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The renormalization-group method is applied to an anisotropic Heisenberg ferromagnet in a thin 
film with magnetic-dipole interaction. It  is shown that the renormalizations lead to an effective 
two-dimensional Hamiltonian with constants that depend on the thickness of the film and on the 
parameters of the starting Hamiltonian. The phase diagram in temperature-anisotropy variables 
is constructed. It  is concluded that this diagram contains a tricritical point which is the boundary 
of three phases: uniaxial, planar, and disordered. The dependence of the critical temperature and 
anisotropy on the thickness of the film is determined. 

1. INTRODUCTION there follows the dependence of the critical parameters on 

Thanks to the achievements of modern technology thin the thickness the 
- ~ 

magnetic films are now being actively studied as promising 
materials for technological applications. In this connection 
it is important to clarify the conditions for the existence of 
and the type of ordered state in them. In contrast to bulky 
bodies, in ultrathin films the quasi-two-dimensionality of 
the film is strongly manifested. Thus anisotropy, which de- 
termines the existence of magnetic order, plays a special role. 
Magnetic films as two-dimensional systems are a special 
subject of study in the physics of critical phenomena. The 
large fluctuations that are characteristic of two-dimensional 
systems preclude application of the methods of the spin- 
wave theory to such films. The renormalization-group 
(RG) method makes it possible to investigate two-dimen- 
sional systems. Based on the renormalization group, in Refs. 
1 and 2 the isotropic Heisenberg model was studied, in Refs. 
3 and 4 the effect of a field and anisotropy was examined, and 
in Refs. 5-8 the effect of magnetic-dipole interaction in an 
isotropic two-dimensional Heisenberg system was investi- 
gated. 

In this work the renormalization-group method is ap- 
plied to a Heisenberg ferromagnetic model in a film of finite 
thickness with uniaxial anisotropy and magnetic-dipole in- 
teraction. The renormalization-group method permits ob- 
taining an effective two-dimensional Hamiltonian with con- 
stants that depend on the thickness of the film and the 
starting parameters of the Hamiltonian-the temperature, 
the anisotropy, and the dipole-interaction constants. 

Under repeated renormalizations of the two-dimen- 
sional Hamiltonian the dipole interaction induces an anisot- 
ropy of the easy-plane type in accordance with Refs. 3-5. 
The starting anisotropy competes with the dipole anisotro- 
py. The result of the renormalization-group evolution de- 
pends on the relation between the starting anisotropy, the 
dipole constant, and the temperature. Analysis of the renor- 
malization-group equations shows that the phase diagram in 
the temperature-anisotropy variables contains three regions 
corresponding to a disordered phase, a uniaxial or Ising 
phase, and a planar or XY-phase. The tricritical point is the 
common boundary of the three phases. 

This paper is organized as follows. In Sec. 2 the model is 
defined and the renormalization-group equations are de- 
rived ford = 2 and d = 3. In Sec. 3 the solutions of the renor- 
malization-group equations for d = 2 are analyzed. These 
solutions are joined with the solutions for d = 3, whence 

2. RENORMALIZATION-GROUP EQUATIONS 

We shall define the classical spin n (x)  as a three-com- 
ponent vector of unit length, located at the site x of a three- 
dimensional lattice, which is infinite in two directions and 
has a finite thickness I. 

The Hamiltonian H has the form 

The first term describes the exchange interaction for neigh- 
boring spins; here a is the lattice vector. The second term is 
the energy of uniaxial anisotropy; the axis "3" is oriented 
normally to the film. The third term describes the magnetic- 
dipole interaction, v = ( x  - xf) / lx  - x'l, i, j = 1, 2, 3. 

We shall redefine the constants as follows. We include 
the temperature T i n  the Hamiltonian (H /T+ H )  and we 
shall transform to dimensionless quantities by making the 
substitutions T- TJ, K- 1/2J/Za2, and p: -p2Ja5. Drop- 
ping the insignificant constant, we write the exchange term 
in terms of the derivative an = [ n  (x + a )  - n ( x )  ]/a and 
the sum Za3( ...) in terms of the integral $d 3x(...). Then 

Following Refs. 1 and 2, we represent n(x)  as a combination 
of the slow no ( x )  and fast # ( x )  parts: 

n(x) =no (x) (1-@@)"'+@,e., 

noea=O, e,eb=Bab, a, b=1, 2. 

The fast field #, a exp (k.x) ,  where k lies near the boundary 
of the Brillouin zone. We shall take into account only terms 
that are quadratic in 4. Then averaging over 4 gives the 
equations 

The equation (3)  determines the renormalization of the ex- 
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change term and the anisotropy and Eq. ( 4 )  determines the 
renormalization of the dipole interaction and the additional 
contribution made to the anisotropy by the dipole coupling. 
In the three-dimensional case this contribution is zero in the 
approximation under study, but this is not the case ford = 2. 
Indeed, since the correlation function of the field q5 is equal 
to 

where the integral extends over a layer of thickness 
n-(6a/aZ) along the boundary of the Brillouin zone, the di- 
pole contribution to the anisotropy is determined by the pair 
potential of the dipole coupling averaged over the boundary 
of the Brillouin zone: 

I , ~  ( k )  =a3 ' 
exp [ i k ( x - x ' )  ] 

( 6 i j - 3 ~ i ~ j ) .  I x-xr I (6) 

Since k is large, the contribution of the boundaries of the film 
to I, can be neglected and it can be assumed that 
e: (x)  &; ( X I )  --, e: ( x )  4 ( x )  . Then the average ofZ, is propor- 
tional to the trace Zii, which for d = 3 is equal to zero. 

We introduce the following parametrization for the 
scale: a ( t )  = a,  exp ( t ) .  Then from Eq. ( 5 )  we find 

i 

The constant C ,  appears because of the difference between a 
cube and a sphere. Thus the renormalization-group equa- 
tions for d = 3 are as follows: 

The constants T ,  A, and ,u2 vary as functions of the scale a  
according to the solutions of Eqs. (8 )  until the scale is equal 
to the thickness of the film I .  Here there arises an effective 
two-dimensional Hamiltonian: 

At the scale a  = 1 its constants are related as follows with the 
starting parameters A,, ,ui, To, and a ,  : 

The renormalization-group equations for the Hamilto- 
nian ( 9 )  are derived analogously. Ford = 2 it is necessary to 
average over the perimeter of the Brillouin square. Then 

d2k exp  [ i k  (x-x' )  I 
( @ . ( x )  @ a ( x f )  )=GabT -. 

( 2 n )  k2 
I 

The average of the dipole potential is now different from zero 
and 

1 3  d2ka2 ' exp ( i k x )  

Thus the renormalization-group equations for the Hamilto- 
nian ( 9 )  have the form 

where a ( t )  = le', and Eqs. ( 10) are the initial conditions at 
t  = 0. 

3. TEMPERATURE-ANISOTROPY PHASE DIAGRAM 

The solution of Eqs. ( 13 ) has the form 

n,*=3/2c2p:.  

As follows from Eq. ( 1 4 ) ,  for sufficiently high initial tem- 
perature T, on some scale t,  the effective temperature be- 
comes infinite, and A and ,u approach zero. This means that 
the system is in a disordered state.' The scale on which 
T- co , determines the correlation length l z z  1 exp (2.rr/ T, ). 

If, however, the initial temperature Ti is sufficiently 
low, then as the scale increases the effective anisotropy per 
spin can become of the order of the exchange energy, i.e., 
IA ( t )  1 a 2 ( t )  - 1. In this case the dipole energy can also be- 
come large. To determine the phase that the system is in we 
shall study the effective Hamiltonian in the long-wavelength 
approximation. Let n ( x )  = n, ( 1 - 44)  + #,e,, where 
no = const and # ( x )  is the variable part. Then 

+ p 2 i j  ( )  e } ,  h. = 4nCop2, C,=1,078. 

( 1 5 )  

In Eq. ( 1 5 )  V is the area and Zi, (k )  is defined in Eq. (6) .  
Minimizing the uniform part of the Hamiltonian in Eq. ( 15) 
we find that a uniaxial state is realized for A > A ,  and a two- 
dimensional state is realized for A <A,. In Appendix 1 the 
stability of the uniform state with respect to long-wave- 
length perturbations # ( x )  is analyzed. The instability arises 
only in a narrow neighborhood of2 =A,. Thus the condition 
for the existence of an ordered state is that on a scale t  < t,  the 
equality 

must be satisfied. In this case, if R <A,, then the magnet 
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becomes effectively a two-component magnet and over large 
scales the spin lies in a For a planar (XY) magnet 
the effective temperature does not increase, and the long- 
range order is determined by the dipole 

For A > A, on scales where (A - A, )a2- 1 there arises 
an Ising one-component magnet in the ordered state. The 
temperature does not increase, since the transverse fluctu- 
ations are suppressed by the anisotropy. 

Thus, depending on the initial conditions, the system is 
in the disordered or in the two-dimensional phase or in the 
uniaxial phase. The boundaries of the phases are determined 
by the fact that on them the condition [ A -  A, la2- 1 no 
longer holds. We introduce the notation t, = 27r/Ti. Evalu- 
ating the integral in Eq. ( 14) we obtain 

The scale t at which renormalization of the temperature ter- 
minates is determined by the equation 

The parameters corresponding to the boundary of the phases 
can be obtained from the condition that the curves described 
by the left and right sides of Eq. ( 17) intersect. The behavior 
of the roots of Eq. ( 17) is analyzed in detail in Appendix 2. 

The boundary of the uniaxial phase is determined by the 
equation 

where 8(t, ) is the solution of Eq. (A2.3) (see Appendix 2). 
At low temperatures we have from Eqs. (A2.4) and ( 18) the 
linear section 

At higher temperatures there follows from the same expres- 
sions a relation between the critical temperature and the ani- 
sotropy constant in the form 

In Eq. (20) the values of T, are such that the argument of 
sinh is greater than zero. 

The boundary of the two-dimensional phase is deter- 
mined by Eq. ( 18), but here 8(tc  ) must be the solution of Eq. 
(A2.5). As shown in Appendix 2 the boundaries of the two- 
dimensional and uniaxial phases intersect at a point deter- 
mined by Eqs. (A2.6). At the boundary of the disordered 
phase the renormalized constants A and p vanish, so that 
here the average spin (n)  also vanishes. Therefore this 
boundary is the line of second-order phase transitions. The 
common point of the boundaries is the tricritical point, since 
it lies at the intersection of the lines of the second-order 
phase transitions. The coordinates of the tricritical point fol- 
low from Eq. (A2.6): 

ForA * I  = 10 - 4  we find from Eq. (A2.6) t, = 5.5799, i.e., 
T, = 27r.0.1792 and A,,,, = 70.71A *. In the region where 
the anisotropy is less than the tricritical anisotropy but 
greater than ACi the boundary of the uniaxial phase is deter- 
mined approximately by the expression (21), where t, is 
replaced by the variable t,. 

Figure 1 shows the ( A )  dependence for 
A * I  = l op4 .  The quantities Ai/A * and TC/27r are plotted 
along the axes. The regions I, 11, and I11 in Fig. 1 correspond 
to the XY phase, the Ising phase, and the disordered phase. 

The solutions of the renormalization-group equations 
are inapplicable in the region of large fluctuations, i.e., near 
the boundaries of the phases. The region of applicability of 
the renormalization-group equations is determined by the 
smallness of the renormalized temperature compared with 
unity. This makes it possible to draw a conclusion about the 
existence of the XY and Ising phases, about the position of 
the boundary between them (I-11), and about their boun- 
daries with the phase I11 (1-111) and (11-111). In the phase 
I11 the renormalization-group equations are applicable only 
on scales less than 5 (see above), but there is no basis for 
expecting here an ordered state. 

Using Eqs. ( 10) and ( 18) we find the dependence of the 
critical physical parameters of the Hamiltonian (2)  on the 
film thickness I:  

FIG. 1 .  The phase diagram for the two-dimen- 
sional system: I-the XY-phase, 11-the Ising 
phase, and 111-the disordered phase. 
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where 8 is the solution of Eq. (A2.3) or (A2.5), respective- 
ly, for the boundary of the uniaxial or two-dimensional 
phases with 

The coordinates of the tricritical point as a function of the 
thickness will be 

Figure 2 shows the functions To, (A, ) for I /a ,  = 1, 2, 
and 3 for A,*ai = . For sufficiently large anisotropy 
A> R  * we obtain 

For I /ao % 1 the expression (25) changes into a dependence, 
corresponding to the scaling estimates of Ref. 9, of the shift 
in T, on the thickness of the film. We note that the formula 
(24) is also applicable for 1 /a,- 1. 

In conclusion it should be noted that in this work we 
neglected the domain structure, whose scale for sufficiently 
low temperatures is comparable to the scale of the fluctu- 
ations (see Appendix 1 ). This requires a separate analysis. 

I thank S. V. Gaponov, N. N. Salashchenko, V. M. Gen- 
kin, G. M. Genkin, A. A. Fraerman, A. M. Satanin, and A. 
Kochnev for stimulating discussions. 

APPENDIX 1 

It follows from Eq. ( 15) that instabilities of the uniform 
state correspond to negative eigenvalues of the matrix 

M,=6@[k2+ (h-h,) noSz+l/shc] +pZZjj(k)eded. ( Al.  1) 

We shall find the quantity Iv (k), defined in Eq. (6) .  Let 

FIG. 2. The phase diagram for several layers. 
The numbers on the curves correspond to thick- 
nesses equal to 1 ,  2, and 3 layers of atoms. 

' as 

(A1.2) 
' exp (ikx) 

SinceI;; = 0, U ( k )  + B(k)  = - D(k) .  Fork = 0 we have 
B(k)  = 0, and therefore U ( 0 )  = - D(0). For D(0) we 
find 

' a' 8n 
Co, Co= 1,078. (A1.3) 

For small k the contribution linear in I k  1 to the sum (A 1.2) 
is determined by an integral which can be easily calculated. 
Thus we find 

D (k) =8/3nCo-2nl kla, A (k) =-'lsnCo, B (k) =2nj kla. 

(A1.4) 

We shall study perturbations of the uniaxial state. It follows 
from Eqs. (Al .  1 ) and (A1.4) that the eigenvalues of the 
matrix M for the longitudinal and transverse vector k  of the 
waves have the form 

k2+h-h,+2nkap2 for ellk, 
k2+h-hc for e l k .  

For this reason, for R  >Ac the uniaxial state is stable. 
For the two-dimensional state n, lies in the 1-2 plane. 

We orient e, along the "3" axis and we put e, in the 1-2 
plane. Then the wave 4, corresponds to the eigenvalue 

where a is determined by the relation cos a = k n o / ) k ) .  For 
4, we find 

It follows from Eq. (A1.5) that for A, <A <Ac,  where 

h2=h, [1-hca2/(16C02) I ,  (A1.6) 

the two-dimensional state is unstable for perturbations with 
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k-A,a/(4Co ). For this reason for the indicated values of A 
a nonuniform state with the scale L=. l / (A,a)  is realized. 
For A <A, the two-dimensional state is stable. 

APPENDIX 2 

To find the limiting roots of Eq. ( 17) we introduce the 
notation y = 1 - t  / t ,  and x = ( A ,  - A T/tc ) / t c .  From the 
condition 0 < t  < t ,  it follows that 0 < y < 1 .  Then Eq. ( 17) 
can be rewritten in the form 

Differentiating and taking (A2.1) into account, we find the 
equation for the tangent: 

It follows from Eq. (A2.2) that 

We set x = sinh 6. Then for A - A,  > 0 we obtain from Eq. 
(A2.1) 

Since 0 < y  < 1,6> 0. The root of Eq. (A2.3) determines the 
boundary of the uniaxial phase. For low temperatures t, is 
large and 6 -  0. In this case 

For A - A, < 0 it follows from Eq. (A2.1) that 

The root of Eq. (A2.5) determines the boundary of the two- 
dimensional phase. Here 6 is arbitrary, but it is necessary to 
take into account the fact that there exist trajectories in the 
renormalization-group space which as t  increases at first fall 
in the region where the uniaxial phase stabilizes, i.e., Eq. 
( 17) is satisfied. Then, as the trajectories are continued, they 
fall into the region where the two-dimensional phase is sta- 
ble. For such trajectories the corresponding solutions of Eq. 
(A2.5) must be dropped. Since for 6 < 0 this does not hap- 
pen, in Eq. (A2.5) 6 <  6,, necessarily, where 6,, is the si- 
multaneous solution of Eqs. (A2.3) and (A2.5).  This solu- 
tion corresponds to the intersection of the boundaries of the 
uniaxial and two-dimensional phases and determines the tri- 
critical point. For 6,, and t,, we have from Eqs. (A2.3) and 
(A2.5) the equations 

From the first equation we find 6,, = 1.1997. 
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