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The spectral profiles of the intensity and polarization of the radiation in spontaneous quantum 
single-photon transitions in a strong magnetic field are obtained by computer calculations. 
Effects of the radiation depolarization are discussed. The results can be used, on the basis of 
available observation data, for astrophysical estimates of the parameters of cosmic gamma-ray 
bursts. 

1. INTRODUCTION ous single-photon quantum transitions from one arbitrary 

study of photon emission and in a strong state to another (with account taken of the spins). Such a 

magnetic field B SB, (B, = m2c3/efi = 4.4.1014 G )  is of study is possible only by using relativistic covariant wave 
interest in view of the presence of such fields in neutron stars functions of an electron in a magnetic field, and the corre- 
such as pulsars and gamma-burst sources (see, e.g., Refs. 1 sponding expressions for the probabilities of such transi- 

and 2).  In such fields, quantum transitions between Landau ti0ns.5'9'10 

levels are the main processes of photon emission and absorp- 
2. EMlSSlVlTY OF RELATIVISTIC ELECTRONS (POSITRONS) 

tion. Analysis and interpretation of the observation data IN A 
calls for theoretical models of the intensity and polarization 
spectra of the radiation from an ensemble of particles (elec- In a magnetic field, the energy of an electron (positron) 

trons and positrons) for which the elementary acts of inter- 
action with photons are due to the transitions in question. 

If the distribution function of the electrons (and posi- 
trons) is maintained constant by some excitation mecha- 
nism, one can speak ofstationary synchrotron radiation. On 
the contrary, if the excitation time is much longer than the 
time of the particle transition from the excited to the ground 
state, synchrotron-cooling radiations5 must be considered. 
Synchrotron radiation spectra are obtained by folding the 
distribution function of an ensemble of electrons over the 
excited levels with the spectra corresponding to individual 
single-photon acts transitions (in the case of stationary 
synchrotron radiation) or with the spectra of multiphoton 
transitions via intermediate states to the ground level (in the 
case of synchrotron-cooling radiation). Construction of 
theoretical models of the ensemble radiation calls therefore 
for a detailed study of the intensity and polarization spectra 
of the harmonics of the synchrotron radiation generated in 
individual quantum transitions. Investigations of the pro- 
files of synchrotron-radiation harmonics are of independent 
interest in connection with the probable observation of the 

is determined by its longitudinal momentum p and by the 
principal quantum number n = 0, 1, 2.. .  (here and below 
fi = 1, mc' = 1 and B, = 1 ). Beside the quantum numbers n 
and p ,  a pure quantum state (n,  s, p )  is determined by the 
projection of the spins along the magnetic field. The energy 
w and the photon emission direction n = k//kl  are charac- 
terized by a wave vector k. Two polarization states of the 
photon can be considered in a strong magnetic field: with 
polarization vector ell in the kB plane and with a vector e, 
perpendicular to this plane. 

Let dR (n,s-m,sl,k,e)/dR be the rate of a spontaneous 
transition of an electron from a state (n,s,p) into a state 
(m,sl,q), with emission of a photon of energy w into a solid 
angle d R  in the direction 8, and letJj,,, (p) be the distribution 
function of electrons in a state (n,s) with longitudinal mo- 
menta p [it is assumed that Sf,,, (p)dp = 1 1. The spectral 
density of the electron emissivity in the 8 direction for a 
quantum transition (n,s) - (m,sl), per particle in the state 
(n,s), is then 

corresponding lines in gamma-burst spectra.' 
E (n, s+m, s'; o, 0, e )  

The radiation line shape for a transition between the 
first-excited and the ground state was investigated for the = J dR (n. s-m, s'; k, e )  
relativistic case in Refs. 7 and 8. The influence of the form of dQ 

6(En-Em-o)fn,(p)dp. (2 )  

the electron distribution function in the longitudinal mo- 
If dR (n,s + m,s,;k,e),dn is given by Eq. (7)  of Ref. 5 ,  

menta on the line shape was investigated in Ref. 9. In a 
the right-hand side of (2 )  must be multiplied by 

strong magnetic field, an important role is played by quan- 
- q cost9 /En ) , since integration over the emitted photon 

tum effects such as quantum recoil and transitions with spin 
has been carried out in the cited equation with allowance for 

flip. A strong influence on the formation of the spectra is 
a function. 

exerted also by low population of the excited Landau levels. 
Photon emission by an electron is subject to the energy 

Under these conditions the form of the profile and of the line 
and momentum conservation laws: 

polarization in a quantum transition can differ significantly 
from the classicalcase B 4 B, . 

- 
E,=E,+o, (3a) 

The object of the present study is the influence of quan- p=o cos 0 f q .  
tum and relativistic effects on the profile and polarization of (3b) 

radiation in a strong (B S B, ) magnetic field for spontane- Simultaneous solution of Eqs. ( 3 )  yields for the momentum 
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p two possible values that satisfy the condition of emission of 
a photon of energy w in the direction 8: 

These two solutions (4)  exist only if w < w,, where 

where E,, = ( 1 + 21B) 'I2 and I = n,m. If w > w, , there are 
no real roots ofp: for a transition (n,s) -+ (m,sl) an electron 
with arbitrary momentum cannot emit in a specified direc- 
tion a photon of energy higher than w, . At w = w, the roots 
p, and p, are equal: 

Integration of (2)  with allowance for the S function leads to 
an emissivity 

e (n, s+m, s f ;  o, 8, e )  

= r, dR (n,  s- tm, s f ;  k, e) EnE, 
dB fn ,r  (PI 19-9 ,,, 

h-i ,z  I P E m - q E n  I 
(7)  

where summation over k corresponds to the two possible 
momentap,,, . For w < a d  the &(w,€J) spectrum has a form 
determined by the distribution function in the longitudinal 
momenta. For w = w, the denominator in (7)  vanishes and 
the emissivity becomes formally infinite, while at w > wd no 
photons are emitted (see Ref. 8) .  

It is known'' that to take into account the finite lifetime 
of the excited state it is necessary to replace, in the first ap- 
proximation, the S function in (2)  by the Lorentzian 

Here R is the natural width of the emission line 

Eno Em0 
R=R(n, s, p=O) - + R (m, s', q=O) - , 

E n  Em (9)  

and is expressed in term of the sum of the corresponding 
level widths R(n,s,p = 0 )  and R(m,sl,q = 0)  of the initial 
and final states. The level widths are defined in the rest sys- 
tem of the electron: the factors En, /En and Em, /Em in (9)  
are the result of a Lorentz transformation from the electron 
rest system into the laboratory system. The width of a level, 
in the units chosen above, is equal to the total rate of sponta- 
neous departure from the corresponding state. This total 
rate is in turn a sum of the rates of transitions into all possible 
final states of both the electron (principal quantum number, 
spin) and photon (polarization, radiation direction) : 

R(n,s)= j d ~ z  
dR(n, s+m, s'; o, 0, e )  

dQ 
(10) 

The summation is over s' = + 1, m < n, e = ell ,el. If the 
frequency of electron collisions with other particles or pho- 
tons exceeds R, the Lorentzian profile width (8) is deter- 
mined by this frequency. 

With the finite lifetime of the state taken into account, 
the energy conservation law (3a) (which is explicitly ex- 
pressed in (2 )  by a S function) no longer holds exactly: the 
photon energy w and the electron initial momentump are no 

longer connected by the solution (4).  For w < w, the values 
ofp ,  and p, correspond to the maximum of the Lorentzian 
(8) :  electrons with such momenta make the principal contri- 
bution to the emission of a photon of specified energy in a 
given direction. 

3. EFFECT OF MAXWELLIAN DISTRIBUTION OF THE 
EMITTED PARTICLES ON THE LINE SHAPE 

To investigate the line shape, we consider transitions 
between two pure states (n,s) and (m,sl). It follows from 
(7)  that the line shape is substantially influenced by the 
form of the electron distribution function in the longitudinal 
momenta, namely by the fractions of electrons with mo- 
mentap, andp, in the electron ensemble. 

Let the electrons in the initial state (n,s) be described by 
the thermal distribution function 

where C, ( T )  is determined by the normalization condition. 
Without allowance for the natural level width, the line shape 
is specified by convolution of f(p) with a S function [Eq. 
(2)  1. In the cases of the thermal function ( 1 1 ) this leads to a 
Gaussian profile with Doppler broadening. The characteris- 
tic electron-momentum scatter, Ap = (2T) ",, corresponds 
to a Doppler line width G = w ( Ap) - w ( - Ap), where 
w(p) can be obtained from the solution of Eqs. ( 3 ) .  For 
nBg 1 we have G = (n - m)BApcos8. When the natural 
width is allowed for, the line profile acquires Lorentz wings 
(Fig. 1 ). The form of its central part depends on the ratio of 
the natural (or collisional) level width [e.g., (9)] to the 
Doppler broadening. In the relativistic limit this profile is 
asymmetric and has an abrupt break at w > wd (Fig. 1 ). 

In the classical nonrelativistic limit the line has a Lor- 
entz profile if R > G or a Voigt profile with a Doppler center 
and Lorentz wings at R < G. In contrast to the classical case, 
in the relativistic treatment the line profile can be substan- 
tially influenced by the singularity at w = w,. For a thermal 
distribution of the radiating electrons, the line profile in the 
Doppler center reaches its maximum a tp  = 0, in which case 

tRe[ phot /s.sr.keV ] p .  

FIG. 1 .  Line profile for two photon polarizations ell ( I )  and E, (2) in the 
transition ( n = l ,  s =  - 1 ) - ( m = O ; s ' =  - I ) ,  B=0.1 ,  8=75', 
T =  0.02; the dashed curve corresponds to in the approximation of 
infinite lifetime of the state R = 0  [ E q .  ( 2 )  1. The abscissas are the photon 
energies in units of w, = eB /mc. The degree of linear polarization P is 
shown by the dash-dot line. 
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the photon energy is 

WO=W (p=O) ={En,-  [ (En, cos 0)'+ (Em, sin 0)2]'h)/sinz 0, 

(12) 

which corresponds at nBg1 to w, = (n - m)B. Since 
w,>o,always [cf. ( 5 ) and (12 ) ] , a tD=wd  -wo5G the 
relativistic singularity influences the right-hand wing of the 
line (Fig. 1 ). The line becomes asymmetric, and the maxi- 
mum of the spectral distribution of the photons diverges in 
general between w, and w, . The relativistic singularity drops 
out as 8-90" or 8-0: in the first case (w,--w, and G+O) 
the line has the Lorentz profile (8),  and in the second 
(p, - co and wd -+ cc ) this singularity cannot be seen be- 
cause of the small contribution to the radiation from parti- 
cles with momentump,; the line has therefore a Voigt pro- 
file with a Doppler center and Lorentz wings. 

In the general case the line shape is determined by the 
relations between the Doppler broadening G, the Lorentz 
broadening R, and the distance D = w, - w, between the 
maximum of the Doppler center and the position of the rela- 
tivistic singularity. If the temperature of the particles [see 
( 1 1 ) ] is low (R ) G) and the observation conditions are 
such that R)D, the line has a Lorentz profile. In Fig. 2, 
these values of T and B correspond to the region A .  For 
G> R) D (region B) the position of the relativistic singular- 
ity coincides with the maximum of the Doppler center-the 
line has a distinctive "toothlike" form (Fig. 1).  For 
G > D) R (region C in Fig. 2) the line has a Doppler center 
whose right-hand wing is bounded by a relativistic singular- 
ity. The regions B and Ccorrespond thus to the presence of a 
relativistic singularity on the line profile (see Figs. 1 and 3).  
For G < D (region D) the relativistic singularity is located in 
the far right-hand wing and is therefore not seen, and the line 
has a Voigt profile. It should be noted that the onset of a 
relativistic singularity depends strongly on the observation 
conditions (on the angle 8 between k and B)- the regions B 

loa 7 

- 1  log B 0 

FIG. 2. Lines o f  equal values o f  the quantities G(O,T,B), D(0 ,B)  and 
R ( B )  (see the text) for the transition ( n  = 1 ,  
s = - 1 )  - ( m  = 0,s' = - 1 ). Abscissas-magnetic field in units o f  B,, 
ordinates-temperature in units o f  meZ. Curves: 1-G = D, 2-R = D, 
3-R = G, angle 0 = 87" /1',2',3')- the same for the angle 0 = 88"). The 
circles mark the equalities R = G = D. Region A-R > D >  G, Lorentz 
line profile; B-G> R > D, Doppler line center, Lorentz wings-the posi- 
tion o f  the relativistic singularity coincides with the maximum o f  the 
Doppler center; C-G> D >  R,  a relativistic singularity is seen on the 
Gaussian profile; D-D > R > G; Gaussian line shape, the relativistic sin- 
gularity is located in the far right-hand wing o f  the Doppler center and is 
not shown. RegionsA ', B ', C' ,  D 'correspond to the regions A, B, C, D, but 
for 8 = 88". 

FIG. 3. Line profile for unpolarized radiation for the transition ( n  = 1, 
s =  - 1 ) - ( m = O , s ' =  - l ) ,B=O.l ,6'=75"(a)andprofi leofthede- 
gree o f  linear polarization for the same transition ( b )  as functions o f  the 
temperature. 

and C shift towards higher temperature with decrease of the 
angle (Fig. 2) .  

Figure 3a shows the dependence of the emission line 
profile for the transition (n = 1, s = - 1) - (m = 0, 
s' = - 1) on the electron temperature at a fixed magnetic 
field B. At low temperature the line has a Doppler center and 
corresponds to region D of Fig. 2. As the temperature rises, a 
relativistic singularity appears in the high-frequency wing, 
and the Doppler broadening increases in the low-frequency 
part of the profile (region C of Fig. 2) .  

At fixed values of B and T corresponding to the condi- 
tion G > D& R (region C in Fig. 2),  the position w = wd of 
the relativistic singularity on the line profile depends on the 
initial and final numbers of the Landau levels. As already 
noted, for a singularity to set in it is necessary that the en- 
semble contain a sufficient number of electrons with mo- 
mentump -pd , as follows from (6), an increase of the num- 
ber n leads to an increase of p, and D, and the condition 
G > D may be violated. The best conditions for the onset of 
this singularity are therefore realized, for a given harmonic 
Y = n - m, in transitions from the level n = Y into the 
groundstate (m =O,sl = - 1). 

The spectral width of the relativistic singularity de- 
pends only on the widths of the initial and final levels [see 
(9) 1. It is known that these widths increase with increase of 
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n and m, therefore the "contrast" of the singularity on the 
line profile is decreased. The relativistic singularity in a giv- 
en magnetic field will thus have maximum contrast on the 
line profile corresponding to the transition (n = 1, 
S =  1)-(m =O,sl= - 1). 

Of greatest interest is the study of an emission line pro- 
file that is made asymmetric by a relativistic singularity. 
Comparison of the observable spectral-line parameters with 
theoretical estimates of G and D makes it possible to deter- 
mine the magnetic field and the temperature in the genera- 
tion region. In addition, as will be shown below, it is precise- 
ly in this case that a characteristic singularity should also be 
present in the polarization spectrum. 

4. POLARIZATION IN A LINE 

The degree of linear polarization is defined as 

where and E~ are the electron emissivities (2 )  for photons 
with respective polarizations ell and el. Polarization in a line 
is influenced by several factors: 1 ) dependences of and E, 

on the type of transition (without or with spin flip); 2)  de- 
pendences of and E~ on the radiation direction 8, and 3) 
dependences of and E, on the temperature of the radiating 
ensemble of electrons (positrons). 

If R % G, D (region A in Fig. 2 ) ,  the last effect is absent, 
and the polarization is constant along the line profile. Its 
degree is a maximum for the angle 8 = 90" and decreases 
with decrease of this angle (nonmonotonically in some cases 
according to numerical calculationss). It is known that for 
transitions (n,s) - (m,sl) between pure quantum states the 
line polarization has opposite signs for transitions without 
and with spin flip (electric and magnetic types of radiation, 
respectively 1. 

If the line has for the 8 direction a Doppler wing with 
spectral width G (the condition R < G  is met), the main con- 
tribution to the radiation is made in this region by particles 
with momentap, and p,. For D < G (region B of Fig. 2 )  the 
high-frequency boundary of the Doppler center is a relativis- 
tic singularity at a frequency w = m,, corresponding to a 
momentum p, (8)  = p l  = p,. In a reference frame F' in 
which p; = 0, the radiation direction 8 corresponds to the 
radiation direction 8 ' = 90". In this frame, the particles mak- 
ing the main contribution to the radiation at the relativistic- 
singularity frequency md are at rest (pi =p; = 0).  

It is known that for transitions between pure quantum 
states with equal spins (n,s) -+ (m,s), there is no radiation 
with longitudinal polarization in the 90" direction. On the 
contrary, for transitions with spin flip (n,s) - (m, - s),  in 
the case 8 = 90" there is no radiation with transverse polar- 
ization E ~ .  It follows hence that there should be no relativis- 
tic singularity on the line profile for the corresponding radi- 
ation components for transitions without spin flip, E, 

with spin flip). Thus, the degree of linear polarization in the 
relativistic singularity is a maximum (Fig. 1 ) at 100% in the 
limit of infinitesimally small natural line width (R = 0). 

In a Doppler line center, w < w, , radiation in the direc- 
tion 8 is emitted by particles with momenta p,  <p, and 
p, >p,. In the reference frame F' (p; = 0 and 8 ' = 90") in- 
troduced above these momenta correspond to pi <O and 
p; > 0. To determine the polarization of radiation from par- 

ticles moving along the field in the direction 8 '  with mo- 
mentap; andp; we must transform to systems F p and F ;  in 
which these particles are at rest (p;' = 0 and p; = 0 respec- 
tively), and determine the polarization of the radiation in 
those directions 8 ;' and 8 E to which 8 ' corresponds on the 
system F'. (The degree of linear polarization is not altered by 
a Lorentz transformation of the reference frame" ). At 
8' = 90"wehave90e<8;'< 180"and9O0>8;>0",andwhen 
the frequency is lowered, w < w, , the absolute values ofp;,, 
increase and the angles 8 ;:, approach 180" and 0", respec- 
tively. It is known (see, e.g., Ref. 5) that the difference 
between the intensities of radiation with different polariza- 
tions E,, and .cl decreases in this case. 

The degree of polarization is thus decreased with de- 
crease of frequency in the spectral region of the Doppler 
center. If the width G of the Doppler center is large enough, 
the polarization can decrease to zero. With further decrease, 
the frequency goes outside the region of the Doppler center 
when Jp,,p,J > Ap. A transition to a Lorentz-wing asymptote 
takes place then on the line profile, and the degree of polar- 
ization approaches the value corresponding to this asymp- 
tote. 

The spectral dependence of the degree of the linear po- 
larization of radiation of a quantum transition is illustrated 
by Fig. 3b. With rise of temperature, the maximum of the 
degree of linear polarization shifts from the frequency w, to 
the frequency w, of the relativistic singularity and ap- 
proaches 100%. On the contrary, strong depolarization 
takes place in the low-frequency region of the Doppler cen- 
ter. 

In the general case, no radiation is observed in sponta- 
neous transitions (n,s) -+ (m,sl) between pure quantum 
states. First, such a transition is simultaneously accompa- 
nied by a transition with spin flip, (n,s) - (m, - s'), and it 
becomes necessary to sum over the final spin states. (NO 
such problem arises for a transition into the ground state 
(m = 0),  since the spin in this state can be only s' = - 1.) 
Second, excitation of the initial pure state (n,s) is usually 
accompanied by excitation of the state (n, - s )  and a spon- 
taneous transition form the latter into the state 
(m,sl = +_ 1) will also contribute to the radiation of fre- 
quency w in the 8 direction. 

In the case of stationary synchrotron radiation, there- 
fore, the intensity of the photon flux of the radiation line 
generated in then -+m transition can be determined from the 
equation 

e (n -m;  o, 0 ) = x  q ( s ) e ( n , s - m , s l ;  o, 0 , e ) .  (14) 

where ~ ( s )  is the probability of exciting the state (n,s) with 
spin s (v(s )  + v(  - s )  = 1 ), and the summation is over 
s = + 1, s' = + 1, e = ell , el. The degree of linear polariza- 
tion is described here by the expression 

- -, 
' s ( s ) p n m ( s .  s T )  s (n ,  s-m, s l ;  o. 0 ) .  

E ( n - + m ;  w, 0) 

where 

e ( n ,  s+m, s'; w, 0,  e l , ) , - s (n ,  s-m, s f ;  o,  0, e,) 
Prim ( s ,  s f )  = 

e  (n ,  s-m, s'; o, 0, e l l )+e  (n ,  s-m, s f ;  o,  0,  e,) 
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If the spontaneous transitions are quite rapid and there 
is no stationary distribution in the excited levels (synchro- 
tron-cooling radiation), the total number of radiation-line 
photons emitted over an infinite time is physically meaning- 
f ~ 1 . ~  The spectral profile and the line polarization can be 
calculated in this case by using Eqs. ( 14) and ( 15), replac- 
ing in the definition (2 )  of s the transition probabilities per 
unit time dR (n,s+ m,s1;w,8) by the partial transition proba- 
bilities dR (n,s-m,sf;w,8)/R (n,s), where R(n,s) is the total 
rate ( 10) of deviation from the (n,s) state. By 7 is meant 
than the probability of various spin states at the initial in- 
stant of time t = 0. 

It follows from ( 15) that the linear-polarization spec- 
trum of the harmonic Y = n - m of synchrotron radiation is 
expressed, in arbitrary cases of stationary synchrotron radi- 
ation or synchrotron-cooling radiation, in terms of functions 
P,, (s,sl) that determine the polarization of radiation gener- 
ated in transitions between pure states (n,s) -+ (m,sl), and 
can be calculated numerically on the basis of the results of 
Ref. 5. These functions are crucial for the calculation of the 
polarization spectrum of synchrotron radiation with any 
distribution function of the radiating particles. 

It is thus possible to calculate on the basis of the results, 

in the general relativistic case, the spectrum and polarization 
and synchrotron radiation of an ensemble of particles with 
arbitrary distribution function in both the momenta and the 
quantum levels. Radiation singularities observed for ele- 
mentary transitions can be used, in the presence of observa- 
tion data, for direct estimates of the temperature and mag- 
netic field in the radiating region. 
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