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The tunneling amplitude is obtained for a local pair of electrons separated by a potential barrier 
into two free electrons. The current-voltage characteristics of a tunnel junction between a normal 
metal and bipolaron ("boson" ) superconductor are determined. Special features of the current- 
voltage characteristics are explained assuming a narrow bipolaron energy band and the Bose 
statistics of carriers in a superconductor. 

INTRODUCTION 

Discovery of the high-temperature superconductivity' 
made its origin a topical subject. There are several alterna- 
tive theories of the high-temperature superconductivity, 
which reduce mainly to the Fermi liquid representations and 
the BCS theory or to a model of local electron pairs (bipolar- 
 on^)^.^ with the Schafroth superconductivity mechani~m.~ 

We shall obtain an expression for the tunnel term in the 
Hamiltonian describing a junction between a superconduc- 
tor containing local electron pairs and a normal metal across 
an insulator. We shall report an investigation of the tempera- 
ture dependence of the current-voltage characteristic of such 
a junction. 

Studies of the current-voltage characteristics of S-I-N 
(superconductor-insulator-normal metal) and S-I-S (su- 
perconductor-insulator-superconductor) junctions make it 
possible to determine one of the most important characteris- 
tics of a superconductor, the energy gap (A) in the electron 
spectrum, and to find its temperature dependence. It should 
be pointed out that in the case of low-temperature supercon- 
ductors the gap measured in the tunnel experiments agrees 
with that deduced from infrared radiation absorption, nu- 
clear spin relaxation, Andreev reflection, etc. 

If the S electrode in S-I-N and S-I-S junctions is a 
high-temperature superconductor, there are certain special 
features of the determination of A and also of its value not 
observed for junctions with low-temperature superconduc- 
tors. 

First of all, it is difficult to determine correctly A from 
the current-voltage characteristic5 because of the presence 
of a fine structure. 

Secondly, tunnel measurements carried out by various 
authors have yielded the gaps with a scatter greater than one 
order of magnitude for the same material. For example, in 
the case of the La-Sr-Cu-0 compound the tunnel measure- 
ments yield the ratio of twice the gap width to the critical 
temperature 2A/kTc ( k  is the Boltzmann constant) ranging 
from 4.5 to 7 (Refs. 5-7), whereas for YBa2Cu307 -, the 
values of the same ratio range from 0.7 to 13 (Refs. 8-12). 

Thirdly, the current-voltage characteristics are asym- 
metric relative to the direction of the current.'-'* 

Fourthly, some investigationsI3 have revealed that the 
features of the current-voltage characteristics associated 
with the gap do not vary with temperature, in other words, 
the gap is independent of temperature. 

Attempts to account for these properties have been 
made, not without success, on the basis of a theory of reso- 

nant valence bonds (RVB theory).I4 However, it has been 
shown recently that this theory is incapable of explaining the 
experimental data on the specific heat and electrical resistiv- 
ity, so that it is doubtful whether it is applicable to high- 
temperature superconductors. 

A polaron (bipolaron) superconductivity theory has 
been able to account for all the experimental data,I5.l6 in- 
cluding those that cannot be explained by the RVB theory. 
We shall use this bipolaron theory to formulate and solve the 
model problem of the tunneling of charge carriers across a 
thin insulator layer when the carriers in the S electrode are 
local noninteracting charged electron pairs obeying the 
Bose-Einstein statistics. In the case of an N electrode the 
charge carriers are noninteracting electrons. When a Bose 
particle crosses a barrier, it is split into two free electrons. 
The calculated tunnel characteristics allow us to explain 
qualitatively all the main properties of high-temperature su- 
perconducting materials listed above by considering S-I-N 
junctions. 

1. INITIAL HAMlLTONlAN 

We shall deduce the current-voltage characteristics of 
an S-I-Njunction employing the familiar method of a model 
Hamiltonian.I7 We shall first describe briefly the method 
used in deriving in bipolaron Hamiltonian in the presence of 
a tunnel term. 

We shall assume that the S electrode in an S-I-Njunc- 
tion is a material with a strong electron-phonon interaction 
where small bipolarons may form and the N electrode is 
made of a material with a weak electron-phonon interac- 
tion. We shall write down the initial Hamiltonian in the form 

where HI is the Hamiltonian of the S electrode, H2 repre- 
sents the N electrode, and T is the tunnel term. In the mo- 
mentum representation we find that HI can be described by 
the Frohlich model: 

where cs ( k )  is the spectrum of electrons in a crystal with the 
lattice at rest; c,+ and c, are, respectively, the electron cre- 
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ation and annihilation operators for the S electrode; V;ltf 
and Ukk. (p) are the matrix element of the Coulomb and elec- 
tron-phonon interactions; w ( p )  is the phonon spectrum; 
d  ,t and d p  are the phonon creation and annihilation opera- 
tors; k, q, and p are the wave vectors; u is the electron spin 
projection. We shall adopt the system of units in which the 
frequency, voltage, and temperature are all measured in en- 
ergy units. 

In the expression for H, we shall ignore completely the 
Coulomb interaction of electrons with one another and the 
electron-phonon interaction: 

The matrix elements of the Coulomb, electron-phonon, 
and tunnel interactions can be written in the form 

1 
Urn., (p) = z U k k ,  (p) exp (ikRm--ikrRm, ) , ( I I ) 

Ns  k ,kV  

Dm1 = I z D k k r  exp (ikRm-ik'i31). 
(NsN~)  '" ,,k, 

(12) 

In the subsequent calculations we shall allow only for 
the direct electron-phonon and Coulomb interactions, i.e., 
in Eqs. ( 10) and ( 1 1 ) we shall assume that n = n' and 
m = m'. 

If the electron-phonon interaction is sufficiently strong 
to form polarons in the S electrode, we can apply the familiar 
Lang-Firsov transformation1' to the Hamiltonian ( 1 ) : 

Here, E~ ( k )  is the spectrum of electrons in the N electrode: 
a& and a,, are the creation and annihilation operators. 

We shall select the tunnel term in the traditional form'' 

where Dkq is the matrix element of a transition of an electron 
from the S to the N electrode. 

For convenience in polaron and bipolaron transforma- 
tions, we shall adopt the Wannier function representation in 
Eqs. (2)-(4). After the necessary transformation of the 
electron operators This transformation does not alter H2 ( H ,  = H,,), 

whereas HI ,  and T, become 1 
a.. = =z am, exp (-ikRm), 

INN 
H ~ , .  = ,x ~ m c t c m o  i- Y ~rnm,~&ocm,o 

.-J 
m,  o m,  m', o 

( m ~ m ' )  1 
cqa = =z cno exp (-iqR.) , 

I N S  
mm' + + + 2 m m m o m o c m o c m o  + w (p) dptd,, 

m ,  m', a ,  a' 
(m#m', o#o' 

Z: P 

simultaneously) (15) where Rm and R, are the radius vectors of the mth and nth 
lattice sites in the Nand Selectrodes, and NN and Ns are the 
numbers of sites in the Nand S electrodes, we find that H I ,  
H, , and Tare described by 

where 

The hopping integrals for the S and N electrodes are, 
respectively, 

( 8 )  1 C 
T,,, = - e8 (k) exp [ ik (Rm-Rm-j I ,  

Ns k 
(9)  

If the p*on-polaron interaction VZ;: is strong 
( V z z :  ,om,. ,Dm, ) and the Coulomb interaction is masked 
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by the electron-phonon interaction [i.e., if the second term 
in Eq. ( 18) is larger than the first], it follows from Refs. 1 
and 2 that polarons form bound pairs in the form of small 
bipolarons. We shall consider only bipolarons localized at 
one lattice site. We shall assume that Em = 0, which corre- 
sponds simply to a new reference point for the polaron and 
energy and in Eq. (18) we shall assume that only the diag- 
onal terms with m = m' differ from zero: 

mm' VmmV =-' l z A 6 m m c .  

We shall show below that A determines the reduction in 
the ground-state energy of bipolarons compared with the 
energy of the ground state of polarons. 

Following the treatment in Refs. 1 and 2, we shall apply 
the second canonical transformation 

We shall write down the Hamiltonian H, in the form 

where 

Ii, = v:::c~,c*..,.ern~,,~crn. 
m, rn',, a, o' 
( m r m  , o#a' 

simultaneously 

and 

In order to remove terms that destroy bipolarons, we 
must select S, subject to the condition1' 

which gives 

where 1 f ) and 1 f ') are the eigenvectors of the Hamiltonian 
H, with the energies Ef and Ey . 

Using Eqs. (20)-(25) for the matrix element of the op- 
erator Hb , we obtain 

The states 1 f )  and 1 f ') are diagonal in the number of 
particles in thesand Nelectrodes; the state IA ') corresponds 
to the number of polarons in the S electrode which is one 
more and in the N electrodes to the number of electrons is 
one less than in the / f ) , ( f ') , and (A ) states. In the (A " ) case 
the reverse is true: in the S electrode the number of polarons 
is one less and in the N electrode the number of electrons is 
one more. 

The off-diagonal (in respect of the number of particles) 
matrix elements of the operator Hb are as follows: 

In the I f" ) ( I f") ) state we find that the S electrode 
contains two polarons more (less), whereas the N electrode 
contains two electrons less (more) than in the state I f ). 

We shall now introduce bipolaron operators: 

Following Ref. 19, we shall write down the denomina- 
tors and the corresponding factors in the numerators of Eq. 
(26) allowing for the following relationships: 

where 4 and nt ' are the numbers of phonons with the mo- 
mentum q in the states / f ) and IA '), respectively. The differ- 
ences Ef - EL., Ef. - E, . , E,... - E, . , Er - E, . are ex- 
actly equal to the difference Ef - EL., defined by Eq. (28). 

After averaging Eq. (26) with the phonon density ma- 
trix 

[H,, = 2, w (q)d, + dq is the phonon part of the Hamilto- 
nian], and allowing for Eqs. (27) and (28), we find that the 
bipolaron Hamiltonian becomes 

mfm' rn,l,l' 

We shall assume that the renormalized energy of the 
sites vanishes and ignore the terms proportional to Dm, D z,  , 
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which are small compared with the other terms when the 
bipolaron concentration is low. 

The bipolaron hopping integral is 
m 

tmm-=2i~drexp[-(i~+6)r](~mm~(r)~m~m(0)), (31) 
0 

the dynamic bipolaron-bipolaron interaction is described by 
rn 

- u m m z = 4 ~ ~ * + 2 i  i d r  exp[- (iA+6) r ]  (D.I ( r )  D ~ I  (0) ). 
0 

(32) 

and the matrix element of the tunneling interaction is 

The following notation is introduced in Eqs. (31)- 
(33): 

am,- (.c) =exp (iHphT')(5mmr exp (-iHph~) 9 

Dml (T) =exp (iHphT) Dm, exp (-iHphT). 

The following analytic expressions for t,,, and B,,, are 
obtained in Ref. 19: 

F,,. =4~::,' + (~T:,./A) exp (-4gZ). (34a) 

If A s o  = &,/g2, where o is the characteristic phonon 
frequency of the system, we have E ,  = B , o  - ' (q) U '(q) for 
the polaron shift, U(p) = U,, ( p )  [see Eq. (2)] ,  and the 
dimensionless electron-phonon interaction constant g is de- 
scribed by 

In the same approximation, we have 

Dm1,-= (4lA) exp (-2q2) Dm~Dml', ( 3 4 ~ )  

where 

If T<A (o, it follows that 

tmmp= (2/A) Tmm~Tm~m exp (-28) 9 

In the subsequent calculations we shall make a number 
of simplifications in the bipolaron Hamiltonian of Eq. (30). 
We shall consider the case of a low bipolaron concentration 
(i.e., we shall assume that the number of sites at which there 
are bipolarons is less than that of unoccupied sites) and we 
shall ignore the interaction between bipolarons: 8,,, = 0. It 
is shown in Ref. 16 that in the same approximation the oper- 
ators b, and b ,+ can be regarded as of the Bose type. 

Allowing for the approximations and going back to the 
momentum representation, we obtain 

where cb (k )  is the energy of the bipolaron with a momen- 
tum k: 

0=0 for ABo, 8=2 for T S A e o ;  (37) 

where 

where 8 = 1 for A B w  and 8 = 2 for T S  A(@. 
We shall regard c, (k) as the energy of electrons in a 

crystal, obtained in the tight-binding approximation for a 
cubic lattice: 

es (k) =eo [3-cos kp-cos k,a-cos k,a]. (39) 

If the mass of an electron near the bottom of the band is 
denoted by m, then the dimensional expression is 
E~ = fi2/(a2m). 

We shall describe the matrix element Dkq using the 
WKB approximation," according to which 

des (k) d e ~  (q) 
Dk9 

where k, and q, are the projections of the wave vectors per- 
pendicular to the tunnel contact plane and Do is a constant 
which depends weakly on the wave vector. 

Substitution of Eq. (39) into Eq. (37) gives the disper- 
sion law of bipolarons which is exactly the same as Eq. (39) 
where we have to replace E,  =fi2/(a2m) with 
E,,, = fi2/(a2mb ). The effective mass of a bipolaron is 

2m02Aa exp (8g2) 
mb = 

21hZ 

If I k I ( l/a, the bipolaron energy is a quadratic function 
of the momentum. In the same limit the matrix element 
DL, q,q2 is 

if the conditions k,, q,, , q,, > 0 are satisfied simultaneously, 
but it vanishes if at least one of the projections is negative. In 
Eq. (42), we have 

N B ' "  P 
cDo = -Do2 exp (-0q2) 

4 8  (momo) 'la ' 

The expression for the tunnel term in the Hamiltonian 
is obtained from the electron tunnel Hamiltonian by apply- 
ing consecutively two canonical transformations. The ma- 
trix element occurring in the tunnel term and responsible for 
the transition of bipolarons across the tunnel junction can be 
expressed in terms of the matrix elements of the ordinary 
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electron tunnel Hamiltonian. However, the term T repre- 
senting the tunneling of electrons [see Eq. ( 1 ) ] is generally 
introduced phenomenologically, so that in solving the prob- 
lem of the tunneling of a bipolaron we can use an approach 
different from that developed above. In the new approach 
the tunnel term may be introduced into the Hamiltonian 
exactly in the same way as is done phenomenologically after 
the canonical transformations. At present we are unable to 
decide in favor of one of these methods and we therefore 
thought it suitable to give in the present paper the results 
obtained by the second approach to the problem of tunneling 
of a bipolaron across a barrier accompanied by decay into 
two electrons. In the second approach the nature of the tun- 
nel term is exactly the same as in the first approach, but the 
dependence of the matrix element on the momenta of a bipo- 
laron and electrons has to be determined, which is done in 
the next section. 

2. TUNNEL HAMlLTONlAN (SECOND APPROACH) 

We shall now describe the second (alternative) method 
for deriving the tunnel bipolaron Hamiltonian. In full analo- 
gy as in the tunneling of electrons, we shall modify the initial 
Hamiltonian describing bipolarons in the S electrode and 
electrons in the Nelectrode by introducing the tunnel term T 
describing a sub-barrier transition of a bipolaron followed by 
decay into two electrons in the Nelectrode. 

More exactly, the initial Hamiltonian is similar to that 
given by Eq. (36), but Dkqlq2 is a quantity which has to be 
determined. We recall that a similar quantity for one-elec- 
tron tunneling is found by comparison with the correspond- 
ing results of a quantum-mechanical problem of a sub-bar- 
rier transition of an electron from one material to another. 
We shall therefore consider the following problem: in the 
initial state we have a bound system of two particles moving 
toward a barrier. In the final state, we have two free parti- 
cles. Clearly, this process involves not only the tunneling but 
also the dissociation (decay) of the bound system. It is this 
decay that introduces a considerable indeterminacy into the 
amplitude of the process, because it depends on the nature of 
the interaction in the bound system and on the properties of 
the junction layer where the decay occurs. Nevertheless, we 
can follow this approach to obtain useful information on the 
transition amplitude (it should be noted that even in the one- 
electron case the height of the barrier occurring in the 
expression for the amplitude remains unknown and it can be 
estimated only from the experimental data). 

Let us assume that a bound system goes over from a 
region I (Fig. 1)  to a region I1 via a region 111, where the 
dissociation takes place. A sub-barrier transition occurs in a 
region defined by 0 < y < 1. 

By definition, the transition amplitude isZ0 

Here, $, and $,, are the initial and final steady states of 
the system, K is the amplitude of conversion of particles with 
the coordinates x,  and x, at a moment t-+ - cc into parti- 
cles with the coordinates x; and x; at a moment t '- + W .  

The wave functions are selected in the form 

FIG. 1. Schematic representation of a tunnel junction. 

91 ( 5 1 ,  xz) =q(x) exp ( iPX)  , I$,, (x,, x,) =esp(ip,x,'+ip,x,') 

(44) 

with normalization to one particle per unit volume. The fol- 
lowing notation is used above: x = x, - x,, X = 
(x, + x2 )/2, P is the momentum of the bound system, p, 
andp, are the momenta of the final particles. 

The amplitude K can be expressed in terms of the path 
integral in the following way:20 

~,'xl'  

K(xlr, x,', t ' ;  x , , ~ , ,  t )  = I Dy, Dy2eiS, (45) 
X,Xz 

where S is the action of the system. We shall select it in the 
form 

where U(y) is the potential which is constant everywhere 
apart from the region of the tunnel junction (it is this junc- 
tion which is the barrier to the motion of the particles) and 
u(y, ,y, ) is the interparticle potential. In the region 11, we 
have u = 0. We shall now make simplifying assumptions 
which are quite permissible for our purpose. We shall as- 
sume that the characteristic size of the bound system d satis- 
fies the condition d g 1. 

It is then convenient to introduce the coordinate of the 
center of mass of the bound system Y = 4 (y, + y, ) and to 
assume that the potential u (y, ,y, ) is such that 

u(Y, Y,--y,) =u(yl-y2) for Y c l ,  
(47 

u(Y, y,-yz) =O for Y>L'. 

Our task is to obtain a closed expression for the ampli- 
tude of Eq. (43) using the definitions of Eqs. (44)-(47). 

Calculation of Eq. (45) by the steepest-descent meth- 
od,  give^^^,^' 

aas,, lb 

K =( det -) e ,  t ,  j-i, 2. 
axi dx,' 

In this case the preexponential factor represents gener- 
alization to the two-particle process of the familiar Van 
Vleck determinant,21 S,, = S [ylC,,yZcr 1, and the classical 
paths y,,, (7) and y,,, (7) are found from the equations 

subject to the additional conditions 
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Substituting Eqs. (44) and (48) into Eq. (43) and ap- 
plying the steepest-descent method in the course of integra- 
tion with respect to the variables xi and x ; ,  we obtain the 
following expression for the amplitude: 

a2s,, 'I? 
= \ dr, dr,rp ( 1 )  [(det  -. 

The quantities x;,, are found from the conditions for an 
extremum 

The main task thus reduces to finding the value of S,, 
and of the determinants which occur in the preexponential 
factor. The results of the solution of Eq. (49) which give S,, 
can be obtained everywhere except for the region 111, where 
the decay of the bound system takes place, and it depends 
strongly on the potentials U(y ) and u ( Y,y) . Nevertheless, 
the general properties of the classical equations allow us to 
move further. Moreover, we need the fact that the derivative 
of the action with respect to the final coordinate of a path is 
the momentum, i.e., 

Moreover, the law of conservation of energy should be 
satisfied along a classical path: 

Here, t ** is the moment in time when the center of mass of a 
closed system reaches the region 111, i.e., Y(t **)  = 1' ;  z; and 
z; are the coordinates of the particles at the moment t **; 
zf = z' - z' , . , c = P:/~,LL; cB is the binding energy; c, is the 
kinetic energy of the closed system: c, = FZ/4p, where 

= 2pX/(t - t *); t *is themomentin timewhen thecenter 
of mass of the bound system reaches the region 11, i.e., 
Y(t *)  = I. Using the equalities given above, we can find the 
preexponential factor in Eq. (50) and the expression for the 
amplitude becomes 

Allowance is made above for the fact that Eqs. (51) and 
(52) yield j, = p ,  - (2pc, ) 'I2 and whenever possible the 
quantitiesz = z, - z, and t * - t ** areignored, whichisjus- 
tified for It 1, 1 t ' 1 -+ cc ; S, is the classical action for two parti- 
cles which at the moment t * are at the points z, and z2 and at 
the moment t ** are at the points z; and z; . Using the semi- 
classical form of the function q, ( x )  and substituting the vari- 
ables. we obtain 

Integration with respect to Xis a trivial matter if we allow for 
the fact that p X  = E;'~ ( t  - t *). Finally, the amplitude of 
the process is 

A (P ,  p , ,  p z )  =2nDpp,p,6(&i+~r-&), ~~p,p,=@o[P(pl+P~) l'", 

 where^^, E, , p l  , andp, are the energies and momenta of the 
final particles; E and Pare  the energy and momentum of the 
bound system. It should be pointed out that it is the matrix 
element DpplP2 that occurs in this case in the Hamiltonian 

( 3 6 ) .  
The factor exp( - F )  usually appears in calculations 

dealing with sub-barrier transitions. When the bound system 
dissociates before such a transition, we have 

I 

F=F.= j d g { [ 2 p ( ~ ( % )  -6,) lL"+L2p(U(S)-EZ) 1"). 
0 

whereas in the case of dissociation of the system after the 
sub-barrier transition, we obtain 

If the bound state dissociates after crossing a region 
0 < y < I ', then the function @ (p, ,p, ) depends on the proper- 
ties of the decay region and on the potential of the interparti- 
cle interaction in the bound system. In the extremely simpli- 
fied formation of the problem, when the size of the decay 
region I11 vanishes, we have 

where p(z) is the wave function of the bound system. At- 
tempts to derive rigorously the function Q, on the basis of the 
two-particle problem are doomed to failure because inelastic 
processes occur in the decay region. Therefore, the selection 
of the type of function must be made on the basis of physical 
considerations. 

In addition to the usual factor p, we also have a factor 
[ (pI + p2 )/2] indicating that the probability of a tunnel 
transition vanishes if the center of mass of a system of two 
particles is at rest. However, if the momentum of one particle 
vanishes, the tunneling is nevertheless possible since a parti- 
cle at rest may form a bound system with an incident parti- 
cle, but in this case the momentum of the system does not 
vanish. 

Generalization to the three-dimensional case is carried 
out in the same way as for the one-electron tunneling,22 
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The two-dimensional S function in Eq. (56) reflects the 
law of conservation of the component of the momentum par- 
allel to the tunnel junction plane. This is true only in the case 
of an ideal junction when we can ignore the influence of 
inhomogeneities, because otherwise Eq. (56) must be aver- 
aged over P,, p,, and p,, , so that the S-functional depen- 
dence is lost. The expressions (42) and (56) obtained for the 
matrix element DkqIq2 are different. The difference between 
the momentum dependences of Eqs. (42) and (56) can be 
explained qualitatively by the fact that they are obtained for 
different limiting cases: Eq. (42) on the assumption of low- 
mobility bipolarons (narrow energy bands) tunneling from 
a site adjoining the tunnel junction into the metal. Equation 
(56) is obtained using the concept of bipolarons considered 
as free particles (wide energy band). The final answer of the 
correctness of one or the other expression can be obtained 
only by comparison with experimental results. 

Nevertheless, as shown below, the difference between 
the matrix elements (42) and (56) has only a quantitative 
effect on the final results. The main qualitative conclusions 
are independent of the initial model of the Hamiltonian be- 
cause both models rely on the hypothesis of bipolarons as 
charge carriers and on the finite width of the bipolaron ener- 
gy band. 

3. EXPRESSION FOR THE TUNNEL CURRENT 

We shall define the tunnel current using the standard 
expression" 

where e is an elementary positive charge and the factor 2 
appears because a bipolaron consists of two polarons; the 
angular brackets denote the Gibbs averaging procedure. 

If a junction is subjected to a voltage, chemical poten- 
tials of the S and N electrodes become different. The differ- 
ence between them can be allowed for by introducing an 
additional term - 2 V Z ,  b 2 b, in the Hamiltonian of Eq. 
(36), i.e., it can be allowed for by renormalization of the 
origin of the bipolaron energy scale. 

Averaging in Eq. (57) and allowing for the specific 
form of the Hamiltonian (36), we find that the tunnel cur- 
rent can be described by 

( b k + b k )  (1-f,,-f, ,) -f,,f,* 
Irn r, I D k q 1 q ' 1 2 E N ( q l )  +eN ( q 2 )  -ab (k) +ZV-i0 

k,qs.qr 

( fq is the Fermi distribution function). 
The first term in the Hamiltonian of Eq. (36) is the 

kinetic energy ofbipolarons similar to the total Hamiltonian 
of a noninteracting Bose gas, apart from the momentum de- 
pendence of the energy. An ideal Bose gas condenses at low 
temperatures and the degeneracy temperature is also the 
critical superconducting transition temperature. 

If the temperature of a junction is below the critical 
value, then the S electrode contains not only condensate 
charge carriers, but also those in excess of the condensate. 
However, the condensate particles make no contribution to 

the tunnel current because they are characterized by k = 0 
and DOqtq2 = 0. 

For this reason we can simplify the sum in Eq. (58) by 
excluding the term with k = 0 and it is also why the average 
of the operators 

is the Bose distribution function. 
Going over from summation to integration with respect 

to the momenta in Eq. (58), we obtain 

kz'q~,q,x for first model 
L ( ~ "  ' I x '  qw)={  k(qi.+gzX)* for second model, 

where Tis the temperature in energy units. 
In Eq. (60) we used k,k cos 6, q ,,,, = q, , ,  cos 6 (the 

angle 6 is measured from the x axis perpendicular to the 
junction plane); @ ,  is governed by Eqs. (42a) and (55a) for 
the first and second models, respectively. 

If the dispersion law of polarons and electrons is qua- 
dratic (we shall assume that near the Fermi surface of the N 
electrode we can still use the quadratic dispersion law, which 
is quite obvious in the case of bipolarons because at low tem- 
peratures the main contribution to the tunnel current is 
made by the bottom of the bipolaron band), after changing 
from integration with respect to the momenta to integration 
with respect to the energies, we find that I( V, T )  is given by 

where 

and n = 5/2 for the first model, whereas 

and n = 1 for the second model; W is the width of the bipo- 
laron energy band; E, is the Fermi energy of electrons in the 
N electrode. 

In the derivation of Eq. (61) it is assumed that the 
width of the electron energy band in the N electrode is con- 
siderably greater than W. In this case the density of the elec- 
tron states N(E) formed on transition from integration with 
respect to the momenta to integration with respect to the 
energy can be described by its value at the Fermi level N(O), 
as is usually done in calculations of the tunneling character- 
istics. This cannot be done in the case of the density of the 
bipolaron states Nb ( E ) ,  because near the bottom of the band 
there is a strong dependence of the energy on the momentum 
Nb (E) a 6, SO that E~ ( k )  cc k2 [Eq. (61) is derived on the 
assumption that Nb (E)  a & for E < W and Nb (E)  = 0 for 
E> w. 
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In the T = 0 case it follows from Eq. (61 ) that an ana- 
lytic expression can be obtained for the tunnel current. In the 
first model, we have 

In the second model, we have 

For negative directions the current vanishes because 
the chemical potential of bipolarons exceeds by 2V the 
chemical potential of electrons. Electrons cannot cross the 
tunnel barrier because there are no allowed states below the 
chemical potential of bipolarons. Moreover, since 
DOqIq2 = 0, the transition ofbipolarons across the tunnel bar- 
rier is also impossible. 

If 0 < 2 V< W, the current-voltage characteristics are 
nonlinear because of the strong energy dependence of the 
density of bipolaron states and because of the energy depen- 
dence of the matrix element L(kx ,q,, ,q2, ). 

If 2V> W, then the upper boundary of the bipolaron 
band lies at an energy below the Fermi level in the normal 
electrode, the current-voltage characteristic becomes linear 
because the tunnel current includes contributions of electron 
transitions to the whole of the bipolaron band. 

Numerical calculations of the current-voltage charac- 
teristic of a junction are carried out for a nonzero tempera- 
ture using Eq. (6  1 ) for T < T, ( T, is the Bose condensation 
temperature, which is identical in the bipolaron model with 
the superconducting transition temperature) and also using 
the relationship 

w 

In Eq. (63) at temperatures T> T, the chemical potential of 
bipolarons ,u ( T) is found from the normalization condition 

The results of the calculations carried out using the first 
and second models are presented in Fig. 2 for different tem- 
peratures and a fixed value W = 1.5 T, . 

Since at T # 0 some bipolarons ( T < T, ) or all of them 
( T> T, ) leave the condensate at 2 V< 0, the current be- 
comes greater than zero and its absolute value increases with 
temperature. The nonlinear part of the current-voltage char- 
acteristic is retained both at T< Tc and T> Tc, and in both 
cases we have 0 < 2V< W. This is demonstrated most clearly 
in Fig. 3, which gives the dependence of the derivative d l  /d V 
on the voltage across the junction. The curves representing 
this dependence consist of three regions. If 2V<O and 
2 V >  W, the regions are flat, whereas for 0 < 2 V< W, there is 

I ,  rel. units 

FIG. 2. Current-voltage characteristic of an S-I-Njunction. The width of 
the bipolaron band is W = 1.5T.; the dashed lines represent the first mod- 
el and the continuous lines represent the second model; 1 ) T = 0.05Tc; 2 )  
T=0.5Tc;  3 )  T =  l . lT , .  

a monotonic rise. The results of calculations of the current- 
voltage characteristics are qualitatively the same for both 
models. 

4. CONCLUSIONS 

We calculated the current-voltage characteristics of su- 
perconductor-insulator-normal metal junctions in the case 
when the superconductivity can be described by the bipo- 
laron theory developed by Alexandrov and Ranninger.2.3 
We used the approximation of noninteracting bipolarons. 
The approximation of a strong electron-phonon interaction 
and the model of a tunnel Hamiltonian were used to obtain 
expressions for the tunnel current. The calculations showed 
the following. 

1 ) The current-voltage characteristics of the junctions 
are strongly asymmetric when the polarity of the voltage 
across the junction is reversed, which is typical4-' of the 
experimentally observed current-voltage characteristics of 
the S-I-N junctions, where the S electrode is a high-tem- 

d I / d Y ,  rel. units 

FIG. 3.  Differential conductance of an S-I-Njunction. The width of the 
bipolaron band is W = 1 ST,;  the dashed curves represent the first model 
and the continuous curves the second model: 1 )  T=0.05TC; 2)  
T =  0.5Tc; 3 )  T =  l . lT, .  
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perature metal oxide superconductor. 
2)  The current-voltage characteristics and the depen- 

dence of dI/dVon V/T, at the junction voltage V= W / 2  
reveals a singularity associated with a strong energy depen- 
dence of the bipolaron states density and also with the fact 
that the bipolaron energy band is narrow. 

3) This singularity does not disappear either in the case 
when T> T,, i.e., when the S electrode goes over to the nor- 
mal state. 

As pointed out in the Introduction, it is experimentally 
difficult to extract the information on the gap from the spec- 
trum of electrons using theS-I-N tunnel characteristic if the 
Selectrode is a metal oxide superconductor. The difficulty is 
that the current-voltage characteristic does not then show a 
steep rise of the current at some value of the voltage, which is 
identified within the framework of the BCS theory with the 
superconducting gap, even at very low temperatures5-" 
when an abrupt junction should form if T<A. It follows 
from our calculations that the singularity of the current- 
voltage characteristic may be related not to the presence of 
the gap in the electron spectrum, but to the existence of the 
bipolaron band. 

The same conclusion is supported by the observation" 
of a singularity in the current-voltage characteristics of an 
S-I-Njunction at a position along the voltage axis indepen- 
dent of temperature. According to the BCS theory the gap 
should depend strongly on temperature and, therefore, this 
experimental result cannot be understood. However, in the 
bipolaron t h e ~ r y , ~ - ~  the coordinate of a singularity on the 
voltage axis should be independent of temperature, because 
the bipolaron band width is independent of T. 

It should be pointed out that some of the experimental 
features of the current-voltage characteristics of the S-I-N 
junctions can be explained only qualitatively for a structure 
in which the S electrode is a metal-oxide superconductor. 
This is due to the fact that we have considered so far only the 
simplest model of noninteracting bipolarons. In this model 
there is no tunnel current because of the condensate particles 
whose momentum vanishes. In a quantitative description of 

the experimental results we have to allow for the interaction 
between bipolarons. 

The authors are grateful to D. V. Funtov for numerical 
calculations on a computer. 
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