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A calculation is made of the rate of creep of a lattice of superconducting vortices under the 
influence of a transport current in the presence of pinning by large defects, which satisfy the 
Labusch criterion and also obey the theory of elasticity. Creep involves formation of kinks of 
vortex rows at the defect boundaries. The dependence of the activation energy of such a process on 
the current is logarithmic in the case of a film and it obeys a power law in the case of a bulk sample. 

1. Many experiments have been made recently on the 
creep of a magnetic flux in superconductors (see, for exam- 
ple, Refs. 1-5). This is due to the fact that this thermally 
activated process is much stronger in high-temperature su- 
perconductors than in conventional materials. Moreover, 
apart from the Anderson phenomenological theory6 and its 
generalization given in Ref. 7, the published theoretical in- 
vestigations of the creep have been concerned mainly with 
fluctuation-type motion of a single vortex8 and determina- 
tion of the activation energy in the collective pinning 
ca~e.~.'O 

We shall report a calculation of a fluctuation current- 
voltage characteristic of a superconducting sample contain- 
ing large defects. Since in magnetic fields B, which are not 
too close to H,, , the critical current due to small defects is 
low," it follows that even a small number of large defects 
can alter significantly the critical current density j, and the 
nature of the current-voltage characteristic. We shall con- 
sider the case of defects with a characteristic size (radius of 
curvature) R exceeding considerably the period 
b = (2@,/Bfi)"2, of a vortex lattice, satisfying the La- 
busch criterion of one-particle pinningI2 and also obeying 
the theory of elasticity. These defects can be particles of a 
new phase, grain boundaries, impurity clusters, dislocation 
pile-ups, or twins (twins are typical of yttrium-based high- 
temperature superconductors). 

The critical current density jc and the current-voltage 
characteristic, obtained using a current j >  j, for a system of 
this kind, were found by Larkin and Ov~hinnikov.'~ It fol- 
lows from their paper that i f j  < j,, then a vortex lattice which 
experiences a bulk Lorentz force [j X B] is maintained by 
the interaction between vortex layers and certain parts of the 
surface of a defect (contact areas); the dimensions of these 
parts and the pressure acting there can be calculated in the 
same way as in the Hertz contact problem.L9 

Our task was to determine the activation energy E( j) 
for the creep of a vortex lattice across such contact regions. 
Consequently, the voltage Vin the range j < j, is proportion- 
al to exp( - E / T )  and the time dependence of the current in 
magnetic measurements is deduced from the expression 
E (  j ( t )  ) = T In wt (Ref. 7). We shall see that the character- 
istic scale is then small compared with the dimensions of the 
contact regions, so it should be sufficient to consider the 
interaction of a lattice with a plane infinite boundary of a 
defect. The boundaries should be regarded as parallel to the 
direction of close packing in the lattice, because for this ori- 
entation a critical pressure PC (corresponding to the detach- 

ment of a lattice from a defect at j = j, ) is maximal and it is 
the parts of the boundaries oriented in this way that control 
the process. The creep involves formation of pairs of kinks of 
a vortex lattice at a boundary barrier and separation of these 
kinks under the influence of a pressure P created by a defect 
when a transport current is flowing. Formation of such pairs 
occurs at the center of a contact region where the pressure is 
maximal. 

Equilibrium conditions for a vortex lattice are de- 
scribed by the following 

Here, u(p)  is a two-dimensional displacement vector in a 
plane xy perpendicular to the field; f,,, is the pinning force; 
(C, , - C6, ) is the bulk modulus; C6, is the shear modulus; 
C,, is the bending modulus (in fields not too close to H c l ,  we 
have C6, C,, ) . For calculating the activation energy of 
creep we need the expression for the energy of elastic distor- 
tions 

2. We shall first consider a thin film of thickness d in a 
perpendicular field. The displacements caused by the pres- 
sure P(x)  acting on the boundary at y = 0 [in this case we 
have f,,, = {O, P(x)S(y)) 1 are described by the solutions 
of Eq. ( 1 ) , which excludes the dependence on z: 

X S  P ( x i )  k,k, exp [ i k = ( x - x i )  +ik,y ] 
(k2+k,2)  

dxt ,  

In the course of the creep process a pair of vortex row 
kinks (Fig. 1 ) forms at a boundary and begins to move apart. 
In the case of a single kink located at x = 0 and creating a 
pressure PI (x)  (which is an odd function ofx),  we find from 
Eq. (3)  at y = 0 that 
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FIG. 1. Climb of vortex rows (continuous curves) across the boundary of 
a defect ( x  axis) when a current of density j flows in a film. The lattice 
shifts by a distance 6 d / 2  inside the region bounded by the dashed curve. 

b13- 1 
u,(x,o) ------ J P, (x,)ln I I - 5 1 ax,. 

4 4nCee x 

Far from a kink the relative shift should be equal to the dis- 
tance between the rows: 

The condition (5)  is satisfied if in Eq. (4)  we assume that 

The expression (6 )  for PI applies at distances x which are 
large compared with the size lo of the core of a kink, which is 
the region where the displacement differs considerably from 
the limiting values [Eq. (5 ) 1. The size of this region is esti- 
mated by equating the characteristic (maximal) pressure for 
a defect PC 5 C,, to the elastic shear stress: 

10-bCeeIPC. ( 7 )  

Equations (6)  and (7)  are sufficient to find, with a 
logarithmic precision, the elastic energy F,, of a pair of kinks 
located at a distance 1% lo from one another: 

(the main contribution to the energy of a kink comes from 
the region lo <p <I  ). Since the force of attraction between 
kinks dFel/dI is equal to the force pushing them apart 
Pdbv3/2, the critical distance is 

and when it is exceeded the kinks begin to move apart con- 
tinuously, so that in the final analysis the lattice shifts by a 
distance bv3/2. 

The activation energy of the creep is 

Bearing in mind the relationship 

(n, is the number ofdefects per unit area),I3 we find that the 
current-voltage characteristic of a film in the subcritical re- 
gion is described by 

The parameter S represents the degree of proximity of the 
film to the melting point of an Abrikosov lattice.I5 The de- 
pendence of the current on the voltage of the type described 
by Eq. ( 12) has been observed in recent resistive measure- 
m e n t ~ . ' ~  

3. In the three-dimensional situation when the pinning 
boundary is infinite along thex axis (i.e., along the magnetic 
field), the climb of the lattice across the boundary involves 
formation of closed kink loops. In view of the large value of 
the bending modulus C,, = B '/47~ = C,, , compared with 
C6, = (Po B / ( 87~A ) these loops are strongly elongated 
along the field. Their shape and, consequently, the activa- 
tion energy of the process can in this case be found only to 
the nearest order of magnitude. 

It is clear from Eq. ( 1 ) that the bending strain repre- 
sented by the third term on the left-hand side of Eq. ( 1) 
becomes significant on deviation of the kink line from the z 
axis by an angle 0 of the order of 0, cc (C,,/C,,)"*. Using 
Eq. (2) ,  we find that the energy per unit length of a kink as a 
function of the angle 0 can be estimated from 

which shows that the optimal dimensions of a kink loop 
across the field (I) and along the field (h )  are related by 

where the kink lines are oriented at an angle 0-0, over a 
large part of the loop. 

Since pushing across a boundary under the influence of 
a pressure P creates an energy gain of the order of PbS per 
one lattice period of a loop of area S-hl, it follows that a 
comparison of this quantity with the elastic energy of the 
loop distortion - C,, b *h, can yield-subject to Eq. ( 14)- 
the activation energy 

(we have allowed here for the fact that the relationship 
j cc P applies in the three-dimensional case-see Ref. 13). 

If the current is sufficiently large, the loop width 
I * - bC,,/P can decrease to dimensions of the order of the 
field penetration depth A, when the spatial dispersion of the 
moduli C , ,  and C,, becomes significant;" when the wave 
vectors obey k%A - I  these moduli decrease compared with 
the homogeneous case and the reduction is proportional to 
(kA) -'. In this case if I<A, the quantity C,, in Eqs. ( 13)- 
( 15) is understood to be 

whereas the climb energy is given by 
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4. In derivation of the expressions for the activation 
energy given by Eqs. ( l o ) ,  ( 15), and (16) it is assumed that 
the creep is independent at each defect. This is justified if the 
energy of the resultant compression, which is of the order of 
C, , b ' d  in the case of a film and of the order of C,  , b 'n; I" 

in the case of a bulk sample (n,, is the volume density of 
defects), is small compared with the energy gain associated 
with the shift of the lattice under the action of the Lorentz 
force ( jBbdn f ' and jBbn, I ,  respectively). Therefore, at 
current densities j < j, , where 

is-B-'ntCiib ( f i lm) ,  

if-B-'n,"C,,b (bulk) ,  

the fluctuations jumps occur simultaneously at N >  1 de- 
fects. Since the elastic energy of compression is inversely 
proportional to N, and the work performed by the Lorentz 
force rises proportionally to N, the number of defects is gov- 
erned by the relationship 

The corresponding values of the activation energy increase 
by a factor of N if j < j, . 

The validity of the above expressions is limited, on the 
low current side, by the condition that the dimensions of the 
critical configurations I and h should be small compared 
with the dimensions of the contact regions. If in the case of 
the latter we use the expressions of Ref. 13, we find that these 
conditions are as follows: 
for a film we have 

whereas for a bulk sample, we obtain 

If we can show that these conditions agree with the require- 
ment that the shift of the lattice at a single defect should 
exceed its period; therefore, the range of validity of our re- 
sults is governed by the Labush criterion. 

The results obtained, like the expressions from Refs. 8 
and 10, indicate a steep rise of the creep activation energy 
when j @'c (in accordance with a power law or logarith- 
mic). Therefore, the results differ considerably from the de- 
pendence E( j) cc ( j, - j) proposed in the Anderson mod- 
el,6 which is probably valid only if the current is close to the 
critical value. 

The author is deeply grateful to A. A. Abrikosov, L. M. 
Vinnikov, V. M. Vinokur, and A. I. Larkin for valuable dis- 
cussions of the results and helpful comments. 
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