
Nonlinear strings in relativistic MHD 
V. S. Semenov and L. V. Bernikov 

Leningrad State University 
(Submitted 27 April 1990; resubmitted 25 July 1990) 
Zh. Eksp. ~ e o r .  Fiz. 98,1627-1634 (November 1990) 

A spicial Lagrangian coordinate system is constructed in which a magnetic force tube is the focus 
of attention. This tube behaves as a nonlinear string with respect to tangential forces. General and 
particular variational principles are given. The results show that a plasma in a magnetic field can 
be thought of in the MHD approximation as a gas of nonlinear strings which interact through 
pressure forces. A method is developed for reducing multidimensional nonlinear problems of 
relativistic MHD with boundary layers to a sequence of two-dimensional problems for force 
tubes, i.e., nonlinear strings. 

1. INTRODUCTION 

Relativistic magnetohydrodynamics ( RMHD ) , like 
nonrelativistic MHD, has the property that magnetic field 
lines become frozen in a plasma, so the force tubes can be 
tagged with plasma particles and thereby individualized. 
The existence of Maxwell stresses along a field line is fre- 
quently used as justification for drawing an analogy between 
a magnetic force tube and a rubber band or cord, i.e., an 
entity capable of stretching and contracting. The picture of a 
force tube as a spring often leads to a clear qualitative de- 
scription of complex phenomena. In nonrelativistic MHD, 
this analogy between a force tube and a spring or, more pre- 
cisely, a nonlinear string, is not only qualitative but also 
quantitative, as was shown in Ref. 1. The quantitative analo- 
gy is by far the more important of the two. This concept 
underlies a method which has been proposed for reducing 
several difficult MHD problems, including three-dimen- 
sional and time-varying problems, to a sequence of two-di- 
mensional problems for nonlinear strings (force tubes). Be- 
low we generalize the technique developed in Ref. 1 to the 
relativistic case. 

2. RELATIVISTIC FROZEN-IN FRAME OF REFERENCE 

Pkbk=O. ( 3  1 

The system of RMHD equations can be written 

Herep is the density, Eq. (4) expresses conservation of mat- 
ter, Eq. (5)  expresses energy-momentum conservation, and 
Eq. (6) is the magnetic-induction equation. 

We will attempt to construct a frame of reference such 
that a magnetic force tube in it is the focus of attention. For 
this purpose, the vectors b 'or u' (or vectors proportional to 
them) must become the basis vectors in the new frame. The 
general shows that two vectors a: and a: can be 
basis vectors of some frame if and only if their Lie bracket 
vanishes: 

We will attempt to choose scalar functions k, (x)  and k, (x)  
such that the Lie bracket of the vectors k, u'and k, b 'vanish- 
es. --. 

We will be discussing a plane Minkowski space with a In general, the magnetic-field 4-vector b 'is not solenoi- 
metric tensor hik = diag( 1, - 1, - 1, - 11, but all the dal: V,b '#O. It is, on the other hand, possible to choose a 
calculations can be generalized in an obvious way to the case scalar function q(x) such that 
of the general theory of relativity. The medium in RMHD 
can be described by the energy-momentum tensor24 Viqb7=0. (8) 

1  
b ' ~ ,  ( I )  The physical meaning of q will be explained below. Us- T t k  = ( p + c + - b 2  ' )  u'uk - ( p  +- 8n b2 )h"- -  

4n 4n ing (4)  and (8),  we can rewrite Eq. (6) (the magnetic-in- 

wherep is the pressure, E is the internal energy per unit vol- duction as 

ume of the plasma, u' is a time-like velocity bvector, bf uk U' bk 
- v < - - - v . - = o .  

u,u'= 1; b '  is the space-like magnetic-field Cvector, 
(9) 

P Q Q  P 
b ' = F *IkUk, F * I k  is a dual electromagnetic field tensor, and 
b = - 6, b '. The vectors u' and b ' are orthogonal: b, u' = 0. In other words, the Lie bracket of the vectors u'/q and b '/pis 
In the dissipation-free RMHD discussed below, Ohm's law zero. There exist thus coordinates 7 and a for which the 
reduces to vectors u'/q and b '/p are basis vectors: 

which simply means that there is no electric field in the co- 
drl 4 ' 

moving frame of reference: hi b' -=-. 
1 da P 

E + - [vB] =O. 

The magnetic-field 4-vector satisfies the same equation: Since u, u' = 1, the vector xh satisfies 
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We supplement g, a with two other coordinates $, f,  and we 
rewrite Eqs. (4)  and (8 )  in terms of the new variables g, a ,  
$ 9  f :  

ui 1 1  - 
v i p u i = v i p q -  = =- pql -g  = 0 ,  (13) 

4  1-g arl 

where is theJacobiai of the transformation from the 
coordinates xO, xi,  x2, x3 to g, a ,  $, f.  From Eqs. ( 13) and 
( 14) we findpq- = F($,f). We will leave the introduc- 
tion of the coordinates $, f somewhat arbitrary at this point; 
specifically, we allow the transformations = $($,f) and 

= c($,f). We can utilize this arbitrariness to satisfy the 
condition F($,f) = 1. We then find 

This is the form of the continuity equation in terms of the 
new variables. The induction equation, (6), is now satisfied 
identically. 

By analogy with the nonrelativistic case,' we call the 
frame of reference g, a ,  $, f the "frozen-in" system. The 
justification for this name comes from the frozen-in property 
in (2),  (6),  which also leads to (9) ,  the necessary condition 
for the introduction of the new coordinates. Different sets in 
the space of frozen-in coordinates have a simple physical 
meaning. 

By virtue of their construction, the g coordinate lines 
are inverse transforms of the trajectories of the fluid parti- 
cles in physical space, while the a coordinate lines are in- 
verse transforms of the magnetic field lines. In formal terms, 
the functions xi(g,a,$,<) with fixed a ,  $, < and variable g 
specify the trajectory of a fluid particle. If instead g, $, f are 
fixed while a varies, we obtain a magnetic field line: a solu- 
tion of Eqs. ( 1 1 ) . 

The parameter g has the meaning of a Lagrangian time 
along a trajectory, and the entire frozen-in coordinate sys- 
tem is also Lagrangian. It is for this reason that the continu- 
ity equation takes the form in ( 15). The parameter g differs 
from the proper time r by an amount q: 

The physical meaning of q can be seen from the equation 

which follows from Eqs. (4)-(6) (Ref. 3). Here s and 
w = E +pare the entropy and enthalpy per unit volume, and 
T is the temperature. It can be ~ h o w n ~ ' ~  that the entropy 
remains constant along the trajectories of the fluid particles: 

Hence s = so (a,$,(). If a thermodynamic equilibrium is 
also established along a magnetic force tube, b 'Vis = 0 or 
s = so ($,(), it follows from ( 17) that the role of q is played 
by the enthalpy. In general, we find the following relation 
from (17): 

q=w expJ ( T s , / w )  da ,  

where the integration is along the force tube. Using (2)  and 
(3),  we can show that in the frozen-in frame of reference the 
electromagnetic field tensor Fik has only a single nonvanish- 
ing component: 

This result is generally understandable: The electric field 
vanishes in the comoving frame of reference [see (2)  1, and 
the magnetic-field 4-vector b '/p is a basis vector. It follows 
from (20) that the magnetic flux through a fluid loop, F,, 
does not vary with the time g as it moves at a velocity ui/q or 
with the time r as it moves at a velocity ui [see ( 16) ] : 

Here dxi A dxk is an area element of the surface spanning the 
fluid loop. We have thus found that the area d$ A d c  in the 
space of frozen-in variables is equal to the magnetic flux 
through the inverse image of this area in physical space. 

Let us determine the physical meaning of the parameter 
a along a magnetic field line. The mass of plasma in the 
volume element Ax'Ax2Ax3, integrated over the time Ax0, is 

We thus see that the mass of plasma in a force tube with a 
unit magnetic flux per unit proper time is a ,  since ( 17) must 
be broken up into the flux d$ A df and the proper time dr .  
The parameter a is thus the mass of plasma in a force tube 
with a unit magnetic flux in the proper frame of reference. 

3. MAGNETIC FORCE TUBE AS A NONLINEAR STRING 

Let us rewrite equation of motion (5) in terms of the 
frozen-in variables. This equation can be put in the form 

where P = p +  b2/8a is the total pressure, and 
Q=p + E + b 2/4a. In terms of the new variables, two oper- 
ators involved here take the following form: 

We can thus rewrite Eq. (23) as 

where i, j, k, I = 0, 1,2, 3 constitute a cyclic permutation of 
indices. The Jacobian appears on the right side because of the 
conversion of the pressure gradient h ikViP to the new vari- 
ables. This is the general position for any Lagrangian ap- 
proach.' 

Equations of motion (25) follow from energy-momen- 
tum conservation, but they have a different interpretation in 
terms of frozen-in variables. A one-dimensional wave opera- 
tor describing a magnetic force tube has appeared on the left 
side of (25). This circumstance is understandable, since the 
force tube behaves as a nonlinear string [the left side of 
(25) ] and is subjected to a pressure exerted by the neighbor- 
ing force tubes [the right side of (25) ]. 

It is useful to rederive this conclusion from a variational 
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principle. The equations of motion can be found by varying 
the action9 

We write the action in (26) in terms of frozen-in variables, 
using auxiliary condition ( 15) : 

e+pzaz/8n D (x",  x', x2, x3) 

where e = ~ / p  is the internal energy per unit mass, 
x i  = - h,xLxE, and A is a Lagrange multiplier. The quan- 
titiesxiandp are to be varied. The variation of q can be found 
from (12): 

Varying xi, we find the equations of motion (25). Varying 
the density p, and making use of the thermodynamic relation 
p2e, =p, we find the equation 

from which we see that A = P. The force tubes interact under 
the condition that the mass of plasma in them is conserved 
[see ( 15) 1. This interaction leads automatically to the ap- 
pearance of a total pressure P: the Lagrange multiplier 
which was introduced in a formal way turns out to be the 
total pressure. By analogy with the particles of a gas, one 
could say that a collision of force tubes in which the plasma 
mass does not change gives rise to the pressure forces of the 
magnetic force tubes. 

We thus see that in RMHD, as in nonrelativistic MHD, 
a magnetic force tube is completely analogous to a nonlinear 
string with respect to tangential forces. Pressure forces act 
between tubes. 

Note also that the frozen-in coordinates cause a natural 
stratification of Minkowski space into the space of the force 
tube, i.e., 7, a (a  layer), and the rest of space (the base). 
This point may prove useful in the development of numerical 
algorithms for RMHD problems. lo 

4. BOUNDARY LAYER 

The picture of a magnetic force tube as a nonlinear 
string may prove useful, but, unfortunately, is of little help 
for a quantitative description. Solving the system of MHD 
equations is a difficult matter in either Eulerian form, ( 1 )- 
(3),  or Lagrangian form ( 15), (25). As in nonrelativistic 
MHD,' the problem does simplify when we consider an im- 
portant particular case, namely, a subsystem of Eqs. (25) 
which we write in the form 

1 
P (x) =p 'r - p2xa2. 

8n 

We assume that the total pressure P(x)  is a given function of 
the Eulerian coordinates in subsystem (29), (30). The equa- 
tion of state can be chosen in the form p = p(p, s). The en- 
tropy is constant on trajectories (18), so it is determined by 
its value at the initial time: s = so (a ,  $, f) .  The equation of 

state then gives us an expression for the pressure as a func- 
tion of the density: 

Equation (30) determines the nonlinear dependence of the 
density on xi and x: . The charges q are related to x:, by ( 12). 
We see now that to find expressions for the Eulerian coordi- 
nates in terms of the frozen-in coordinates ~'(17, a, $, (), 
at a known function P(x) ,  we need to solve a system of two- 
dimensional equations for a nonlinear string ($ and (appear 
as parameters). Solving this problem is of course much 
simpler than solving the original system of MHD equations. 
Solving two-dimensional string equations poses no particu- 
lar challenge to modern computers. A question arises here: 
Under what conditions is the total pressure known at the 
outset or can at worst be calculated in the first step, without 
consideration of the other unknowns? 

As an example we can use an Alfvtn wave, for which we 
have P = const, and for which Eq. (20) becomes the usual 
d'Alembert's wave equation: 

A solution of (3  1 ) is an arbitrary function of the arguments 
[ ~ / q ( 4 r Q )  "'1 7 + a. Let us assume that the wave is propa- 
gating along the x axis in the field b,,. We then have 
a = (p/b, )x, and 77 = rq, and the argument is rewritten as 
[b0,/(4rQ) r + x. The Alfvtn velocity is therefore 
V, = bo,/(4rQ) "' (Ref. 4).  

There is a far wider class of problems in which the total 
pressure can be found beforehand. We have in mind prob- 
lems with boundary layers, although the solution found in 
such cases is admittedly asymptotic rather than exact. An 
important property of a boundary layer is that the total pres- 
sure remains constant in the transverse direction. The proof 
is essentially the same as in the theory of a Prandtl viscous 
boundary layer.'' Let us examine the orders of magnitude in 
the equation of motion across the layer (for definiteness, 
along the z axis) : 

We assume that the ratios of the length scales of the variation 
of the various quantities along (x0,x',x2) and across (z) the 
layer satisfy z/xO, z/xl, z/x2 - ~ g  1. We also assume that the 
magnetic field lines in the boundary layer are stretched out 
in the longitudinal direction, so the normal component is 
small in comparison with the tangential components. We 
then have normal values b,, u,, Z-E and tangential values 
- 1. The left side of (32) is thus -E, and the right side - I/&. Hence dP/dz = 0; i.e., the total pressure 
P = P(x0,x1,x2) does not change in the direction across the 
boundary layer in the zeroth approximation. 

Outside the boundary layer the problem usually simpli- 
fies, and the total pressure can be found from a simplified 
(limiting) system of equations. The total pressure, being a 
function of only the coordinates xO, x', and x2, tangential 
with respect to the layer, does not vary in the direction across 
the boundary layer, as we have already mentioned. To deter- 
mine how the tangential Eulerian coordinates depend on the 
frozen-in coordinates, i.e., to determine xi(v, a ,  $, {), we 
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can thus use nonlinear-string equations (29) and (30). 
These equations must be solved separately for each individ- 
ual force tube at fixed values of $ and <. Boundary condi- 
tions are found from the condition for joining the asymptotic 
expansions in the boundary layer and in the external region. 
The final step is to find the function z(7, a ,  $, f )  from the 
first-order linear equation in (15), in which the functions 
~ ' ( 7 ,  a ,  $, f ) ,  i = 0, 1, 2, are now known. Continuity 
equation ( 15) can be integrated by the method of character- 
istics, which aresimply ~ ' ( 7 ,  a ,  $, <) = const. There is the 
hope that all the problems mentioned above can be solved 
numerically in many cases, since the original nonlinear 
RMHD problem (which is generally four-dimensional) 
splits up into a sequence of two- and one-dimensional prob- 
lems. In nonrelativistic RMHD, this method has proved 
successful in problems concerning magnetic reconnection7 
and a magnetic barrier.I2 

A particularly simple problem is that of the behavior of 
a narrow isolated magnetic field tube, with a longitudinal 
dimension which is much larger than its transverse dimen- 
sion. This condition that the tube be narrow guarantees that 
the total pressure will remain constant in the transverse di- 
r e ~ t i o n . ' ~ " ~  The pressure P(x)  is determined by the distri- 
bution of the gas pressure in the plasma. To find the tangen- 
tial components of the velocity and the magnetic field, the 
density, the pressure, and the shape of the axial line of the 
tube, we must solve a Cauchy problem for nonlinear-string 
equations (29) and (30). In the zeroth approximation, the 
behavior of a narrow isolated tube depends on the gas pres- 
sure distribution in the medium and on only this distribu- 
tion. In order to find subtler characteristics-the shape of 
the tube and the velocity and field components normal to the 
axis-it is necessary to know the nature of the plasma flow 
around the tube; that problem is vastly more difficult. All 
that one can do here is estimate the transverse dimensions, 
by calculating the magnetic field and knowing the magnetic 
flux. To an extent, the situation here is similar to that in the 
guiding-center approximation in the theory of the motion of 
charged particles in a magnetic field, in which case one fol- 
lows not the particle itselfbut its guiding center, ignoring the 
fine details of the Larmor revolution. 

The nonlinear-string method is based on the use of fro- 
zen-in coordinates. This approach can be taken only in the 
model of a dissipation-free medium, so it would appear that 
the same restriction is imposed on the use of this method. 
Since the magnetic field lines cannot rupture in the absence 
of dissipation, we see that the number of problems which 
lend themselves to this approach is small: In these problems, 
the final field configuration is found from the initial configu- 
ration by means of a continuous deformation. In the real 
world, there are relatively few such situations, so the range 
of applicability of the method is rather limited. Some help 
comes from reconnection or, more precisely, the Petschek 
mechanismI5 and its time-varying generalizations.7 The ac- 
tual reconnection of magnetic field lines occurs in a diffusion 
region, because of the dissipative processes which occur 
there; in the absence of dissipation, there could be no recon- 
nection. 

In general, the dimensions of the diffusion region are 
small at the scale of the system, so in a first approximation 
one can assume that the force tubes reconnect not in a recon- 
nection region but on a reconnection line. It then becomes 

possible to invoke the model of dissipation-free RMHD, but 
with a rupture of the force tubes on the reconnection line. It 
is thus possible to substantially expand the range of applica- 
bility of the nonlinear-string method. 

It is becoming progressively clearer that thin sheets 
with high currents and boundary layers in general play a key 
role in many MHD problems. Although these sheets consti- 
tute only a small fraction of the volume of the entire system, 
the processes which occur in them determine the dynamics 
of the system almost c ~ m ~ l e t e l ~ . ~ ~ ' ~ - ~ ~  It is in studies of cur- 
rent sheets and other regions with stretched field lines that 
the nonlinear-string method is appropriate, so this method 
may prove useful in many problems in astrophysics and plas- 
ma physics. 

5. PARTICULAR VARIATIONAL PRINCIPLE 

As in the nonrelativistic case,I2 string equations (29), 
(30) can be found from a particular variational principle 
with an action: 

Q E+ p2xa2/8n+ P SP. = J - d a d q  = j d a d q .  (33) 
P4 P4 

Here P(x)  is assumed to be a given function of the Eulerian 
coordinates; the functions xi(7, a ,  $, <) are varied. The 
boundary layer does not have to be planar; a particular vari- 
ational principle is extremely useful in writing string equa- 
tions in curvilinear Eulerian coordinates. 

We can work from action (33) to construct two new 
conservation laws. Expression (33) can be thought of as an 
action with a Lagrangian density 

E+ p2xa2/8n+ P 
L.= j d a ;  

P q 

we then find that the quantity xhdL,/ax', - L, is con- 
served: 

The integral in (35) is conserved as a force tube moves at a 
velocity ui/q.  We recall that we have Q = p + E + b 2 / 4 ~ .  
The frozen-in property is of a dual nature, as can be seen 
from the symmetry of frozen-in equation (6)  with respect to 
ui and bi. For this reason, the same action, (33), can be 
considered in a different way, with the Lagrangian density 

Associated with (36) is the conserved quantity 

E+P H* = J- d q .  
P 4 

The integral in (37) is conserved as a tube of trajectories is 
continued along magnetic field lines. 

In the nonrelativistic limit, the string equations and the 
general and particular variational principles become their 
own  analog^.',^,'^ In general, the nonrelativistic technique 
can be generalized without any fundamental change to the 
case of relativistic magnetohydrodynamics. 
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