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A qualitative theory of streamer discharge in electronegative gases is presented. The condition is 
found under which electron attachment in the plasma channel appreciably affects the streamer 
propagation. It is shown that there exists a critical value of the external homogeneous field gc at 
which stationary development of the streamer is possible. With growth of the attachment rate, the 
field strength gc increases and reaches a final value E * (the field strength at which impact 
ionization is compensated by attachment), at which it remains. The field, charge and electron 
concentration distributions along the streamer channel are found. The results are in agreement 
with the available experimental data and with numerical calculations. 

1. INTRODUCTION 

A streamer is a thin highly conductive plasma filament 
growing at high speed in a discharge gap. At the head of the 
streamer is a strong electric field in which impact ionization 
occurs, leading to a lengthening of the plasma filament. This 
field is created by a charge distributed along the streamer 
filament, while the newly produced sections of the filament 
are charged by the current flowing along the streamer chan- 
nel. If the high conductivity of the channel is preserved dur- 
ing the entire time of streamer development, then that cur- 
rent exists over the entire length of the streamer filament. 
Under these conditions the streamer, propagating at con- 
stant velocity from one of the electrodes in the homogeneous 
external field (of a plane parallel gap), is a uniformly 
charged filament along which a current flows from the elec- 
trode and maintains a constant linear charge density along 
the filament, and the field at its head. 

The picture changes appreciably in electronegative gas- 
es since fast attachment of the electrons to neutral atoms or 
molecules occurs in the streamer channel, with formation of 
negative ions whose mobility is negligibly small. Therefore, 
the streamer's conductivity vanishes at some distance from 
its head. So, for example, the attachment length (i.e., the 
length that the streamer runs until attachment occurs) for a 
streamer in air is several centimeters, while the distance over 
which the streamer is propagated can reach several meters.' 
Therefore, galvanic coupling between the electrode and the 
head is absent. The question arises how the streamer-head 
charge necessary for the creation of the strong field preced- 
ing the front is maintained under these conditions. 

A discussion of this question is contained in the book by 
Bazelyan and Razhanskil. The basic idea is that the strong 
field at the head is created by the polarization, in the external 
field, of a short conducting part of the channel (the plasma 
element) with a length on the order of the attachment 
length. This idea permits the qualitative explanation of the 
experimental fact that the external field Z?, = 9, necessary 
for the stationary development of the streamer is increased 
by the addition of electronegative components. 

Another picture of streamer propagation in the strong- 
ly electronegative gas SF, follows from the results of nu- 
merical calculations carried out in Refs. 2-5. These results 
indicate that the electron concentration in the streamer 
channel decreases not to zero, but to some finite value with 

increasing distance from the head. The field E *, reached in 
the channel is such that the attachment is precisely compen- 
sated by the process of impact ionization. (For a streamer in 
air the value of the field in the channel is less than E *, so that 
attachment dominates and the electron concentration falls 
to zero. ) 

Gallimberti3 has carried out numerical calculations for 
a mixture of air and SF,. It follows from his work that upon 
increase in the percentage of the SF, the magnitude of the 
field 9, at which stationary propagation is possible is in- 
creased and tends to E *. 

Up to now there does not even exist a qualitative theory 
of streamer propagation in electronegative gases. The avail- 
able theoretical investigations were based solely on numeri- 
cal calculations carried out for specific experimental condi- 
tions. 

In the present work we will determine the conditions of 
stationary streamer propagation in electronegative gases in a 
homogeneous external field, and we will also ascertain the 
character of the charge, field, and electron concentration 
distributions along the streamer channel. 

This problem was solved by us earlier without consider- 
ing attachment., Expressions for all the basic streamer pa- 
rameters were found with an accuracy of the numerical coef- 
ficients on the order of unity. The needed essential results of 
Ref. 6 consist of the following. 

Stationary streamer propagation (with constant veloc- 
ity Vand head radius r,, ) is possible only at a definite critical 
value of the external field Z? = 2?,, at which the current in 
the channel maintains the necessary charge of the head and 
the field ahead of the front. If Z? > Z?, ( Z? < %', ) the radius 
of the head and the velocity of propagation are increased 
(decreased) with time. We note that the existence of a criti- 
cal value of the external field at which a stationary streamer 
is propagated was first detected experimentally by Phelps.' 
Gallimbertis obtained for that field an estimate coinciding 
with the results7 for air, with the help of numerical calcula- 
tions based on the model of Dawson and W i r ~ n . ~  I t  appears 
to us that underlying this model are the unfounded assump- 
tions that the streamer charge is concentrated at its head, 
and that the conductivity of the channel is neglegibly small 
(see also Refs. 1, 6, 10, and 11). 

Further, there exists a characteristic time to of estab- 
lishment of the stationary development of the streamer, de- 
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termined by the values of ro and Vand by the conductivity of 
the channel a ,  and a corresponding characteristic length 
lo = V/to. The expressions for 8, and to are presented in 
the Appendix. 

The quantity to is the interval in which the charge has 
time to spread along the growing streamer filament. At t < to 
the charge distribution is close to electrostatic. At t > to the 
charge does not have time to spread along the filament, and 
the field in the channel is not screened and is equal to the 
external field. The time to determines the streamer lag (for 
example, the development of the streamer must continue in 
that time after the the external field is shut off). One can also 
state that the streamer head is effectively connected only 
with a section of the channel of length on the order of lo. In 
particular, the field before the head of a growing filament 
with length 1% lo is of just the order of magnitude which an 
electrostatically polarized filament of length lo would cre- 
ate.6 The processes occuring in the channel at distances 
greater than lo from the head do not influence streamer de- 
velopment. 

From these statements it is clear that the role of attach- 
ment depends on the ratio of the attachment time t, and the 
time to (or, equivalently, on the ratio of the attachment 
length la = V/ta and the length lo .) It is evident that attach- 
ment significantly affects streamer development only for 
t, 5 to. 

The calculation of the critical value of the external field 
$, , at which stationary streamer propagation in electroneg- 
ative gases is possible, will be our fundamental problem. We 
will show that attachment increases g, in comparison with 
the critical value 8, in the absence of attachment. However, 
at t, )to the difference of i$?, from 6Fc is very small in spite of 
the fact that, thanks to attachment, the conductivity of the 
channel falls exponentially with a characteristic length 1,. 
At t, 5 to the size of g, grows appreciably, reaching the 
value E * for sufficiently fast attachment. As a consequence, 
the conductivity of the channel falls to some finite value with 
increasing distance from the head, and then remains invaria- 
ble. 

Hence, either the picture of propagation presented in 
Ref. 1 for a streamer in air, or the picture following from the 
numerical  calculation^^-^ for the strongly electronegative 
gas SF,, can be implemented, depending on the attachment 
rate. 

2. FORMULATION OFTHE PROBLEM AND THE BASIC 
EQUATIONS 

The problem is completely analogous to that examined 
in Ref. 6: a streamer filament of radius r, grows in a homoge- 
neous external field 8 at a constant velocity V. Let us as- 
sume the presence of free electrons with a small concentra- 
tion no (created, for example, by photoionizing radiation of 
the streamer) that are multiplied by impact ionization in the 
strong field in front of the head. 

The problem of streamer propagation can be divided 
into two parts. The first consists of the examination of the 
processes in the streamer head (impact ionization and Max- 
wellian relaxation). As a result of this examination6." one 
may determine the field Em before the front, the conductiv- 
ity a,, and the field 8, in the channel directly behind the 
front, and also the connection between the speed of propaga- 

tion Vand the radius of the head r, (see the Appendix). The 
second question consists of determining of the charge, cur- 
rent, and field distributions along the streamer channel. The 
values of a, and g, found by solving the first problem must 
be used as the boundary conditions for the equations describ- 
ing the spreading of the charge and for the change of the 
conductivity in the channel. It is significant that the quanti- 
ties a, and 8, do not depend on the external field $, but are 
determined only by the character of the field dependence of 
the impact-ionization frequency P( E )  . 

The only specific feature of an electronegative gas lies in 
the fact that, due to attachment, the conductivity of the 
channel decreases away from the streamer head. Therefore, 
it is sufficient for us only to solve the second of the above 
problems, utilizing the given boundary values am and $,. 

The channel conductivity varies like" 

where v, is the electron drift velocity, which we will take to 
be linearly dependent on the field for simplicity, and a and 7 
are the coefficients of impact ionization and of attachment, 
respectively. With increasing field the coefficient a grows, 
but the coefficient 7 decreases, so that there exists a field E * 
at which D(E *)  = 0. In the streamer channel we have 
E < E * a n d D ( ~ )  < 0. On the contrary, E >  E * ahead of the 
streamer front, and one may, as a rule, neglect attachment. 

The spreading of charge along the streamer filament is 
described by the equation of continuity 

where z is the coordinate along the direction of streamer 
propagation, pl is the linear charge density, $ is the external 
field, and q is the potential creating the charges of the fila- 
ment. For the total field E in Eq. ( 1 )  we have 
E = 8 - d q  /dz. If the charge density pl varies weakly at 
distances on the order of the filament radius r,, then the 
approximation of local capacitance 

[A, = ln(a/ro),  and a is the characteristic length over 
which p, varies (a  % ro ) 1, is valid. 

We will seek a self-similar solution of Eqs. (1)-(3), 
introducing the variable x = Vt - z (the distance from the 
streamer head). We obtain the equations 

where the quantity D = nr  :ah, has the meaning of the dif- 
fusion coefficient that determines the spreading of the 
charge along the filament, and where E = 8 + dp /dx. 

The boundary conditions for Eqs. (4)  and (5) at x = 0 
(i.e., at the streamer head) have the form 

The quantity p, is expressed via the field ahead of the 
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front Em : p, -Em r, A,. This follows from Eq. ( 3) and the 
ratio Em -p,/r,. Condition (7)  expresses the requirement 
of absence of total current at the streamer head.6 This condi- 
tion connects pm with the field in the channel directly be- 
hind the front, %, = % + (dp /dx) /, =,: 

From Eq. (5) it follows that condition (7)  is valid along 
practically the entire channel length, and not only at x = 0. 
Thus, the problem is reduced to the solution of Eqs. (4)  and 
(7) with the boundary conditions given in Eqs. (6)  and (8) 
at x = 0. 

We note that for unchanging channel conductivity, 
when D = Dm everywhere, Eq. (7) has a solution bounded 
as x- w (p = pm ) only for % = %,. This means that at 
a = const stationary streamer propagation is possible only 
at an external field equal to %,. 

We now turn to dimensionless variables. We will mea- 
sure the quantities p, D, and x respectively in units of p,, 
Dm, and I, = Dm/K We then obtain the equations 

dD 
-= -k ( E )  D,  E=P;+gC - dv 
dx ax' 

with the boundary conditions D = 1 and p = 1 at x = 0. 
Here, 

In the region of the fields considered (E < 6 *)  the 
quantity k is positive. 

The quantity to is the characteristic time of establish- 
ment of stationary propagation (at constant conductivity 
a, ) referred to in the Introduction. The expression for to is 
given by Eq. (A5) of the Appendix, in which it is necessary 
to replace ,!?(Em ) by B(E, ). 

  or a g ivenf i (~)  dependence the solutions of Eqs. ( 10) 
and ( 1 1 ) determine the distributions of the conductivity and 
of the field along the streamer channel. We will show that 
physically meaningful solution (bounded as x -  w ) exists 
only at a definite value of the external field O = @, . 

3. MODEL WITH CONSTANT ATTACHMENT 

We will examine the simplest case, when the depen- 
dence of the coefficient p on the field can be neglected in the 
streamer channel. In such a model the quantity k in Eq. ( 10) 
is a constant parameter, equal to the ratio of the time to to the 
attachment time to = 18 I - '. 

In this case, D = exp( - kx) follows from Eq. ( 10). 
Using this expression we find the solution of Eq. ( 11) with 
the boundary condition p(0)  = 1: 

2 

It is easy to see that this solution remains bounded as 
x-+ w only if the expression in the square brackets tends to 
zero. Therefore, the critical value of the external field 
( 8 = g, ) at which stationary propagation is possible is giv- 
en by the formula 

For k( 1 (weak attachment) Eq. ( 14) gives 

3,=8, ( l + k )  , (15) 

i.e., the critical field increases neglegibly in comparison with 

% c .  

For strong attachment (k)  1) 

where C = 0.577 is Euler's constant. 
A plot of the dependence of @, on the parameter k, 

calculated according to Eq. ( 14), is shown in Fig. ( 1 ). 
From Eq. ( 13), applying Eq. ( 14), we find the follow- 

ing expression for the dimensionless potential: - 

The distributions of the conductivity, of the charge den- 
sity (which, in agreement with Eq. (3) ,  is proportional to 
the potential p ) ,  and of the field along the streamer channel 
are shown in Fig. 2. 

Thus, in a model with constant attachment, the conduc- 
tivity and charge density fall to zero with increasing distance 
from the head, which is consequently not connected the elec- 
trode. However, if t, % t, (k ( 1 ), streamer propagation in a 
homogeneous field proceeds practically as if attachment 
were absent. The reason, as already mentioned in the Intro- 
duction, is that processes occuring at distances from the 
head greater than the characteristic length I, = Vt, are not 
important for the development of the streamer. At ta 5 to 
(k  2 1) the critical field @, increases significantly in com- 
parison with 69, in the absence of attachment. This increase 
agrees qualitatively with the estimate made in Ref. 1. How- 
ever, we note that in our opinion, the premise in Ref. l that 
the charge distribution along the streamer filament corre- 
sponds to polarization of a section of length 1, in the external 
field (Fig. 2) .  

In the model considered the field @, increases without 
limit for increasing k. In very fact, for sufficiently large val- 
ues @,, when the field along the channel changes strongly, 
the model with constant attachment becomes inapplicable, 
since in Eq. (10) one must take into account the k(E) de- 

FIG. 1 .  Dependence of the stationary propagation field g, on the param- 
eter k = t,/t, in the model with constant attachment. 
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0 I 2 x FIG. 2. Dependences on the nondimensional coordinate x 
of (a)  the conductivity of the channel, (b) the charge 
density, and (c) the field, relative to their values in the 
streamer head. The calculations were carried out in the 
constant attachment model for k = 0.1 ( 1 ), k = 1 (2) ,  

3 a n d k = 1 0 ( 3 ) .  

pendence. Since at E = E * attachment is compensated by 
impact ionization, and k ( E  *) = 0, the field @, cannot ex- 
ceed E *. 

The model with constant attachment is applicable if the 
relative variation of k (E)  is small in the region of fields from 
8,  to @=. 

4. MODEL WITH A LINEAR k(E) DEPENDENCE 

We examine the case of a linear k (E)  dependence: 

k ( E )  =ka ( I -EIE*) . (18) 

Such an approximation is valid at fields E near to the 
value E *, where 

Equation ( 18) is model-like far from the value E = E *. 
We find the equations 

from Eqs. ( lo),  ( 1 1 ), and ( 18), with boundary conditions 
p (0 )  = D(0) = 1. As has been shown earlier, a physically 
meaningful solution of Eqs. (19) and (20), bounded at 
x -  co , exists only at the specific value g, = @, . The form of 
the solution and the quantity PC are determined by the val- 
ues of the two parameters k, and E (assuming that E < 1 ). 
For arbitrary values of these parameters the quantity g, can 
be found only by numerical integration of Eqs. (19) and 

(20). The dependences of the field @, on k, at fixed values E 

are presented in Fig. 3. With growth of k, the quantity @, 
increases; at k, = k ,* it approaches the value E * and does 
not change further. 

Several properties of these dependences can be estab- 
lished analytically. 

1) At k, 4 1 Eq. (IS),  in which one replaces k by 
k(  8, ) = k, ( 1 - E ) ,  is valid. Indeed, in this case the relative 
change of the quantity k ( E )  in the interval 8,  < E < g, has 
a value on the order of kg&& 1 and the model with constant 
attachment applies. 

2)  Let us establish the region of parameters k, and E in 
which @, = E *. Taking 8,  = E *, we find from Eqs. (19) 
and (20) that 

FIG. 3. The dependence of the field @, on the parameter k, in the model 
with a linear function k (E)  for values of the parameter E = O , / E  *, 
where E = 0.1 (1),  E = 0.3 (2),  E = 0.5 (3),  and E = 0.9 (4).  
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whence, subject to the boundary conditions, we obtain a con- 
nection between q, and D: 

Equation (20) can then be rewritten in the form 

dD/dx=F ( D )  , F ( D )  =k0&+ln D-koD, (23) 

where D(0) = 1. The function F(D)  attains its maximum 
value 

at D = k ; I .  If Fm,, < 0, then F(D)  < 0 everywhere; there 
are no bounded solutions here for D and q,. Therefore, it is 
necessary that the condition F,,, > 0 be fulfilled; i.e., 

With the fulfillment of this condition Eq. (23) has two sta- 
tionary points Dl and D, (D, >Dl ) in which F(D)  = 0, 
where point D, is unstable and point D, is stable (Fig. 4).  As 
is seen from Fig. 4, for Dl  > D(0) = 1 the solution of Eqs. 
(22) and (23) leads to the point D = 0, g, = CO, a result 
having physical meaning. If Dl  < 1, then as x -  co it follows 
fromEqs. (22) and (23) thatD-D,,q,-D,/E, E-E*. It is 
easily seen that under the condition (24) and E < 1 the re- 
quirement Dl < 1 is fulfilled only for k, < 1. Here, D, < 1 as 
well. 

The region of parameters E, k, in which @, = E * is 
presented in Fig. 5. 

3) One can also explain the character of the approach of 
@, to E * when k,  tends to a threshold value k ,* lying on the 
boundary of the region of Eq. (24) (the shaded region in Fig. 
5) :  

where C = (2Ib 1') - "2z0.2 and b is the first zero of the 
Airy function. 

The x-dependence of the quantities D, q,, and 
E/g,  = q, /D, which determine, respectively, the conduc- 
tivity, charge, and field in the channel, referred to the values 
directly behind the streamer front, are shown in Fig. 6. 

The behavior of these quantities is significantly differ- 
ent in the cases k,  < k,* and k,  > kg .  In the first case the 
conductivity and charge fall to zero, but the field in the chan- 

FIG. 4. Form of the function F ( D )  under condition (24). 
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FIG. 5,Region of the values of the parameters E and k, (shaded area) in 
which I, = E*.  The region is bounded by inequality (24) and with the 
conditions k, > 1 and E < 1. 

nel tends to the value of the external field, which is equal to 
@, < E * for stationary propagation. In the second case (suf- 
ficiently strong attachment) the external field necessary for 
stationary development equals E *. Here the conductivity 
and the charge tend to finite D = D, and q, = D,/E, and the 
field in the channel tends to E *. With increasing k, the quan- 
tity D, increases from the value l/k,* at k,  = k,* to the 
value E at k ,  9 k ,*. The dependence of the ratio of the con- 
ductivity of the channel far from the head (a, ) to the con- 
ductivity at the head (a,) on k,  is shown in Fig. 7.  At 
k, < k ,* we have a, = 0; for k,  > k ,* this ratio equals D, . 

5. STREAMER GROWTH IN STRONG INHOMOGENEOUS 
FIELDS 

We will now briefly discuss the case when a streamer 
propagates from a sharp tip. This case was examined by us 
earlier for the absence of attachment.L1s12 It was shown that 
the streamer can propagate during a time on the order of to ,  
while the charge distribution along the streamer filament is 
close to electrostatic and the potential at the head does not 
differ strongly from the potential U of the tip. Here, the 
speed of the streamer and the radius of its head are propor- 
tional to U. It was shown that in the streamer channel there 
exists a definite field that creates the current ensuring the 
head charge necessary for stationary development. This field 
coincides with the quantity2' 8, introduced above. The en- 
tire length of the streamer to its stop is also proportional to 
the potential of the tip: I -  I ,  = Vt, - U/$, , and is virtually 
determined by the condition that the voltage drop on the 
streamer length 8,I be on the order of U. 

We now estimate the total length of the streamer Iat the 
beginning of attachment. For this, we calculate the voltage 
drop on the streamer length, assuming this drop to be small 
in comparison with the potential of the tip. When this condi- 
tion is fulfilled, the speed of propagation is practically con- 
stant and one can use the self-similar Eqs. ( 19) and (20), in 
which one sets the external field 8 equal to zero. (The field 
at the tip can be neglected at distances much larger than its 
radius of curvature.) Moreover, in the right-hand sides of 
these equations one can set g, = 1, which corresponds to 
small changes of the potential along the streamer. We recall 
that in Eqs. (19) and (20) the potential q, is measured in 
units of the head potential, which in the case considered 
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1 I I . FIG. 6. The same as Fig. 2, for a model with linear 
0 f 2 x k ( E )  dependence for E = 0.5,  k ,* = 5.36 and 

k,  = k,*/2 ( I ) ,  k,  = k,* ( 2 ) ,  k ,  = 2k,* ( 3 ) .  

differs little from the potential U of the tip. The length x is tically coincides with the quantity E * in the principal part of 
measured in the units I, = U /%', . the channel. 

From Eq. (20) we find Thus, in the extreme cases of weak and strong attach- 

and from Eq. ( 19) we obtain the following expression for the 
voltage drop Ap:  

1 / 1 0  

Equation (27) is valid when A p  < 1; however, the maxi- 
mum length of the streamer I can be estimated from the con- 
dition Aq, - 1. 

For weak attachment ( k ,  < 1 ) we obtain from this the 
previous result I-lo-U/%',. For strong attachment 
(k, -, 03 ) we find I- 1 ,~ ;  i.e., 1- U/E *. This result is ex- 
plained by the fact that for strong attachment the field prac- 

ment the full length of a streamer propagating from a sharp 
(26) tip satisfies the estimate 

where Fc is the value of the external homogeneous field in 
which the streamer is capable of stationary propagation. 
Equation (28) can be considered as an interpolation in the 
intermediate cases. 

The results obtained in this section agree with the ex- 
perimental data of Gallimberti3 and with his numerical cal- 
culations for the mixture of air and SF,. We note, however, 
that for these calculations (see also Ref. 2)  the radius of the 
streamer channel is considered constant and is specified as 
an independent parameter. In agreement with our assump- 
tions," for propagation from a sharp tip, the radius of the 
head is uniquely determined by its potential. The potential of 
the head decreases as the streamer develops, and its radius 
and speed also decrease; it is this which leads to the stopping 
of the streamer. 

6. COMPARISON WITH THE RESULTS OF NUMERICAL 
CALCULATIONS 

Dhaly and Pal4 solved numerically the problem of 

2 
streamer propagation in a strong electronegative gas (SF, ) 

4 3  - in a homogeneous field. It is significant that in this work the 
total system of equations describing the streamer discharge 
was solved correctly in contrast to the majority of similar 
calculations utilizing the so-called "disk method," in which 
the problem is artifically reduced to a single dimension. 

0 io zo ho ~ h e p ( ~ )  dependence used in Ref. 4 is shown in Fig. 8. 
In agreement with the  calculation^,^ the maximum field Em 

FIG. 7. Dependence of the ratio u, /u , ,  on k,  at E = 0.3 ( 1 ), E = 0.5 ( 2 ) ,  at the head was (2-3 )E *, and the field gC directly behind 
and E = 0.9 ( 3 ) .  the streamer front was (0.25-0.5)E *. The ratio of 8, and 
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ratio of V to the electron drift velocity in the field Em at the 
head was of the order of 10, which ensured the applicability 
of the theoretical estimates cited here (see footnote 1). 

The characteristic time to [see Eq. (A5)]  was of the 
order of 1 nsec, and the attachment time r, - ID( g, ) 1 - ' 
was of the order of 0.1 nsec, so that r,/r, ) 1, and the situa- 
tion corresponds to strong attachment. Here, as was shown 
above, the field in the streamer channel must grow from the 
value g, directly behind the front to the value E *, and the 
electron concentration falls, tending to a finite value distant 
from the head. Just such a behavior was demonstrated also 
by the numerical calculations. 

FIG. 8. The function B ( E )  used in the numerical calculations for SF, in 
Ref. 4. 

Em agrees with the estimate (A4). 
The estimate of the maximum field preceding the front 

(Em -Eo ) was made by us earlier" for the absence of at- 
tachment and with the dependence 

The function B(E) in Fig. 8 has a completely different char- 
acter. At E >  E *, in a sufficiently wide region of the field 
(E - E * -E *), the function B(E) is nearly linear. If the 
quantityB dependslinearly on the field for E > E *, then with 
the help of arguments analogous to those presented in Ref. 
11 one can show that Em -E *. Indeed, if at some instant Em 
is close to E * (Em - E * < E * ), then the condition 8 > 0 is 
fulfilled only in a small region (with a dimension much 
smaller than the radius of the head) near the point where the 
field reaches the maximum value E;, . Therefore, the radius 
of the head will decrease, and the field preceding the front 
increases. In other words, if Em ) E * then, as shown in Ref. 
13, the radius must increase, and the field Em decreases. 

Hence, for a linear funct ionB(~) in the region E > E * 
the maximum field Em must exceed E * at values on the order 
of E *. This conclusion agrees with the result Em = (2-3) E * 
of a numerical m~del ing .~  

The maximum electron concentration in the streamer 
head is determined by the formula 

Em 

which is completely analogous to Eq. (A.2). Calculation 
according to this formula yields values of the concentration 
N two to three times smaller than obtained with numerical 
modeling. Hence, the results agree in order of magnitude. 
The difference between them is not fundamental, especially 
if one recognizes that in the region preceding the streamer 
front the concentration changes by 5-7 orders of magnitude. 

An estimate of the streamer propagation speed accord- 
ing to Eq. (A.3), with the replacement offl(Em ) by P ( E ~  ) 
and with the use of the numerical values of the parameters 
r,, Em,  and A, from Ref. 4, leads to a result that agrees well 
with the results of numerical calculations. We note that the 

APPENDIX 

We present a summary of results obtained by us earlier 
and used in the present work, accurate to within the numeri- 
cal factors of the fundamental streamer parameters. 

1. The maximum field preceding the front Em must be 
such that the characteristic length on which the impact ioni- 
zation frequency B(E) varies ahead of the streamer front, is 
on the order of the radius ro of the head.'' In the absence of 
attachment, for the usual dependence 

p ( E )  = P o  (EIEo) exp (-EoIE) 

this condition leads to the relation Em - Eo . 
2. The conductivity om directly behind the front is de- 

termined by Eq. ( 6 ) ,  

(A. 1) 

which leads to the e~ t ima te"~ '~  om -P(Em). Equation 
(A. 1) holds for a linear dependence of the electron drift 
velocity v, on the field. The equivalent of expression (A. 1 ) 
for the electron density N behind the front has the form 

We note that expression (A.2) is valid for arbitrary func- 
tions v, (E). 

3. The speed of streamer propagation Vis proportional 
to the radius of the 

where no is the electron density ahead of the front. 
4. The radius of the head ro is determined only by the 

conditions of the origin of the streamer6 for stationary prop- 
agation in a homogeneous field. For propagation from a 
sharp tip, the radius of the head is proportional to the poten- 
tial of the tip.' 

5. The field in the channel directly behind the front is 
given by the expre~sion~~'  ' 

6 .  The characteristic time of establishment of stationary 
development is6.I ' 

504 Sov. Phys. JETP 71 (3), September 1990 M. I. D'yakonov and V. Yu. Kachorovskil 504 



where A, = ln(a/r, ), and where a is the characteristic dis- 
tance over which the linear charge density changes. 

" A  drift term-div(ovd) is omitted in the right-hand side of Eq. (1).  
Neglect ofthese terms isjustified ifthe streamer velocity is much greater 
than the drift speed vd (see Ref. 6).  We will assume that this condition is 
fulfilled. For V%vd the properties of the anode and cathode streamers 
are identicaL6 

2 ,  In Ref. 11 a streamer in a semiconductor was considered, and satura- 
tion, typical of semiconductors, of the carrier drift speed in large fields 
was taken into account. Therefore, the expression for the field in the 
channel (denoted in Ref. 11 by Ez) differed from the value (A.4) for a 
streamer in gas. 
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