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A boundary-value problem of macroscopic electrodynamics, for a monochromatic field in an 
inhomogeneous and anisotropic medium with a rough boundary, is analyzed. This problem is 
basic to several applications in laser optics, solid state physics, and surface-polariton 
spectroscopy. A rigorous method for going over from this problem to an equivalent problem in a 
region with a plane interface is developed. This transformation is made with the help of 
"coupling" equations proposed here, which couple the values of field vectors at spatially separate 
points. For the case of random roughness, the presence of the roughness with respect to the 
average field can be described rigorously by effective-roughness operators which are assigned to a 
plane boundary and which incorporate the multiple scattering of waves by the roughness. A 
complete asymptotic expansion of these operators in powers of a small parameter characterizing 
the roughness height is found. The model of a uniaxial lamellar medium is studied as an example. 
An operator representing the equivalent impedance of the rough boundary is found for this 
model. The problem of the distortion of naturals- andp-polarized waves by roughness is solved. 

The scattering of electromagnetic waves by a statistical- 
ly rough surface originally arose in connection with radar 
and the theory of the propagation of radio waves along the 
earth's ~urface. ' .~ This problem has now emerged as one of 
major importance for laser optics and solid state physics in 
connection with effects accompanying the reflection of light 
from the surface of a nonlinear m e d i ~ m , ~  surface-enhanced 
Raman ~cat ter ing,~ and the perturbation of a surface-wave 
spectrum by an interface roughnes~.~ 

A theory for wave scattering by a nonplanar surface of 
fixed shape has presently been worked out in two perturba- 
tion-theory versions: a perturbation theory based on a low 
height of the roughness i r regular i t i e~~~~- '~  and one based on 
their small slopes." The methods proposed in the papers 
just cited can be used to calculate field vectors or reflection- 
transmission and scattering operators which determine 
these field vectors in any order of perturbation theory. Since 
these methods are limited by the requirement that the distor- 
tions of the field must be small, they are incapable of dealing 
with "accumulating" effects which arise in the multiple scat- 
tering of waves by irregularities and which lead to pro- 
nounced perturbations of the field. 

The theory of multiple scattering by a statistically 
rough ~ u r f a c e , ~ . ~  which arose in connection with pioneering 
studies by Feinberg' and Bass,I2 does not share this draw- 
back and thus has an indisputable advantage. Various mod- 
els of a medium with a rough boundary were examined with 
the help of this theory in Refs. 1 and 13-16. The ideas of this 
theory have by now been reduced to various recipes2.I6 for 
determining how various types of infinite sequences of scat- 
terings by a roughness shape the electromagnetic field. Since 
it is not possible at the outset to evaluate the contribution of 
each of the various possible sequences, these recipes are em- 
pirical. Their ranges of applicability and ways to refine them 
are not clear. This is a weak point of the existing versions of 
this theory in comparison with methods which deal with 
scattering a finite number of  time^.^'^-" As has already been 
mentioned, a large number of scattering problems involve a 
small parameter: the height or slope of the roughness irregu- 

larities. There is the attractive possibility of formulating a 
multiple-scattering theory as a perturbation theory in terms 
of one of these small parameters. 

Our goal here is to derive a systematic perturbation the- 
ory which incorporates a multiple scattering of waves by a 
statistically rough surface and which uses the roughness 
height as a small parameter. We will also apply this theory to 
the key problem5 of the distortion of the spectrum of surface 
electromagnetic waves by an interface roughness. 

Let us outline the logic of our approach. The original 
problem of macroscopic electrodynamics in an inhomogen- 
eous medium with a rough boundary is transformed (Sec. 1 ) 
with the help of a rigorous procedure for "transferring" 
boundary conditions to an equivalent problem in a region 
with a level boundary and perturbed boundary conditions 
[Eq. (9)  below]. A statistical averaging is applied to the 
resulting problem (Sec. 2).  As a result, equivalent boundary 
conditions [conditions (25) ] are found for the average field 
at a plane surface. These conditions incorporate the presence 
of a roughness. Effective-roughness operators which are in- 
volved in these boundary conditions are found as a solution 
of a system of operator equations [Eqs. ( 17) 1. This system 
of equations can be solved by a perturbation theory based on 
the small height of the roughness. The corresponding 
asymptotic expansions [Eqs. (20)-(22)] constitute one of 
the primary results of this study. An effective impedance is 
found for a rough boundary in a lamellar medium in Sec. 3; 
terms quadratic in the roughness height are taken into ac- 
count. The problem of the distortion of s- and p-polarized 
surface electromagnetic waves by a roughness is solved. 

1. "TRANSFER" OF BOUNDARY CONDITIONS IN THE INITIAL 
PROBLEM 

To avoid the particular details of practical  problem^,^-^ 
we start from a model, as general as possible, of a medium 
with a nonplanar boundary. This boundary is specified by 
the equation z = z, ( r ) .  We assume that the entire three- 
dimensional space is divided by this boundary into two re- 
gions, V ;  ( - cc <z<z , )  and V ;  (z, < z <  + w ) .  Wewill 
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not be specific about the shape of the smooth function z, ( r ) ;  
here r = (x, y, 0) .  Each of the regions V';,, is filled with an 
inhomogeneous and generally anisotropic medium. We ig- 
nore the nonlinearity and spatial dispersion of the medium. 
The problem in which we are interested can be written as 
follows for the complex amplitudes E ( R )  and H ( R )  of a 
monochromatic ( a e - '"') electromagnetic field: 

Here j = 1,2; c is the velocity of light in vacuum; k, = w/c; 
,h, and t, are arbitrary piecewise-smooth functions of the 
variable R = (x, y, z)  which characterize the magnetodi- 
electric properties of the medium in region VJ; Ej and Hj are 
the values of the field vectors in medium j; y = gradz, ; 2, is a 
unit vector along the z axis, which for definiteness we direct 
vertically upward; R, is the radius vector of a point on the 
surface 8 ( z  = z, ); and M and J are respectively magnetic 
and electrical external sources. We are using dyad notation 
(no index) for tensor quantities. Conditions (2)  require 
continuity of the tangential field components at the surface 
8. Corresponding conditions at other interfaces are "built 
into" Maxwell's equations ( 1 ) and will not be mentioned 
further. In situations typical of optics, the external field 
sources are at infinity, and the magnetic permeability is al- 
ways l:  b,,, E l. However, we will formulate the problem in 
a more general way, so it will also apply to the rf 
There are thus magnetic as well as electrical external sources 
in (1).  

One difficulty in finding an analytic solution of this 
problem is that the boundary 2 does not coincide with a 
coordinate surface in an appropriate coordinate system. We 
will not specify the nature of the surface 2, i.e., whether it is 
deterministic or random, since that point is unimportant in 
this section of the paper. We will write out a rigorous proce- 
dure which makes it possible to avoid this difficulty. The 
basic idea of this procedure, which stems from Refs. 1 and 
12, is to couple the values of the field at spatially separate 
points in such a way that coupling conditions ( 2 )  at the 
boundary 8 are equivalent to a condition on another surface, 
which is more appropriate for our purposes. 

It is convenient at this point to assume that the 
piecewise-smooth functions ,h, (R)  and 2, (R) ,  which are co- 
efficients in Eq. ( 1 ), are specified throughout three-dimen- 
sional space at the outset. The overall medium specified in 
the formulation of the problem in (1)  and (2)  may be 
thought of as the result of "gluing" a part V ;  of medium 1, 
which fills the entire space, to a part Vi of medium 2, which 
fills another copy of the space. This gluing takes place along 
the boundary 2. We assume that the surface 2 (or all real- 
izations of it, if Z is random) can be bracketed by two planes 
z = a and z = b (b  > a ) .  To relax the requirements imposed 
as a result on the entire set of suitable planes, we choose 
those two planes whose separation b - a is at the smallest. 
We assume that within the plane layer a < z < b the functions 
ji, (R)  and 2, (R )  depend on only z and reduce to the form 

Here p,,,, = 1, 2, Y = t, z)  are piecewise-smooth func- 
tions of the variable z which are defined on the interval 
a < z < b , I ,  =zozo ,  I, = i - I , ,  a n d i i s  the unit dyad. In 
other words, in a certain plane slab which contains the rough 
boundary the media on the two sides of this boundary are 
lamellar and uniaxial with a vertical optic axis. The case in 
which the media adjacent to Z are homogeneous and iso- 
tropic is a particular case of this model. To simplify the cal- 
culations we will also assume that there are no external field 
sources within the slab a < z < b: M = J = 0. 

We can then show that the field values at two vertically 
separated points R = ( r ,  z)  and R' = (r, 6) in medium j are 
related by 

Here j = 1 and 2; the index t goe: with the horizontal field 
components. We are using dyad ( C $  ) and scalar ( G 2; and 
r:;, ) pseudodifferential operators, which act along the vari- 
able r and which depend on the parameters z and 6: 

1 + zox v,r;" (z, E)  zoxv,, v* 

iko + 7 z o ~ ~ , ~ ~ "  (z, E)zoXV,, 
v I 

and V, = V - z,a,. The functions G ,o" (z96,A) and 
ry) (z,l,A) (A is a complex parameter; 7 = E, p) are defined 

by 

qjt (8) r,,") (2, E, A )  (2, E, A ) ,  

6"' (2, E, A )  

= [ YJj) (2, A )  (E, A )  -Y,,(j) (t, A )  @,,('I (2, A )  ]/A,,('), 

qjt (8) A,,(j) ( A )  

=Y,,(j) (E, A) (E, A)  -Y,,(j) (5, A )  &@,,(j) (E, A), 

( 7 )  

(no summation is to be carried out over the index j ) .  The 
functions Y,D"(z,A) and @y)(z,A) are defined as arbitrary 
linearly independent solutions of the equation 

(a  < z  < b), which are continuous along with v/rl,,. The dot 
means here the partial derivative with respect to z, 
k f, = k :~ , ,p~ , ,  and k i, = k ipiz~jr.  
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The validity of coupling equations (4) can be verified 
directly and easily: They become identities at z = {, while at 
z#g the vectors Ej (R)  and Hj (R)  from (4)  obey the homo- 
geneous Maxwell's equations ( 1 ) for the corresponding me- 
dium. Relations (4)  can be interpreted in a different way, 
and this alternative interpretation is of fundamental impor- 
tance to the discussion below. For a <z  < z, < J  < b 
( a < l < z ,  <z<b) ,  Eqs. (4)  takenforj=2 (j= 1) express 
a rule for continuing the vectors E,, H, (E l  ,Hi  ) out of the 
region V; ( V; ) into the adjacent region between Z and the 
plane z = a (z = b), where these vectors were originally not 
defined. A noteworthy feature of this rule is that the "contin- 
ued" vectors obey the homogeneous Maxwell's equations 
( 1 ) in the region a < z < z, (z, <z  < b) with the same coeffi- 
cientsp, , b, (p, ,b, ), as before. This assertion can be verified 
directly. 

We will use coupling relations (4) to "transfer" bound- 
ary condition (2)  from the rough surface Z to an arbitrary 
fixed plane z = d, a<d<b. For this purpose, we set j = 2, 
{ = d + O , z = z ,  andthenj=  1 , g = d - O , z = z ,  in (4).  
We substitute the resulting expressions for E , ,  (R, ), 
H,,, (R, ) into condition (2).  As a result we find boundary 
conditions at the z = d plane: 

{Ejt (Rs) } = {VeejEjt (Rs) +Vemj.Hjt (RE) } 7 

{Hjt (Rs)} ={Vmej.Ejt (Rs) +Vmmj.Hjt (Rs)}. 
(9)  

These conditions are equivalent to the original conditions 
(2 )  at the rough surface. Here and below, R, is the radius 
vectorofapoint in thez = d plane; uu)) = f(2)  - f(1) for 
%ny function f ( j )  of the discrete argument j = 1 and 2; and 
VaBi are dyad operators which act along the variable r and 
which depend on the discrete argument j: 

h 

The function z, in the operators Cap (z, ,d +_ 0)  is not sub- 
jected to the operator V, which appears in them. 

Maxwell's equations 

considered in each of the half-spaces V;' ( - w < z  < d )  and 
V $  ( d < z <  + a), with the coefficients,&,, 2, and,&,, 2,, 
respectively, along with boundary conditions (9)  in the 
z = d plane, are therefore strictly equivalent to the original 
problem ( 1 ) , k2). If the surface Z coincides with the z = d 
plane, we find Vam = 0 from ( lo) ,  and relations (9)  become 
the usual conditions of macroscopic e l e c t r ~ d ~ n a m i c s . ~ ~  The 
procedure which we are proposing for transferring the 
boundary condition is rigorous. A different transfer proce- 
dure, based on the formula f(z) = exp (ha6 ) f({), h = z - 6, 
was developed in Refs. 1 and 2. That procedure can be used 
on the vectors E and H only if they are infinitely differentia- 
ble functions of the variable x .  This condition is not satisfied 
at structural interfaces in an inhomogeneous medium. 

2. BOUNDARY CONDITIONS ON THE AVERAGE FIELD 

In this section and below, we are dealing with the case in 
which the boundary Z undergoes random variations. We 
accordingly assume that the funct$n z, ( r )  is a random 
function. As a result, the operators Vdj in (9 )  and also the 
quantities E and H are random. We will formulate the prob- 
lem for the average field vectors (E) and (H)  (where the 
angle brackets mean a statistical average). 

The derivation of expressions for LE) and (H)  rests on 
the construction of mass operators2v6 QaRj, which act along 
the variable rand which have the property 

( {VaejEjr (Rs) >+Vamj.(Hlt (Rs)} > (12) 
m{Qaej.(Ejt (Rs) >+Qamj.(Hjt (Rs) >), 

h 

(a = e, m) .  Finding the eight mass vectors QaR, is the cen- 
tral problem of this section of the paper. We will reduce this 
problem to one of taking the average of a system of two Lipp- 
mann-Schwinger equations, 

(PI  (Rs) " ~ r " '  (Rs) + r~.{Vj.cpl(R8)), k=l, 2, ( 13) 

which follow from problem (9), ( 12). We inverted the ma- 
trices 

17) = [Pemj P e e j ]  , , = [ 
P m m j  P m e j  

where j = 1,2. The original field E'O) (R),  H'O' (R)  is found 
as the soiution of problem (9) ,  ( 1 1 ) in the absence of pertur- 
bations Vaoj = 0. This field is expressed in terms of the exter- 
nal sources M=MAr,z), J=  J(r,z) with the help of the 
Green's operators G, (z,f) of the unperturbed problem. 
These operators act along the variable r and depend on the 
parameters z and [: 

m 

H'O' (R) G m m ,  m e  M(r,E) 
[ p . ( R ) l = f  J d g [  L . ( z , ~ )  c . . (z ,s)  l . [ J ( r . a )  1 . 

- m  

h 

We assume below that the operators Gap (z,{) are known. 
h 

They appear in the definition of the operators T$, which act 
along the variable r: 

The transformation to a system of Lippmann- 
Schwinger equations in ( 13) makes it possible to utilize the 
well-known averaging technique of Refs. 2, 6, and 18. Tak- 
ing an "algebraic" point of view1' for definiteness, and omit- 
ting the intermediate calculations, we write the result: 

This is a system of two independent equations for the matri- 
ces Q,,, , which combine mass operators. The matrix T, is 
given by 
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where W= {V,.I',). 
It is not possible to find a solution of rigorous equations 

( 17) in closed form because of the difficulty in inverting the 
operator matrix 1 - W, as is required in the method for de- 
termining T,,,  . We will consider the case basic for our pur- 
poses: that in which all realizations of the statistically rough 
surface Z differ only slightly from a reference surface z = d. 
The small quantity z ,  - d then arises in problem (9),  ( 1 1 ). 
For convenience we assume z ,  - d = up(r),  where u is a 
small deterministic constant, and p is someArandom func- 
tion. Under these conditions the operators VaB, can be ex- 
panded') in powers of a: 

The operators 7%; can be found without difficulty from (5) 
and ( lo ) ,  and we-will not go through the derivation here. 
Under our assumptions, Eqs. ( 17) can be solved analytically 
by a perturbation theory using the small parameter u. The 
resulting expressions for the mass operators are 

h 

where Q $2 a small term of nth order in a. We combin%the 
operators Q$.. into a matrix Qj"', and the operators V$. 
into a matrix Vj"'; these matrices are similar to the matrices 
Qj and V,  of ( 14), respectively. The quantities Q)"' are then 
given directly by 

Qj(i)=(Vj(l)>, (21) 

where W'"' = { V)").Tj), and n = 1, 2, ... . The tilde on a 
quantity means the operation of extracting the fluctuational 
componen2 2 = d - (d). As an example, we write the 
operators QaBk, retaining terms quadratic in a: 

u2 1 
~ ( k , ~ + s x V , ~ . x V , )  + , ( { [ k e ; p + ~ , p ~ , ]  - . Z~XP") 

ko ejz 

The quantities E,,,,, pj,,, ( Y = t, z) ,  and kW,, (77 = E, p)  are 
taken here at the point z = d. Going back to our original 
problem [ ( 9 ) ,  ( 1 1 I ,  we easily see that the vectors (E) and 
(H) obey the same equations-Maxwell's equations ( 11 )- 
as are obeyed by the quantities which have not been aver- 
aged. Taking an average of (9) ,  using ( 12), we find equiva- 
lent boundary conditions on the reference surface z = d: 

h 

The mass operators Qasj play the role of effective-irregular- 
ity operators with respect to the average field. They reflect 
the contributions from the entire sequence of events of scat- 
tering by roughness features in the formation of the average 
field. 

The possibility of describing the properties of a statisti- 
cally rough boundary by means of effective parameters as- 
signed to a level surface was demonstrated in Refs. 1 and 12 
with a very simple model of a medium as the example, More- 
complex models were considered in Refs. 2 and 12-16. Ad- 
vantages of the representation which we have found for the 
mass operators [ (20)-(22) ] are that (first) it incorporates 
the contribution from all possible scattering events and (sec- 
ond) this contribution is expanded in components of de- 
creasing significance, in accordance with the small param- 
eter a ,  which characterizes the height of the roughness 
features. Expressions (23) and (24) form a correlation ap- 
p r o x i m a t i ~ n ' ~ ~ ~ ~  in the theory of scattering by a rough sur- 
face. The closest existing results ignore terms -d, which 
are represented by the second terms in these expressions. 

3. EXAMPLES OFTHE USE OFTHESE NEW RESULTS 

Let us consider a particular case of the model adopted 
above, in which the media on the two sides of the rough 
surface Z are lamellar and uniaxial, with a vertical optic axis. 
This model is a very important one in solid state physics5 
and other applications. We accordingly assume that Eqs. 
(3 )  characterize the parameters of the media in each of re- 
gions V;, , not solely in the transition layer a < z  < b which 
contains the realizations of the surface Z. We restrict the 
discussion to the case in which the average position of Z 
coincides with the reference planez = d: (p)  GO. The rough- 
ness irregularities are statistically homogeneous in the broad 
sense of the term;6 i.e., their correlation function 
B(r  - r') = (p ( r )p( r f  ) ) depends in a difference fashion on r 
and r'. For the mass operators we will use the approximation 
[ (23 ), (24) ] which incorporates terms quadratic in u. The 
Green's operators Gap (z,l) for a lamellar medium are well 
known." 

Let us calculate the equivalent impedance of a statisti- 
cally rough interface from the side of m%diurn 2. By defini- 
tion, the equivalent impedance operator L satisfies the iden- 
tity 

(E2 ( R s )  >-L.z0X(H, ( R s )  >=O ( 2 6 )  

at the reference planez = d.  It is assumed here that there are 
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no external field sources in the lower half-space, V ' ; :  
M = J = 0 .  Since the procedure for constructing an equiva- 
lent impedance was described in detail in Ref. 2 1, we proceed 
immediately to the result. Under the assumptions made 
above, the equivalent impedance operator is characterized 
by the homogeneous representation 

A 

2 ( x )  -exp ( - i x . r ) L  exp ( i x . r ) ,  (27) 

which is given by 

9 ( x )  = (%+st)  nn+ (v+Gv) zoXnz0Xn 
+L(nzoXn+zoXnn) . (28) 

Here x = (x, ,xy , 0 )  is a spectral parameter, n  = x/x, < and 
v are quantities which determine the impedance dyad of the 
reference plane in the absence of roughness ( p  -- 0 )  , and SC, 
8v, and I are increments ( -2) which reflect the contribu- 
tion of the roughness. Here are explicit expressions for these 
quantities: 

6% ( x )  ='12i02koB(0) [ { i ~ , ~ ( d ) )  - % 2 { e , l ( d ) )  I 
+ % r , ~ ~ k , ~ ~ ( d )  B  ( 0 )  [n,-n,+ (me-n,)  ~ ~ / k , , ~  ( d )  ] 

+02e2, ( d )  ko2 j dxlBf[K.L./A.'+ (nXn' )2w2M.Np/Ap' ] ,  

(29) 

6v ( x )  ='l2iu2k0B(O) [ {Il. , ,(d)) - v 2 { e , , ( d )  ) ] 
+ v r , ( ~ ~ k , ~ Y ( d  B  ( 0 )  Inc-np+ (n,-m,) ~ ' / k , , ~  ( d )  ] 

-02e2, ( d )  k.' I d x f B ,  [ w ~ K ~ L ~ / A ~ ' +  ( n X n ' ) 2 M p N 8 / ~ . ' ]  ; 

~ ( x )  = d e Z t ( d )  k o 2 1  dxrB~zo~n'Xn[K~N.iA.~-w2LpMB/APr]; 

C ( X )  = i y e - ( z ,  x ) / Y 8 - ( z ,  X )  k o ~ l l ( z ) ,  
V ( X )  =- ikopi t  ( z ) Y , - ( z ,  x ) / Y ~ - ( z ,  x ) ,  z=d-O; 

A a ( x ) = ~ e ( ~ ) + k ~ ~ z t ( d ) % ( ~ ) ,  A p ( ~ ) = v ( x ) y p ( ~ ) + k O ~ 2 t  ( d ) ,  
i Y q ( ~ ) = y , + ( z ,  X . ) / ~ ~ + ( Z ,  x ) ,  z=d+O, q = p ,  E .  

The quantities K , ,  L a ,  M u ,  and N, are given in the Appen- 
dix (a = s,p). The integration over the variable 
x' = ( x i  ,xi,O) in these expressions is to be carried out be- 
tween infinite limits; the prime indicates that the corre- 
sponding quantity depends on the variable x'; n' = x1/x'; 
A: = A, (x'), y: = yE (x') etc. In addition, B f r B f  ( x  - x') 
and w2 = p,, ( d ) / ~ ~ !  (d) .  The spectral function Bf ( x )  is 

B, ( x )  = (2n) -'j dr erp ( i x  .r) B  ( r )  . (32) 

We also use the notation 

and the corresponding quantities with a subscript p, found 
through the interchange ~ t t p .  The functions \V,,+ (z,x) and 
Y; ( 2 , ~ )  (7 = E,P)  are defined on the intervals 

tions Y; as z -  + m and Y; as z+ - m .  It is assumed 
below that these functions are known. 

It can be seenirom these expressions that the equivalent 
impedance dyad 2 (x )  is determined by (in addition to the 
height spectrum of the roughness features) only the "exter- 
nal" characteristics of the reference plane, which do not de- 
pend explicitly on the particular profile of the parameters of 
the medium. The coefficients v and 6 (which determine the 
impedance dyad in the absence of a roughness), the quanti- 
ties y,,+, and the values of the parameters of the media and 
their first derivatives with respect to z in the reference plane 
are external characteristics. The integration overx' in (29), 
(30) incorporates the contribution to the shaping of the 
equivalent impedance dyad from scattering by the roughness 
irregularities into waves with all possible values of the wave 
vector x'. The expression in the integrand with the denomi- 
nator A: (A;) describes scattering into s- (p-) polarized 
waves. In these expressions and also in (37) and ( 4 0 )  below, 
it is assumed that these denominators do not vanish at real 
values of x'. The latter case constitutes a limiting case of our 
analysis. The equivalent impedance dyad which we have 
found becomes the result of Ref. 8 for a piecewise-homoge- 
neous model of the medium. Expressions (29) have some 
terms with &jt and bjt which are not present in the corre- 
sponding result in Ref. 21 for a lamellar medium. This result 
is attributed to an error of the method used there to transfer 
the boundary condition, which incorporates only the terms 
linear in 0. 

We assume that there are no external sources in prob- 
lem (9) ,  ( 1 1 ) : M = J = O .  We consider the question of the 
natural waves of a lamellar medium with a rough boundary. 
Under our assumptions, this problem has a solution in the 
form of a spatial harmonic: 

(E ( R )  >=E ( x ,  z )  exp ( i x . r ) ,  
(34) 

(H ( R )  >=H ( x ,  z )  exp (ix r )  , 

which is along the direction of the wave vector 
x = (K, ,xy , O ) .  The vector amplitudes in medium jare given 
by 

in d  [ zOx +--]a, E ( x ,  z )  =zoXniiP - - - 
ko E ~ , ( z )  eit(z) az 
1 zox in d  (35) 

H ( x ,  2) = Z , X B  + -[- + - - 1 8 .  
ko P ,* ( z )  ~l . j t (z)  82 

2 L/2 Here n  = x/x, x = (x: + xy ) , and the function (R) 
obeys Eq. (8 )  with 7 = ,u (7 = E )  for the corresponding val- 
ue j = 1,2. We consider natural waves which convert into s- 
polarized waves when the roughness vanishes (0-0).  We 
seek functions 2Y and t9 in a form which leads to a satisfac- 
tion of the radiation conditions as z- + C.O : 

d < z  < + cc and - oo < z  < d, respectively. They are given 
as a solution of Eq. (8 )  with A =  - x2, considered with 

(36) 

j = 2 ( Y q  ) or j = 1 on the corresponding z interval. where t ,  ,x, , and v2 are small coefficients ( - 02). The impo- 
They must in addition satisfy the continuity condition, along sition of equivalent boundary conditions (9)  leads to the 
with 72t - 'Y,, + and q I t  - '\t,, , and the radiation condi- expressionsx, = I(%), and 
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k0~2i  ( d )  
v~=kO dx'B,z0.nrXn [- 

As' 

and also to a dispersion relation in terms of the spectral pa- 
rameter x: 

Correspondingly, the natural waves of p polarization in a 
regular medium (u = 0 )  are described by 

kp,  (dl Ye- (d-0, x )  ' 
(39) 

Y,+ (z, x ) l Y , +  (d+O, x ) ,  z>d, 

Boundary conditions (9 )  provide the following expressions 
for the coefficients X, = I(%) : 

2t2 ( x )  =iva2koB ( 0 )  { h t  ( d )  

+ r , ~ ~ k , , ~  ( d )  B (0) [ 1-2n.f n,n,+ (2m,-1 

-m,n,) xzlk,zz(d) I +Bezi (dl ko2J  dx 'Bj[kolPp2,  ( d )  L p / A p t  

+ (nXn ' )  2qey,'N,lA,'l, 
k L P  

vi ( x )  =kW2(d) J d x f B , z , , . n ' ~ n [ ~  + 
AP' ~ z t ( d )  As' 

They also provide a dispersion relation in terms of the spec- 
tral parameter K: 

Expressions for Ps,p, Q,s,p, and I, are given in the Appendix; 
Bf =Bf ( x  - x').  

It follows from (35) and (36) that the magnetic field 
corresponding to a natural wave has a horizontal component 
which is transverse with respect to the propagation direction 
n and also two small ( - 2)  components, one longitudinal, 
along n, and one vertical. A field of this sort is of quasi-s 
polarization. Correspondingly, the wave described by ( 3  5  ) 
and (39) has a quasi-p polarization. These natural modes are 
strictly s- or p-polarized only in the case of statistically iso- 
tropic2 roughness irregularities. For a fixed propagation di- 
rection, each solution of Eqs. (38) and (41 ) is shifted with 
respect to the corresponding solution (x,) for a medium 

with a smooth boundary (a = 0) by corresponding complex 
increments 

which depend on n. It follows from (30) and (42) that we 
have Sx, (n)  = SxO ( - n) ,  i.e., that the distortion of the 
spectrum is the same for natural waves of the same polariza- 
tion which are propagating in opposite directions. The de- 
pendence of the shift SK, on the propagation direction disap- 
pears only in the case of statistically isotropic roughness 
features. 

An analogous problem for a layered half-space with a 
rough boundary was solved in Ref. 22. The approach taken 
there started from boundary conditions which can be found 
from (9 )  in the approximation linear in a, whereas in the 
present paper we have taken terms -4 into account. A con- 
sequence of this approximation is a difference between the 
present paper and Ref. 22 in terms of Sfl= W -'a<, 
Sa = w 'Sy, and the terms outside the integrals in the ex- 
pressions fort,,, . Otherwise, the results of the two papers are 
the same. 

APPENDIX 

The quantities E,, , p,, , and k , , ,  are taken at the point z = d. 

" For this expansion, the functions 2, (2) and p, ( z )  must be regular on the 
interval a<z<b; it is assumed below that this condition is met. 
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