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We develop a kinetic theory of charged-particle acceleration and transport in a plasma with 
strong MHD supersonic and super-Alfvknic turbulence. A feature of such turbulence is, besides 
the smooth eddies that vary in scale, the presence of abrupt discrete shock fronts, i.e., a clearly 
pronounced intermittent structure. Particle acceleration near the fronts by a first-order Fermi 
mechanism imparts an intermittent structure to the accelerated particle distribution function. 
The equation for the particle distribution function is averaged in two stages. In the first, account is 
taken of the nonperturbative contribution of the strong shock waves, and the connection is 
obtained between the intermittent part of the distribution function and the average distribution 
function. In the second stage, a closed integrodifferential equation is obtained for the particle 
distribution function after averaging over the smooth fluctuations between the fronts. It is shown 
that to describe the particle kinetics in the system it is not enough to specify one second-rank 
velocity-correlation tensor, but more detailed statistical information is needed on the correlations 
of the fronts and on their forms. The distribution functions of the accelerated particles are found 
and the influence of the parameters of the collection of shock fronts on the exponent of the particle 
energy spectrum is investigated. 

1. THE PROBLEM 

Analysis of a number of aspects of the evolution of sca- 
lar and vector fields in stochastic media has recently pro- 
vided an insight into the important role of intermittency ef- 
fects encountered in the statistical description of these fields. 
A great variety of physical examples, ranging from reaction 
kinetics to cosmological models, is given in Refs. 1-3. We 
consider here intermittent charged-particle distributions en- 
gendered by particle acceleration and transport in a medium 
with large-scale supersonic and super-Alfven fluctuations. 
The acceleration of particles by fluctuations of the electric 
field induced by plasma motion in a magnetic field (the Fer- 
mi me~hanism)~ is regarded as one of the basic mechanisms 
that form the spectra of superthermal particles. Particularly 
cosmic rays. 

Particular interest attaches to particle acceleration by 
shock waves in a turbulent m e d i ~ m , ~ - ' ~  since such phenom- 
ena are directly observed near the front of a leading geomag- 
netic shock wave and in interplanetary space. There is no 
doubt that particle acceleration processes take place in large- 
scale phenomena involving shock waves, such as supernova 
flares and strong stellar winds from various classes of stars in 
the galaxy. Under these conditions, in view of the presence of 
multiple sources of strong perturbations, and also of strong 
inhomogeneities in the interstellar media, one can expect the 
formation of random collections of strong shock fronts su- 
perposed on large-scale compression and ra- 
refaction waves and of various other smooth perturbations 
having quite broad spatial and temporal spectra. Since the 
principal energy carriers in the interstellar medium are 
shock waves, the presence of such waves of varying strength 
is a distinguishing feature of interstellar turbulence, there- 
fore, naturally called supersonic. 

Since the rate of star formation in the galaxy and the 
frequency of supernova flares vary little in the time over 
which the particles are accelerated, supersonic turbulence 

can be regarded in our problem as stationary. We construct- 
ed a model of homogeneous and stationary interstellar tur- 
bulence generated by supernova flares in the galactic disk 

The distribution function of shock fronts was 
also calculated in this model, in which a uniform distribu- 
tion of the supernovae over the galactic disk is assumed. 

In a more accurate picture of interstellar-turbulence 
distribution it must be recognized that an appreciable frac- 
tion of type-I1 supernovae are gathered into relatively com- 
pact systems, OB-associations that evolve within a finite 
time. The lifetime of turbulence within a single association is 
of the same order. But this time for an individual association 
(on the order of 10' years) is larger by 2-3 orders of magni- 
tude than the particle-acceleration time which will be esti- 
mated below. The notion of stationary turbulence is there- 
fore applicable for the treatment of a strongly turbulent 
region within the confines of one OB association, as is the 
theory developed below for particle acceleration by a collec- 
tion of shock waves and of large-scale turbulent motions. 
The accelerated particles are regarded here as passive impur- 
ities and their reaction on the shock fronts is disregarded. 
The influence of accelerated particles on the shock-wave 
fronts, which determines in a number of cases the structure 
of the front, is analyzed in Refs. 5, 8, 9, and 11. 

The aim of the present paper is an investigation of the 
kinetics of charged particles interacting with a specified col- 
lection of shock waves. 

Since particles are accelerated near an MHD shock 
front, their distribution can acquire variations whose spatial 
scale I is of the order of x / u  - uA/3u, where u is the front 
velocity and x is the local coefficient of diffusion across the 
front. This diffusion can be caused by small-scale fluctu- 
ations of macroscopic turbulent fields, and also by Coulomb 
collisions if the medium is dense enough. The kinetics of 
formation of the charged-particle spectrum of accelerated 
particles by an ensemble of fronts depends substantially not 
only on the strengths of the fronts, but also on the relation 
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between the scale 1 and the average distance L between the 
fronts (which we shall identify with the maximum dimen- 
sion of the turbulent cells, i.e., with the principal turbulence 
scale). 

If fi = L /I = uL / X  1,. the particle interacts within a 
characteristic time x/u2 with several fronts, and the vari- 
ation of the particle distribution is determined by the smaller 
of the two scales, i.e., by the value of L. The distribution 
function must be averaged over regions with dimensions of 
order L. Perturbation theory can be used under these condi- 
tions. The corresponding problem of calculating the kinetic 
coefficients and finding the form of the spectrum of the ac- 
celerated particles was solved by us earlier.'' More compli- 
cated and more interesting is the inverse case 8) 1. Under 
this condition a strong inhomogeneity has time to form in 
the distribution of the accelerated particles, and its spatial 
scale is small compared with the main scale of the turbu- 
lence. 

To take correctly into account the contribution made to 
the shock fronts, we can use the known for an 
individual front of arbitrary force and then average, during 
the first stage, the distribution function over regions of spa- 
tial scale I near the front. This introduces into the transport 
equation an integral operator that describes the strong accel- 
eration on an individual front. This is followed by averaging 
over regions on the order of the main scale L. In view of the 
inequality f l )  1, perturbation theory is inapplicable here, 
too, and the kinetic eauations must be renormalized. This 
was done by the method we developed in Ref. 12. Specifica- 
tion of the pair-correlated tensor of the turbulent velocity 
field does not suffice for the calculation of the kinetic coeffi- 
cient, and information on the statistical properties of the 
fronts is needed, as well as on their correlations with the 
velocity field between the fronts. This means that higher- 
order correlators of the velocity field must be taken into ac- 
count. 

In the last section of the article we obtain the simplest 
solutions of the equation describing particle transport and 
acceleration by strong supersonic turbulence with shock 
fronts. We calculate the spectra of the accelerated particles 
and investigate the dependence of the power-law exponents 
on the turbulence parameters. 

2. INTERACTION OF PARTICLES WITH STRONG FRONTS 

Consider a random set of shock fronts with average dis- 
tance between them L, and with Mach numbers such that 
M  - 1) 1. The set will henceforth be regarded as statically 
homogeneous and isotropic. An inhomogeneous cloud of ac- 
celerated particles with a power-law spectrum in a wide en- 
ergy interval is produced near each front within the average 
time L /u between the collisions of the fronts (u is the front 
velocity and does not differ greatly from the characteristic 
velocity of the medium since M s  1 is unlikely) .537,s The var- 
iations of this distribution have a scale of order I- vA/u %  A, 
where v is the particle velocity, and A their transport path in 
the turbulent medium ahead of the front.7 The distribution 
of the accelerated particles in space is thus strongly inhomo- 
geneous: relatively narrow peaks of accelerated particles are 
observed near the fronts, but the front collisions diffuse them 
turbulently over the entire system. The arrival of a subse- 
quent shock front of sufficient strength, however, produces 
again a strongly inhomogeneous particle distribution. This 

acceleration pattern is a natural consequence of the intermit- 
tance of supersonic turbulence, meaning the presence in it of 
strong discontinuities. 

To formulate an accelerated-particle distribution func- 
tion averaged over an ensemble of random fronts, correct 
account must be taken of these strong local inhomogeneities. 
Assuming the condition I g L  to be satisfied, we separate the 
scales A satisfying the inequality 

and average the distribution functions over these scales. 
Since A 4L, we can use in the regions between the fronts the 
transport equation: 

and must use on the front itself the condition that the distri- 
bution functions and the particle-flux densities that are dif- 
ferential inp  be equal on both sides of the discontinuity (see 
Refs. 5, 7, and 11 for details). We denote the distribution 
function averaged over the scales A by 7. At distances from 
the fronts of order A and larger we have XZN, since the 
inhomogeneity scale in these regions is large compared with 
A. Near the discontinuity, however, we can use the known 
solution7 of Eq. (2) for a planar shock front and connect the 
local value of the distribution function with its value 7 far 
(at distances A) from the front: 

- 

Here zi is the coordinate measured along the normal from 
the ith front (zi < O  ahead of the front, zi > O  behind the 
front), xi is the diffusion coefficient in the normal direction 
ahead of the front, Au,, is the discontinuity of the normal 
velocity component of the medium on the front, 

is the exponent of the "universal" spectrum on an individual 
front, and u = p2/p1 is the degree of compression of the me- 
dium in the shock wave. The solution (3)  can be easily ex- 
pressed in terms of the Green's function derived in Refs. 5 
and 7 for a planar shock front. R(*) in ( 3 ) is of course a 
function of the "large-scale" coordinates (determined accu- 
rate to A )  and of the time. A stationary solution can be used 
in (3)  in view of the rapid formation of a power-law spec- 
trum on the shock-wave front: at constant x the time At of its 
formation in the range from p, top  is estimated at7 

This time (for Au, -u) is much shorter than the average 
time, of order L /u, between the front collisions. 

After calculating the local variation of the distribution 
function near the fronts (3) ,  we average Eqs. (2)  directly 
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over the scales A. To this end we identify the singular terms 
of the quantity du, /dr, : 

Here (du, /dra 1, is the continuous part of the velocity diver- 
gence and is of the order of u/L; the 6-function terms are due 
to velocity jumps at the discontinuities. We write 

and calculate the last term. Obviously, its order of magni- 
tude far from the front is 

A am aii, --- 
L dp ara 

and can be discarded in view of the small A/L < 1. Near the 
ith front (in an layer of thickness A) we have with allowance 
for (3) 

P 

With the aid of (7) and (5) (only the singular terms are 
taken into account in the latter) we get 

Although the right-hand side has the form of a sum over all 
fronts, the ith term differs from zero only near the ith front. 

Next, we average the term 

We have 

A/2 auto =x T(N-R) I 
i -A/z  

At a distance on the order of A/2 from the front we have 
N - 3 ~ 0 ,  so that the integral term vanishes and we ulti- 
mately obtain with the aid of (5) 

Combining the contributions (8)  and ( 10) we have 

Terms of the form 

contribute significantly on averaging neither near the fronts 
nor far from them. Therefore, averaging Eq. (2)  with the aid 
of the results (6) and (9) above, we get 

Equation ( 12) can be simplified. We consider a collec- 
tion of fronts of equal strength ( y i  = y )  and introduce the 
function 

E a u n i a  
i 

which is equal to Auni/A near the ith front (in a layer 2A 
thick) and to zero betwekn the fronts. Equation ( 12) takes 
then the form 

3. AVERAGING OVER LARGE-SCALE MOTIONS OF THE 
MEDIUM 

For further averaging of ( 13) over regions with dimen- 
sions of the order of the main turbulence scale, we introduce 
the notation 

p a  - 1 8  a p=--  L=--pl-T J d p ~ p ~ ( ~ + v -  
3 ap' 3p2 ap O apt ' 

where the angular brackets denote th%averaging in question. 
It is easy to verify that the operators P and L commute. We 
introduce next a new distribution function?(~,~,t) connect- 
ed with 3 by the relation 

The equation for 7 is 

where 

is a random operator. The tensor KaB of the diffusion due to 
the small-scale turbulence also undergoes, generally speak- 
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ing, random changes in space and in time. By virtue of the 
condition uL /vAb 1, however, the particles will be trans- &a = j ~ ~ ( ~ , ~ ) ( 6 ~ ( " t ) 6 ~ ( r ' , t ~ ) ) d p h ,  

ported in space mainly by the motion of the medium (turbu- 
lent diffusion). Diffusion due to the small-scale field days a 6B ' J 'o(p7 '1 (8y (r, t ,  (.', '1 )* ' ~ 9  

minor role under these conditions. We therefore assume-the 
tensor Zao in ( 16) to be constant and isotropic; jix, = S, 
is independent also of the momentum variable p. 

We average Eq. ( 16) by the general approach we devel- 
oped in Ref. 12. We assume that only harmonics with close 
wave vectors correlate in the spectrum of the random quanti- 
ties ii, , T, and p.  This means that we can separate a macros- 
copically small wave-number interval Ak and assume that 
the harmonics pertaining to this interval are uncorrelated 
with all the remaining ones. We denote the corresponding 
contributions to the velocity fields by SE, ST, and Sp, where 

etc. When averaged, the Fourier components of the turbu- 
lent quantities satisfy the usual relations for homogeneous 
turbulence: 

<Yk,,Yr~,.,)= 1 Y 1 &6 (k+kl) 6 (o+or).  (19) 

During the first stage we solve the following auxiliary prob- 
lem: we average Eq. ( 16) in which we replace the total tur- 
bulent-velocity fields by Su, ST, and Sp. Since these quanti- 
ties are too small (to the extent that Ak is small), this 
problem can be solved by perturbation theory. 

Putting 

we obtain from ( 16) the set of equations 

from which we determine the fluctuating increment to the 
distribution function: 

6j(r,p, t) = dr' dtfG0(r-r', t-tf)Q (rf, p, t') O (rf, p,  tf). 

(22) 

Here G,(p,r) is the Green's function of a diffusion equation 
with small-scale (or molecular) diffusion coefficient: 

Go (p, z) = (4nx.c) -" exp (-pZ/4xz). (23) 

Averaging (CSf) yields an equation for the averaged distri- 
bution function @(r,  p, t )  : 

The turbulent-diffusion tensor SX, and the coefficients SA, 
SB, and SD that determine the acceleration rate are 

axa6- J Go (p, T) (8 iia (r, t) 8 6  (r', t' ) )dp . . . , 

where p = r - r' and .r = t - t '. Terms due to compressibil- 
ity and containing the quantities SY and Sq, have been omit- 
ted from the expression for the turbulent-diffusion tensor 
xap (see Ref. 12). 

Case of weak acceleration. After solving the auxiliary 
problem by perturbation theory, we proceed to average Eq. 
( 16) which contains the total velocity fields. In view of the 
assumed condition uL / v A )  1 (strong long-wave turbu- 
lence), perturbation theory cannot be applied to the total 
velocity field. We renormalize the kinetic coefficients by the 
scheme proposed in Ref. 12. We consider the case when the 
averaged kinetic equation retains the form (24) obtained by 
perturbation theory, but with different (renormalized) coef- 
ficients: 

The differential form of the operator acting on the coordi- 
nates implies a smooth distribution function a. This condi- 
tion can be met by averaging over scales R % L, where L is the 
principal scale of the turbulence. The initial particle distri- 
bution should also be sufficiently smooth. The term 
xapVa Vg@ can then be regarded as the leading term of the 
expansion in the parameter L /R ( 1. The next terms must be 
retained if the total diffusion tensor ,yap (which takes into 
account both the small-scale scattering and the large-scale 
velocity eddies of the medium) vanishes for some reason. 

Retention of the same form of the acceleration [as in the 
perturbation theory (24) ] implies smallness of acceleration 
over the correlation length L or else during the correlation 
time T,, i.e., the inequality Ap(p, where Ap is the change of 
the absolute value of the particle momentum over the corre- 
lation length. Note that we are dealing in this case with ac- 
celeration due to large-scale fluctuations of the quantities 
Y (r, t)  and p( r ,  t) .  The requirement that the acceleration 
be small does not pertain to f,& first-order effect due to the 
strong fronts [the term 7,;; 'LN in Eq. ( 13) 1, since this ef- 
fect has been eliminated from Eq. ( 16) by using the transfor- 
mation (15). This requirement that the coefficients A, B, 
and D be small can be met by a suitable choice of the spectral 
properties of Y and p.  

Assuming all the above conditions to be met we consid- 
er, in addition to the completely averaged equation (26), 
another equation in which the averaging is over all the field 
harmonics except those pertaining to the narrow wave-num- 
ber interval Ak introduced above: 

Here 5 is a distribution function that must also be averaged 
over the amplitudes and phases of the turbulent eddies from 
the interval Ak; xL4, D ', A ', and B ' are kinetic coefficients 
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that take into account the turb~lent-velocity field with Sii, 
SY, and Sq, subtracted; and SQ is the operator (17) but 
containing only the non-averaged part of the velocity field. 
Since this operator is small, it can be averaged in Eq. (27) by 
perturbation theory using the procedure used already to de- 
rive (24). 

As a result we obtain, as was to be expected, Eq. (26) in 
which 

x a p = ~ a ; + G ~ a p ,  D=DP+GD, 
(28) 

A=A'+GA, B=B'+GB. 

The increments 6iia due to the velocity field are given by 
Eqs. (25), in which Go should be replaced by a Green's func- 
tion containing the complete diffusion tensor xa8 = xSa8. 
In all other respects it agrees with (23) and does not take 
into account the particle acceleration within the correlation 
length L ,  in view of the smallness of this effect already sug- 
gested. 

The complete kinetic coefficients are calculated by inte- 
grating the quantities SxUB, SA, ... over all the wave numbers. 
We express the Fourier transform of the turbulent-velocity 
correlation tensor 

dk d o  
Ka8 (p, T) =<iia ( r ,  t )  i i o  (r', t J )  )= J ~ a b ( k  a )  ei(kp-w')  - 

(an)' 

in the form 

where Tand S are scalar functions. The correlation function 
of the velocity divergence Y(r, t)  is expressed in terms of 
S(k, w) as follows: 

q ( k ,  o ) = k Z S ( k ,  o). 

A complete description of the acceleration, however, re- 
quires according to (25), that two more spectral functions 
be introduced in addition to the functions Tand Sconnected 
with the solenoidal and potential motions. The first, 
@( k, 01, should describe the correlation of the velocity dis- 
continuities on the shock fronts, and the second, which we 
designate by p (k, w ), should describe the mutual correla- 
tion of p ( r ,  t)  and Y (r', t '). The introduction of these spec- 
tral functions is necessitated by the intermittent character of 
the particle distribution function whose description requires 
additional statistical information on the random velocity 
field (cf. the problem considered in Ref. 12). 

Changing to Fourier transforms in Eqs. (25) and inte- 
grating over the entire range of wave numbers, we obtain for 
the kinetic coefficients the equations 

1 d k d o  2T+S 
2k2xS ] (32) x=' + hJ w[-(;T;iEi - ( i u + ~ k ~ ) ~  ' 

A = 8 q  k'dk I d o .  o (k, 4 
o (2n) ' (oa+Xzk4)  ' 

(34) 

It is recognized here that xa0 = xSa8 holds for the pres- 
ent case ofisotropic turbulence; in addition, it has been taken 
into account in the integrals that the spectral functions are 
even in the argument w .  To calculate the spatial-diffusion 
coefficient x we must solve the transcendental equation 
(32), after which the calculation of the coefficients A,  B, and 
D, which gives the acceleration rate, reduces to integration. 

Returning to the complete distribution function 
F = (N ) with the aid of the transformation inverse to ( 15), 
we express the kinetic equation in the final form 

A characteristic proppty of this equation is the presence of 
t 

the integral operator L ,  attesting to a strong acceleration of 
the particles near an individual shock front. The accelera- 
tion "in the mean" can also be small here if the fronts are 
produced infrequently enough. 

Case of strong acceleration. If the particle-energy 
change during the correlation time of the turbulent veloc- 
ities is not small, Ap kp, the acceleration is described by an 
integral operator not only on the fronts but also between the 
fronts. The renormalized kinetic coefficients can nonethe- 
less be calculated in this case, too, by modifying somewhat 
the scheme described above. The case of strong acceleration 
can be includetin the~eneral scheme because the accelera- 
tion operators P and L in the averaged equation ( 15) are 
homogeneous (they are invariant under a similarity trans- 
formation with respect to the momentum variable). The in- 
tegral-equation kernel can therefore be represented after 
averaging as a function of the difference 17 - T', where 
17 = In (pip, 1. 

We seek the averaged equation for the complete distri- 
bution function F(r,  7, t)  = ( v ( r ,  p, t ) )  in the form 

CO 

where the operator 

ensures the vanishing of the second term when both parts of 
the equation are integrated over all the momenta. If the aver- 
aging is not complete and does not include the turbulent 
velocity-field harmonics pertaining to a narrow wave-num- 
ber interval, we obtain in place of ( 37 ) 

m 
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h 

Here the operator SQ contains onlxthe no~averaged part of 
the velocity field. The operators P and L should be ex- 
pressed in terms of the variable 7. We take next the Fourier 
transform of Eq. (39) with respect to the variable 77: 

Equation (39) takes the form 

aFa - = la,' (s) V a V  81- (is-3) D' (8) FI 
at 

We average the last equation over the ensemble of real- 
izations of SE,, ST, and 6 p  by perturbation theory, using 
the smallness of these quantities. The result is the equation 

which is the Fourier transform of (37). The contributions to 
the kinetic coefficients from Sii, , SY, and Sp  are given by 

+ " (3-2is! Idp k ( 6 Y  (r, t) 6cp (rr , tl) )GI (p, r) 
9 (is-2-7) 

is-3 j dp dz(6cp (r, t) 6q(rt, tf)  )GI (p, .r). 
(is-2-7)' 

(44) 

Here 

6KaB(p, z )  =(6iia(r, t )  6iie(r', t') >, p=r-r', z=t-t'; 

G, (p, 7) is the exact Green's function of the problem and is 
defined as 

The quantities t ( s )  and D(s) are the Fourier transforms of 
the integral kernels of Eq. (37). We obtain for them, by 
integrating (43) and (44) over the entire wave-number in- 
terval, a system of two transcendental equations: 

1 dkdo 
a(s)=x+- - 2T+S (k, o )  

3 ' (2n)' io+ (is-3) D (s) +a(s) k2 

- 2k2x(s)S (k, o )  
[io+ (is-3)D(s) +X(s) k2Ia 

- (is-3) is@ (k, a) (is-2-7)-'11 

[.io+ (is-3) D (s) +X (s) k2] +is13 (is-2-7) zlh. (47) 

The integration constants are chosen so that Eq. (37) goes 
over into (36) for weak acceleration. The desired quantities 
Z(S) and B(s) can be obtained by numerically solving the 
system (46) and (47). In the case of weak acceleration, f ( s )  
no longer depends on s and Eq. (46) takes the form (32). 
Equation (47) becomes 

where D, A, and Bare given by Eqs. (33)-(35). 

4. ENERGY SPECTRA OF ACCELERATED PARTICLES. 

Let us calculate the stationary particle spectra of parti- 
cles accelerated by an ensemble of shock waves and large- 
scale turbulent motions, with allowance for particles leaving 
the acceleration region. In the case of weak acceleration over 
the correlation length of a large-scale velocity field, the start- 
ing point is Eq. (36), which we express in the form 

We have added to the equation a source of monoenergetic 
particles, and replaced the diffusion term by F/T,, where re 
is the time of departure of the particles from the acceleration 
region. Note that in the determination of the inhomogeneous 
distribution of the particles we arrive, by separation of vari- 
ables, at the very same equation for the eigenfunction that 
depends on p, with 1 / ~ ,  replaced by an eigenvalue deter- 
mined by the boundary conditions. As regards the strong 
acceleration on the shock fronts and the associated intermit- 
tance effects, they are fully preserved in Eq. (49). 

It is convenient to determine the particle spectra by 
transforming with respect to the variable 7 = ln(p/p,,). 
From (49) we obtain the Fourier transform F, : 
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90 F. -. 9 

- + (is-3) D (s) 
T* 

where a(s) is defined in (48). 
Taking the inverse Fourier transform and changing 

over to the variablep, we obtain the following particle spec- 
tra: 

where x,,  x,, x3, and x4 are real roots of the fourth-degree 
polynomial ax4 + bx3 + cx2 + dx + e. The coefficients of 
the polynomial are connected with the normalized kinetic 
coefficientsA, B, and D [defined by relations (32)-(35)] by 
the equations 

a=Al+2Bi+9Di, 
b=6Ai+9Bi+27D1+3+2a(Bi+9Di), 
c=g (Ai+Bi+l) +3a (18Di+3Bl+3Dia+ 1) -98, 
d=9a(3aDi+Bl+1) -18ea, 
e=-9ea2, (52)  

where 
 TI^ Ai=T,hA, Bi=TIhB, Di=TahD, e=-, a=y+2. 
T* 

If all the roots of the polynomial are real, three of them 
are of the same sign, and calculations of A,, B,, 9DI(0.1, 
and E > 0 show that one root (x,) is positive and three roots 
(x,, x3, x4) are negative. The negative root with the smallest 
absolute value, x,, determines the asymptotic behavior of the 
spectrum at large momenta p)p,. If E-0, then 
x,- - 3 - 0 for all a that are meaningful in this problem 
(a>4). This corresponds to prolonged interaction of the 
particles with the shock fronts and with the large-scale mo- 
tions, as a result of which a rather hard spectrum of acceler- 
ated particles is formed. In the opposite limiting case E ,  1 we 
have x, -. - a .  The reason is that the time needed to leave 
the system is short and the particles manage to interact with 
only one front, so their spectrum is the same as near a single 

planar shock front. The root x,, which determines the spec- 
trum of the particles in the region of small momenta p ~ p ,  
behaves like x, - E  at E< 1. 

A distinctive feature of the problem is the presence of 
solutions corresponding to spectra with nonmonotonic com- 
ponents in the momentum region p>p,. In particular, if 
A, -0.1 or B, -0.1 and E( 1, and the exponent satisfies a 2 8  
(this corresponds to shock waves with Mach numbers of 
order a) we have complex roots x3 = x t  (Re(x3) < 0). The 
real roots are x, > 0 and x, < 0, with x, > Re (x,). The parti- 
cle spectrum takes then the form 

At large momentap>p, the spectrum is a superposition of a 
monotonic contribution on an oscillating one. The scale of 
the oscillations in momentum space is determined by 
Im(x,). The condition F(p) > 0 is, of course met here, since 
the positive term that describes the power-law spectrum 
dominates for p>p,. 
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