
Renormalization-group approach to the calculation of the effective dielectric 
constant of a two-dimensional inhomogeneous system 

L. I. Daikhin and M. I. Urbakh 

A. M. Frumkin InstituteofElectrochemistry, Academy ofSciencesof the USSR 
(Submitted 20 April 1990) 
Zh. Eksp. Teor. Fiz. 99,194-200 (January 199 1 ) 

A renormalization-group procedure is proposed for calculating the effective dielectric constant of 
a two-dimensional inhomogeneous system ( a  square lattice whose nodes are occupied in a 
random way by particles). This new procedure is based on the circumstance that in each step of a 
renormalization-group transformation the electric fields produced by the old and new 
configurations of particles far from the surface of the lattice are approximately the same. 
Significantly, this approach incorporates the dipole-dipole interaction between particles. An 
asymptotic expression is derived for the dielectric constant. This expression has a singular term 
proportional to Ip - p,. I ". 

1. INTRODUCTION 

There is considerable interest in the problem of calcu- 
lating the effective dielectric constant of composite materi- 
a l ~ . ' . ~  A rapid development of research in this field has been 
stimulated not only by practical needs but also by the discov- 
ery of new physical phenomena in these materials. 

Basically two approaches are presently being taken in 
the literature to describe the optical properties of compo- 
sites. The first starts from the use of one of various versions 
of the effective-medium appro~imation.~,"his approach 
suffers from all the shortcomings of the mean-field m e t h ~ d , ~  
which become particularly serious for two-dimensional 
composite materials near percolation thresholds for one of 
the components. The second approach starts from a model- 
ing of the composite medium by a lattice whose nodes (or  
links) are occupied in a random fashion by resistances and 

The effective dielectric constant of such a medium is 
calculated on the basis of scaling representations or the 
transfer-matrix method.'-"hat approach must apparently 
be abandoned in the optical frequency range, however, 
where the electromagnetic interactions between individual 
elements of the composite medium become important. 

Berthier and Driss-Khodja9 have recently attempted to 
take a renormalization-group approach to calculate the ef- 
fective dielectric constant in the case with dipole-dipole in- 
teractions. However, the approximation of an effective me- 
dium was used in that paper in each step of the 
renormalization-group procedure. The ranges of applicabili- 
ty of the renormalization-group method and of the effective- 
medium method are different. The first is used near a perco- 
lation threshold, and the second far from it. The approach 
taken in Ref. 9 is thus internally contradictory. 

In the present paper we propose another version of the 
renormalization-group procedure, in which the electromag- 
netic interactions between different structural elements are 
taken into account, and no use is made of the effective-medi- 
um approximation. This approach leads to the asymptotic 
behavior of the dielectric constant near the percolation 
threshold of a two-dimensional inhomogeneous system. 

2. DESCRIPTION OFTHE RENORMALIZATION-GROUP 
PROCEDURE 

We consider a two-dimensional square lattice whose 
nodes are occupied in a random way with a probability p by 
spherical particles with a polarizability a(w). The electro- 
magnetic field acting on each particle is the sum of the exter- 
nal field E,, and the induced field created by all the other 
particles. In calculating the effective dielectric constant of 
this inhomogeneous system, we restrict the discussion to the 
dipole-dipole interactions between particles. We use the fol- 
lowing renormalization-group procedure. 

1. The initial lattice is broken up into nonintersecting 
squares with a size equal to the lattice constant a (Fig. 1) .  

2. For each possible configuration of the particles on a 
selected quartet of nodes, an electrodynamic problem is 
solved. In other words, the field produced by the given con- 
figuration of particles in the external field E,, is calculated. 

3. All possible configuratioris are put in one of two 
groups (Fig. 2 ) .  The first group contains those configura- 
tions in which there are occupied nodes along at least one 
diagonal of the square. The second group contains all other 
configurations. The probabilities for the realization of the 
first and second groups of configurations are p, and 1 - p ,  , 
respectively. In accordance with the particular way in which 
we have classified the configurations into groups, we have 

Transformation R is the same as the transformation which 
was proposed in Ref. 10 in a renormalization-group study of 
the conductivity in a two-dimensional system near the per- 
colation threshold p,. The immobile unstable point of this 
transformation coincides fairly well with the percolation 
threshold on a square lattice. I t  was for this reason that we 
selected the method outlined above for classifying the con- 
figurations into groups. 

For each of these groups we calculate the mean field 
over the configurations at a distance much greater than the 
size of cur  square. The first and second groups are replaced 
by quartets of identical particles which do not interact with 
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FIG. 1. First step of the renormalization-group procedure: the breakup of 
the lattice into nonintersecting squares. The arrow shows the direction of 
the polarization of the external field; e,  and e2 are unit vectors. 

each other and which have polarizabilities a ,  ( w ,  p )  and P, 
(0, p ) ,  respectively. These particles lie at the nodes of the 
original lattice. The new polarizabilities are found from the 
condition that the average field produced by the original 
configurations of the first and second groups far from the 
square under consideration is equal to the field produced by 
the quartet of noninteracting particles with the respective 
polarizabilities a ,  ( w ,  p )  and P, ( w ,  p ) .  

4. The quartets of noninteracting particles which are 
found are treated as the unit elements of a new square lattice. 
The effective distance between these elements is 2a. Conse- 
quently, the structure of the original lattice is restored after 
the first step of the renormalization-group procedure, but 

FIG. 2. Groups of configurations. a-First group; &second group. 0 )  
Occupied nodes; 0) vacant nodes. 

the structure of an individual element has now become more 
complex. We wish to stress that this approach is based on the 
circumstance that the field produced by the four elements of 
the original structure and averaged over configurations is 
approximately equal to the field produced by a single ele- 
ment of the new structure. 

5. This procedure is repeated until the distance between 
individual structural elements becomes comparable to the 
correlation length { ( p )  in the inhomogeneous system. Near 
the percolation threshold, { ( p )  is the sole characteristic 
length of the problem. The probability for the formation of 
clusters with a size greater than { ( p )  is exponentially 
small,'' so the discussion can be restricted to elements with 
dimensions smaller than or  equal to l ( p ) .  

After the nth step, an individual element consists of 4" 
identical particles which do not interact with each other and 
which have polarizabilities a,, (a, p,, , ) or fl,, ( w ,  p,, , ). 
The probabilities for the realizations of configurations with 
polarizabilities a,, and fl,, are p,, = R " ( p )  and 1 - p,, , re- 
spectively. The effective distance between the elements of 
such a structure is 2"a. After going through this procedure, 
we obtain a system of noninteracting particles at the nodes of 
a two-dimensional lattice whose effective dielectric constant 
can be described by 

and d is the effective thickness of the layer, equal in order of 
magnitude to the size of the particles. 

We will now use this method to describe the properties 
of a disordered system near the percolation threshold. In 
accordance with the discussion above, we assume that the 
limiting value of n in expression ( 2 )  is 

2"a=5 ( p )  . ( 3 )  

We denote the value of A,,  corresponding to this n by A .  

3. CALCULATION OF THE DIELECTRIC CONSTANT 

Let us use the procedure described above to calculate 
the response of this two-dimensional system to an external 
field. For definiteness we consider the case in which the ex- 
ternal field is directed parallel to the plane of the lattice, 
along one of its links. For simplicity we restrict the calcula- 
tions to the dipole-dipole interaction between nearest neigh- 
bors. In each step of the renormalization-group procedure in 
the calculation of the interaction between the four structural 
elements corresponding to this step, we model the field pro- 
duced by an individual element as the field of a point dipole 
with a polarizability 4" 'a,, _ , ( w ,  p,, _ , ) or 4" 'P,, , (0, 
p,, , ), positioned at the center of the corresponding ele- 
ment (square). Under these assumptions, the field E,, i = 1, 
2, 3,4, acting on each of the four elements (Fig. 1)  is found 
from the equations 
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Here X ,  is the polarizability of element i, which is either 
a ,  I ( ~ , p , , ~  or P,, - , (w ,P , ,  - 1, depending on the par- 
ticular configuration under consideration, e ,  and e, are unit 
vectors directed along the links of the square lattice, and E, 
is the external electromagnetic field. 

We wish to stress that the replacement of the 4" - ' di- 
poles in a square of side 2" - la by a single dipole-a replace- 
ment which was used in writing Eqs. ( 4 ) - - can  be justified 
approximately only if the wavelength of the electromagnetic 
field, A, is much greater than 2" - ' a .  Accordingly, this calcu- 
lation method can be used only under the condition that the 
correlation length g ( p )  is shorter than the wavelength of the 
light: 

In accordance with the renormalization-group procedure 
described in Sec. 2, we find the following expressions for 
a,, (P, ,  I and O,, (p, ,  , from Eqs. ( 4 )  : 

We used an additional approximation in writing ( 6 ) :  We 
assumed a(w)/a\ I .  Consequently, only the terms of first 
order in a,, , / ( 2 "  'a ' )  were retained in each step. This 
approximation is justified only if the frequency of the inci- 
dent light is far from the resonant frequencies of resonant 
electromagnetic modes localized near individual particles. 
The optical properties of a random two-dimensional medi- 
um near resonant frequencies of local modes are discussed in 
Ref. 12. 

From ( 6 )  we find the following expression, which is 
valid at n> 1 : 

wherep, =p.  Expression ( 7 )  shows that for anyp the quan- 
tity a ,  - P,, approaches zero with increasing n. More con- 
venient than calculating a,, and P,, separately is to directly 
calculate the quantity A,, which appears in expression ( 2 )  
for the effective dielectric constant. Instead of the two equa- 
tions in ( 6 )  we find the relation 

Recurrence relation ( 8 )  can be solved approximately. For 
this purpose we express A,, in ( 8 )  in terms of A,, - , . We find 

Th.: expression in the curly brackets is small in comparison 
with the other terms, since it contains an additional small 
factor on the order of (a,, _, /2" - a -  ' ) . As above, we dis- 
card such terms. Repeating this procedure, we find the fol- 
lowing expression for A,, : 

The approximate equality in ( 9 )  was found by retaining only 
the first term in the sum over i. This simplification is justified 
by the circumstance that the quantity (ai  falls off 
rapidly with increasing i [roughly as p:'; see ( 7 )  1. 

Near the percolation threshold we have 

E ( P )  =~,al~-p, l -~ ,  ( 1 0 )  

where Y = 1.35 is the critical exponent of the correlation 
length in the corresponding percolation problem,13 and I +  
is a quantity on the order of unity ( I  + and I - correspond to 
values p > p ,  and p < p ,  ). In the region in which condition 
( 5)  holds, we find the following expression for A from ( 3 ) ,  
( 9 ) ,  and ( 1 0 ) :  

2a 
A=ap.(l +;;;PC) + a(p-p.) ( 1  +$ p.) 

The expression for the response to a field directed per- 
pendicular to the plane of the lattice is similar in structure. 
The asymptotic behavior of A and, correspondingly, of the 
dielectric constant near the percolation threshold, ( 1 1  ), is 
related in an important way to the large-scale cluster struc- 
ture of this system. The nontrivial dependence of c on p in 
( 1 1 ) arises only when the interaction between particles is 
taken into account. The asymptotic behavior found for the 
effective dielectric constant differs markedly from the corre- 
sponding results found in models based on the use of Kirch- 
hoff s equations.' In the first place, expression ( 1 1  ) differs 
from Ref. 7 in that it contains regular terms, which are linear 
in p - p, and which may dominate ~ ( p ) .  Second, the singu- 
lar term in the ~ ( p )  dependence is proportional to Ip - p, I", 
while the conductivity a ( p ) ,  in terms of which ~ ( p )  is ex- 
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pressed, is given by the following expressions in a two-di- 
mensional system consisting of a poor conductor and a good 
conductor:' 

The difference between the singular behavior in expres- 
sion ( 11 ) and that in ( 12) at p <p,, stems from the following 
circumstance. In the conductivity problem, the power-law 
increase in o at p <p, occurs7 under the condition that the 
conductivity of the system at the percolation threshold is 
much higher than the conductivity of the dielectric phase. In 
the system which we are considering in the present paper, 
the conductivity is zero for anyp, since we are assuming that 
the particles which occupy the lattice nodes are not in con- 
tact with each other. A model of this sort makes it possible to 
determine the role played by the electromagnetic interaction 
between particles in the appearance of a singularity in thep  
dependence of E. In the absence of an interaction, there the 
optical response will obviously contain no manifestation of 
the "geometric" phase transition in the system. 

The singular behavior of expression ( 1 1 ) is the same as 
that of (12) a t p  > p , . .  In Ref. 9, the exponent describing the 
behavior of the dielectric constant at p >p,, was found to be 
1.52. That value is higher than v and does not agree with 
experimental data. 

Analyzing the propagation of a light wave near the per- 
colation threshold in a heterophase solid, Korzhenevskii 
and LuzhkovI4 found an asymptotic behavior similar to the 
singular term in ( 1 1 ) for the effective refractive index n in 
the "short-wavelength" region: 

where a-  1/3 andp-p, . We wish to stress that the asymp- 
totic behavior for ~ ( p )  in ( 11 ) differs from that in ( 13) in 
that it is valid only under condition ( 5 ) ,  i.e., only outside a 
certain neighborhood near the percolation threshold, whose 
size IApI -- ( a / R )  I"' depends on the wavelength of the light. 

Finite clusters contribute substantially to the optical 
response in this problem, although such clusters are unim- 
portant in the conductivity problem. The reason for this re- 
sult is the presence of nonsingular terms in the expression for 
the effective dielectric constant. Using (2 )  and ( 1 1 ), we find 
an expression for the reflection coefficient Ir, (p) 1 '  of s-po- 
larized light incident normally on this system: 

Only the nonsingular terms which determine the linear de- 
pendence of the reflection coefficient on p - p, have been 
retained in ( 14).  Gadenne et al.I5 have reported experimen- 
tal results on the behavior of the optical reflection and trans- 
mission coefficients of an island gold film as a function of the 
occupation factorp, which was varied from zero to one. Near 
the percolation threshold, the reflection and transmission 
coefficients were found to be linear functions of p - p,, in 
agreement with theoretical expression ( 14). Unfortunately, 
it is not possible to distinguish a singular component in the 
experimental data. 

I J. C. Garland and D. B. Tanner (editors), Proceedi~rgsof the First I~rter- 
natiorral Confererice on Electrical Transport a11d Optical Properties of 
Inhomoge~ieous Media (ETOPIM-I), Vol. 2, American Institute of 
Physics, New York, 1978. 
' J. Lafait and D. B. Tanner (editors), Proceedings of the Secorid Interria- 
tiorial Con fererice on Electrical Transport and Optical Properties of Inho- 
mogeneous Media (ETOPIM-21, North-Holland, Amsterdam; Physica 
A 157 (1989). 

'R .  J. Landauer, Appl. Phys. 23, 779 (1952). 
'B. N. J. Persson and A. Liebsch, Phys. Rev. B 28,4247 (1983). 
' L. D. Landau and E. M. Lifshitz, StatisticheskayaJ;zika, Part I, Nauka, 
Moscow, 1976 (Statistical Physics, Pergamon, New York, 1980). 

hD.  J. Bergmann and Y. Imry, Phys. Rev. Lett. 39, 1222 ( 1977). 
'A. L. Efrosand B. I. Shklovskii, Phys. Status Solidi ( b )  76,475 ( 1976). 
A. P. Vinogradov, L. V. Panina, and A. K. Sarychev, Dokl. Akad. Nauk 
SSSR 306, 847 (1989) [Sov. Phys. Dokl. 34, 530 (1989)l. 

"S. Berthier and K. Driss-Khodja, Physica A 157, 356 (1989). 
"'R. B. Stinchcornbe and B. P. Watson, J. Phys. C 9, 3221 ( 1976). 
' ID.  Stauffer, Introduction to Percolation Theory, Taylor and Francis, 

London, 1985. 
"L. I. Daikhin and M. I. Urbakh, Zh. Eksp. Teor. Fiz. 98, 239 (1990) 

[Sov. Phys. JETP 71, 133 ,( 1990)l. 
"B. I. Shklovskiiand A. L. Efros, Usp. Fiz. Nauk 117,401 ( 1975) [Sov. 

Phys. Usp. 18, 845 (1975)l .  
I4A. L. Korzhenevskii and A. A. Luzhkov, Zh. Eksp. Teor. Fiz. 97, 707 

( 1990) [Sov. Phys. JETP 70,395 ( 1990) 1. 
"P. Gadenne, Y. Yagil, and G.  Deutscher, Physica A 157,279 (1989). 

Translated by D. Parsons 

112 Sov. Phys. JETP 72 (I) ,  January 1991 L. I. DaRhin and M. I. Urbakh 112 


