum of a two-level 
atom in a strong polyharmonic field under fairly general as- 
sumptions concerning the form of the field. We consider this 
problem here with the aid of the Schrodinger equation for 
the wave function of an atom. A more complete analysis of 
this physical situation is possible in the context of the den- 
sity-matrix method, in which account is taken of the pres- 
ence of pumping and damping. Our methods can apparently 
be used in this case, too. For damping that is small compared 
with the Rabi parameter, however, the location of the quasi- 
energy spectrum can be sufficiently well determined also 
with the aid of the Schrodinger equation. 

From the mathematical point of view, the problem con- 
sidered here reduces to a calculation of the Floquet indices 
for a linear system of ordinary differential equations with 
periodic coefficients and with a large parameter. A proce- 
dure will be proposed here for an asymptotic calculation of 
the Floquet exponents and their asymptotic-expansion 
terms will be obtained up to 0( 1 ) . 

2. FORMULATION OF PROBLEM AND DESCRIPTION OF 
MATHEMATICAL FORMALISM 

We introduce the wave function of the atom in the stan- 
dard form ' 

IY ( t )  ) = [ c , ( t )  I l ) + c , ( t )  12>]exp 1-i(El+E2)t /2f i l ,  

where Em and (m) are the energy and wave function of the 
mth level, m = 1 and 2, f i  is Planck's constant, and t is the 
time. The Schrodinger equation for a two-level atom in an 
electromagnetic field is given in terms of the amplitudes 
c ,  ( t )  by the system 

dc, -= iwc, + -p ( t )cz ,  
dt f i  

-=- iwc, + - p ( t )  c, ,  
dt  h 

where ,u is the dipole moment of the atom, 
2w = ( E l  - E, )/A, and p ( t )  is the external field. We con- 
sider a polyharmonic field 

p ( t )  = A. cos [ (Q+nA) t + ~ , , ] ,  A. = Re An, ( 1 ) 

i.e., we assume the external field to be equal to a sum of 
equidistant harmonics. The frequencies R can, of course be 
shifted by mA, where m = f 1, + 2, without changing the 
form of ( 1 ). We shall assume that fl is chosen such that the 
harmonics with largest amplitudes have numbers of the or- 
der of unity. This condition will be formulated more accu- 
rately below. We assume here that R,-2oBA. Using the 
substitution 

c,=a, exp (iS2t/2), c,=az e x p  ( - iQt /2) ,  

stretching the time scale T = At, and using the rotating-wave 
approximation, we obtain the system 

da, -= ip ixa, + - R ( z )  a,, 
d z  f i  A 

We impose on R (7) the following conditions that refine the 
concept of a strong field and the choice of fl: 

with p having the meaning of the strong-field Rabi param- 
eter. The system (2) takes then the form 
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da, -= ixa,+ipq (r)  a,, 
d r  

From this system we obtain an equation for the function 
F(r) = a, ( T )  ( m) - 

[it is the same, apart from notation, as Eq. (2.4) of Ref. 11 1. 
It follows from the definition of the function q ( r )  that Eq. 
(3)  has coefficients periodic in r .  According to the Floquet 
theorem12 its solution has the following structure: 

F(T)  =a, exp (iv,r)P, (.s)+a, exp (ivz.c)P, (T), 

where Y, and Y, are constants called the Floquet exponents, 
a, and a, are constants determined by the initial data, and 
PI (r) and P, (r) are periodic functions. It follows from our 
equations that the functions a,,, (7) have the same struc- 
ture. We conclude thus that the quasienergy spectrum of our 
physical system is described by the relation 

Each of the two initial levels is split here into two infinite 
systems of quasilevels. An important role in practical appli- 
cation is played also by the Rabi spectrum of the physical 
system, i.e., the Fourier spectrum of the function 
cl 5, - 5, c, . It obviously consists of three sets: 

As shown in Ref. 13, the location of the Rabi spectrum can 
be determined by experiment. The determination of the loca- 
tion of the quasienergy spectrum and of the Rabi spectrum of 
the system reduces to calculation of the Floquet indices of 
Eq. (3 1. This is in fact our aim and we shall use, recognizing 
the presence of the large parameterp, an asymptotic-calcula- 
tion t e chn iq~e . ' ~ , ' ~  

Two possibilities exist for the parameter x indicative of 
the detuning of the central frequency of the incident radi- 
ation from the transition frequency: x = 0 ( p )  and 
x2 = O(p). Next, different methods must be used to calcu- 
late Y,., , depending on the presence or absence of zeros of the 
function q ( r )  in the period. The function q ( r )  describes the 
modulation of the radiation incident on the atom. We shall 
define the radiation as weakly modulated in the absence of 
zeros in the period and as deeply modulated in their pres- 
ence. Altogether there are three situations which must be 
separately analyzed: 1 ) large detuning and weak modula- 
tion, ?t2 = b 2p2, Iq(r) I > 0; 2 )  large detuning and deep mod- 
ulation, ?t2 = b 'p2 + up, q ( r )  has zeros in the period; 3) 
small detuning, deep modulation x2 = up, q ( r )  has zeros in 
the period. 

The procedure for calculating the Floquet indices for 
Eq. (3)  reduces to the following. It is necessary to find in the 
vicinity of an arbitrary point ro a pair of linearly indepen- 
dent solutions and "continue them analytically" to 27~. We 
obtain as a result in the vicinity of ro a new pair of linearly 
independent solutions. The matrix relating this pair to the 

initial one is called the monodromy matrix. Its eigenvalues 
are equal to exp [277iv,,, 1.  At different choices of both the 
initial point and the pairs of solutions in its vicinity, the cor- 
responding monodromy matrices are similar to one another 
and their eigenvalues coincide. If the function q ( ~ )  has no 
zeros in the period, V ( T )  can be easily calculated by the 
WKB method (Sec. 3 ) .  If q ( r )  has zeros in the period, the 
procedure becomes more complicated, since regular singu- 
lar points arise in Eq. ( 3 ) .  To construct the monodromy 
matrix we use here the standard-equation method (Secs. 4 
and 5). For large detuning we choose as standard the Whit- 
taker equation with stretched scale, and in the case of small 
detuning a "hybrid" of the Whittaker equation with the 
parabolic-cylinder equation. 

3. LARGE DETUNING AND WEAK MODULATION 

Equation (3)  takes for large detuning the form 

Using the weak-modulation condition, we use the WKB 
methodL4 to solve this equation and obtain 

Here 0 = arg q. 
According to (4), each initial level splits into two quasi- 

energy-level systems. For 2v, = I with I an integer, how- 
ever, these series coalesce into one. Thus, either one or two 
series of quasilevels can exist (for each initial level), depend- 
ing on the values of the parameters and the form of the inci- 
dent radiation. It follows from (6)  that the location of the 
series is quite sensitive to the value of the Rabi parameterp: if 
it is relatively large (p  $1 ) the changes of the harmonic can 
shift noticeably. A characteristic feature in this case is that 
for a monotonic increase (decrease) of p, i.e., of the radi- 
ation power, without change of the other parameters, the 
quasilevel series into which the initial level is split are shifted 
uniformly in opposite directions. Each quasilevel can have 
then an arbitrary value. 

4. LARGE DETUNING AND DEEP MODULATION 

In this situation Eq. (5)  has regular singular points at 
r = r,, l<k<n,  where r, are the zeros ofthe function q ( r ) .  
We assume here that r, are simple zeros, i.e., ql(r ,  ) #O. We 
fix in some arbitrary manner the points 
r; :O = r; < T~ < r; < ... < r, < r: + = 27~. In the vicinity of 
each point r; we choose a pair of independent solutions of 
(5):  f(k,r) = (F, (k,r),F, ( k , ~ ) ) .  We assume that the 
choice of solutions is consistent, i.e., f(1, r) = f(n + 1, 7).  
We consider the transition matrices M(k)  that describe the 
result ofexpanding the pair of solutions f(k, T) in the basis of 
solutions f (k  + 1, r) . The monodromy matrix of Eq. ( 5), 
which correspond to the choice of r0 = 0 as the initial point 
and f( 1, r) as the initial pair of solutions, is then 
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It suffices thus to calculate the matrices M ( k ) .  We construct 
the solutions of ( 5 )  in the vicinity of the singular point 
T = T ,  with the aid of a standard equation15 which we 
choose, analyzing the chacter of the singularity in the vicini- 
ty of this point, to be the Whittaker equation with stretched 
scale: 

d2w ihp 35 
w=o. 

dz2 z  4z2 

We seek the solution of Eq. (5 )  in the vicinity of T = T ,  in 
the form 

F ( k ,  . t )=[z l (k ,  T ) ] - " w ( z ( k .  z ) ) ,  ( 8  

where w ( z )  is the solution of ( 7 ) .  Following Ref. 15,  we can 
obtain a nonlinear equation for the function z ( k ,  T ) .  Substi- 
tuting in it the asymptotic series 

we arrive at a recurrent system of equations for the functions 
z, ( k , ~ ) .  The parameters A, and 5," are chosen from the 
condition that there be no singularities in the equations for 
z, ( k , r ) .  To highest order we obtain 

We calculate v,,, all the way to terms O( 1 ), so that it suffices 
to confine ourselves to the already constructed terms of the 
asymptotic expansions. At this accuracy, the standard equa- 
tion (7)  takes the form 

We define a pair of solutions of ( 10) using their behavior as 
z- f 02 :  

I z I-'/* exp (- ipz) ' 
I z  1''. exp (ipz) ( 1  1) 

It is easy to show that 

Following ( 8 ) ,  we introduce the solutions of ( 5 )  in the form 
F t2 ( k , ~ ) ,  where we choose for w ( z )  the functions w& ( z ) .  
The transition matrix M ( k )  is diagonal in the basis of the 
solutions F 6 ( k , ~ )  and by using (9 ) ,  ( 1  1 ) ,  and (12 )  we get 

where 

r 

a - ] + J ds[L!?L- bq"' ] 
2(lqlz+b2)" rx 2z8 ( k )  24( I q I '+b2)$ 

Summing over all the points T ,  and using the notation 
0 = arg q  and the periodicity of the function q ( r )  we arrive 
at the final expression for the Floquet exponents in this case: 

221 

It is assumed here that on going through a zero of the func- 
tion the value of 8(s) changes jumpwise by n. With 
allowance for this stipulation, the last relation is essentially 
the same as ( 6 ) .  All the remarks made in the discussion of 
( 6 )  are pertinent also in this case. 

5. SMALL DETUNING, DEEP MODULATION 

Equation (5 )  takes in this case the form 

Let T,, M ( k ) ,  and 1 <k<n have the same meaning as before. 
We calculate the transition matrices M ( k )  by the standard- 
equation method. We put 

[as before, we assume the function q ( r )  to have simple ze- 
ros]. A local analysis of the singularities shows that the stan- 
dard equation should be chosen to be 

d2 w i [ a ( k ) p ] ' "  - + { p2z'+a ( k )  p - 
dzZ z 

We construct the solution of ( 13) in the vicinity of T = r, in 
a form similar to ( 8 ) .  Writing down the equations for the 
higher-order terms z ( k ,  r ) ,  a ( k ) ,  /1 ( k ) ,  c ( k ) ,  of the asymp- 
totic expansions we get 

a, (k)  =ark-', ho ( k )  =%,(k) = l .  ( 1 5 )  

Following the standard-equation method, we must calculate 
for Eq. (14 )  a monodromy matrix that connects a pair of 
solutions with a fixed behavior asz- f cc . It suffices here to 
determine this matrix with account taken of only the higher- 
order of the expansion of the coefficients of ( 14) in terms of 
the parameterp. We arrive thus at the problem of calculating 
the monodromy matrix for the equation 
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Here and below a (k )  = ar , '. Generally speaking, Eq. ( 14) n 1  i a ( k )  ia ( k )  

4 2 4 
+ a r g r  I--) [and its particular case ( 16) ] are "hybrids" of the parabolic - +  ( - 1  ( 4 . 

cylinder equation and the Whittaker equation, and for arbi- 
trary A and 5 the explicit form of the monodromy matrix of (19) 
(14) is as yet unknown. For Eq. (16), however, it can be 
calculated. We present here only the results, and relegate the We introduce now pairs of solutions of ( 13) with fixed be- 
details to the Appendix. Let w& (z) be solutions of ( 16) havior at ?-< ?-, and ?-> Tk: 

with fixed behavior as z+  co : 

wl* ( z )  - 1 z I exp [ i R  ( z ) ] ,  
z+m 

wp* ( 2 )  z ~ w  I z I-'/' exp [- iR ( z ) ] ,  

pz" ( k )  R ( z ) = - + - l n ( p ' " l z I ) .  
2 2 

Then 

sin 6 ( k )  
s=( cos 6  ( k )  exp[icp ( k )  ] 

cos 6  ( k )  exp[- icp(k)]  -sin 6  ( k )  

where 

rIYk)-rzZ ( k )  6  ( k )  = arcsin - 
ri"k) +rz2 ( k )  ' 

Writing down their asymptotes at r, < T < r, + , , we obtain 

Fa-(k+l ,  ~ ) = e x p  [ i N ( k ) l F , + ( k ,  z), 

F i - ( k + l ,  z) =exp [ - i N ( k ) I F , + ( k ,  z ) ,  

where 

'b, 

a  ( k )  +a ( k + l )  
N ( k ) = p  S d s l g l +  I 

Taking ( 17) and (20) into account we obtain a final expres- 
sion for the transition matrices that connect the solution 

(k,r) ,  F G  (k  + 1 , ~ ) :  

cos 8  ( k )  exp[ i  (N ( k )  +cp ( k )  ) ] sin 6 ( k ) e x p  [- iN ( k )  ] 
M(")- (  - s in8(k)exp[ iN(k)I  cos6(k)exp[-i(N(k)+O(k))] 

It follows from our equations that det M(k)  - 1 and conse- 
quently det M- 1. Thus, the equation for the eigenvalues of 
the monodromy matrix M is 

whence 

The expressions obtained reduce the calculation of the Flo- 
quet exponents to calculation of the trace of a product of a 
finite number of matrices. The number of matrices, i.e., the 
number of zeros of the function q ( r )  in the period, can be 
arbitrary and finite. We present here only final equations for 
n = 1 and n = 2. 

I fn = 1 t h e n M = M ( l )  and 

Ifn = 2 then M =  M ( l ) M ( 2 )  and 

Here 6(k) ,  p ( k ) ,  and N ( k )  are given by (18), (19), and 
(21 ). Our equations point, as above, to explicit conditions 
for the quasilevel crossings. In this case however, the situa- 
tion differs substantially from those considered above. It is 
connected with the behavior of the quasilevels when the pa- 
rameter p is monotonically increased (decreased) at fixed 
values of the remaining parameters and of the form of the 
incident radiation. For example, let n = 1 and S (  1) # T I ,  
with I an integer. For a monotonic variation ofp the quasile- 
vels will then vary but remain each in a limited interval. 
"Forbidden bands" appear in this case, i.e., intervals in 
which no quasilevel can land at any p. Quasilevel crossing is 
then impossible, since 2 v ,  cannot take on the integer values 
of m. A similar statement is valid also for n = 2, 
6(1)  - 6(2)  #TI, as well as for n = 3, 4, ... 
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6. CONCLUSION 

Let us sum up. An analytic description of the quasien- 
ergy spectrum (and of the Rabi spectrum) of a two-level 
atom was obtained in the case of a strong polyharmonic field 
under rather broad assumptions concerning the form of the 
field. Our equations yield in explict form the condition for 
the crossing of the quasilevels of this system. As noted in 
Ref. 11, resonances are observed in this case in the absorp- 
tion spectrum of the system. (In Ref. 1 1, in which the formu- 
lation of the problem is similar to ours, the quasienergy spec- 
trum is not described explicitly; it is reduced to the problem 
of calculating an infinite determinant whose values are ob- 
tained subsequently by numerical methods). 

We have shown that at small detuning of the incident- 
radiation central frequency from the atomic-transition fre- 
quency and at deep modulation of the incident radiation 
there can appear in the quasienergy spectrum "forbidden 
bands" or intervals in which, at a fixed form of the incident 
radiation, no quasienergy levels can land at any radiation 
power. This phenomenon is similar to the corresponding ef- 
fect in solid-state physics. No quasi-energy-level crossing is 
possible here. 

We point out here a relation between our results and 
studies of the Stark effect for a two-level atom in a polyhar- 
monic field, see for example Ref. 16. We have analyzed a 
situation in which the Rabi parameter is of the same order as 
(even larger than) the distance between the transition fre- 
quency and the central frequency of the incident radiation, 
x2 = b 2P2 + ap. Here, as noted in Ref. 11, the Stark phe- 
nomenon constitutes splitting of each level into two series of 
sublevels. Our equations make it possible to track the dis- 
placements of these quasilevels upon adiabatic variation of 
the incident-radiation power, i.e., they contain a complete 
description of the Stark effect in this case. A case that in a 
certain sense the opposite of ours was considered in Ref. 16, 
where the problem was treated under the assumption that 
the Rabi parameter is much smaller than the distance 
between the central frequency of the incident radiation and 
the transition frequency. 

The author is grateful to S. A. Pul'kin, M. Z. Smirnov, 
and G. I. Toptygina for interesting discussions. 

APPENDIX 

We describe here the method of calculating the mono- 
dromy matrix ( 17 ) for Eq. ( 16). It is based on the following 
fact. If w ( z )  is the solution of ( 16) and u (2) is defined as 

u ( z )  =zCw ( z )  + [ ~ " ' w ( z ) I ' + i [ a ( k ) ~ z ] ' ~ w ( z )  

ipz 
1 

then u ( z )  is a solution of the following parabolic-cylinder 
equation with variable scale: 

u"+ [p2zZ+ ( a  ( k )  -i)pl u=O. 

Inverting (A1 ) , we obtain 

iu' ( z )  + { [ a ( k )  p]"+pz) u 
w ( z )  = Z% 

The solutions of Eq. ( 16) and accordingly the monodromy 
matrices ( 17) can thus be constructed with the aid of solu- 
tions of Eqs. (A2). We derived (17) using standard equa- 
t i o n ~ , ' ~  but recognizing that the asymptotic solutions given 
in Ref. 13 for the parabolic-cylinder equation are valid only 
for real values of the parameter of the equation. We therefore 
constructed the monodromy matrix (17) using direct ex- 
pressions for the solutions of the parabolic-cylinder equa- 
tions in terms of confluent hypergeometric functions. 
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