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Weconstruct a l/n expansion for a hydrogen atom in constant electric and magnetic fields. The 
summation of the l/n expansion enables us with a large degree of accuracy to find the position and 
the width of atomic levels in a strong field. The method is generalized to resonances in a repulsive 
Coulomb center and to two-electron atoms. 

1. The study of the Rydberg states of atoms and mole- 
cules, including in external fields, is a vital problem in atom- 
ic physics and recently has attracted considerable interest 
(see the review papers 1 and 2 and the references cited 
there). For instance, Refs. 3-8 were devoted to the calcula- 
tion of the energy levels of the hydrogen atom in constant 
electric and magnetic fields. The main method of calculation 
has up to the present been perturbation theory. Meanwhile, 
thanks to the development of laser technology and atomic 
spectroscopy it has become possible to reach a range of 
strong fields comparable with the field at the atomic orbit of 
the electron (especially for Rydberg states where n)  1). In 
that case it is natural to use a l/n expansion since there is the 
small parameter l/n in the problem. 

In the present paper, which is a continuation of Ref. 9, 
the semiclassical l/n expansi%n is applied to the pr-blem of a 
hydrogen atom in electric ( g )  and magnetic (A?) fields. 
We restrict ourselves to the case of parallel fields and, basi- 
cally, to states with J m J  = n - l (m is the magnetic and n 
the principal quantum number). Such states minimize in the 
limit as n - co the Ap,Ar and Ap,Az uncertainty relations 
(i.e., for the radial component and the component trans- 
verse to the plane of the orbit ofp and r )  so that they are the 
closest to classical rnechanic~.~*'~ This considerably simpli- 
fies the calculations, especially to the lowest orders in l/n. 

2. Basic equations. We give a very intuitive derivation 
of the equations of the l/n expansion (compare a similar 
approach" for the Stark effect). We use the fact that in the 
case of large quantum numbers the Bohr atom model is ap- 
plicable where the nodeless ( (m ( = n - 1 )  state corre- 
sponds to a circular orbit of the ele3ron pegendicular to the 
z axis, which is the direction of the t?? and Zfields. It is clear 
from Fig. 1 that when the external fields are switched on the 
classical orbit is shifted and changes its radius, remaining 
circular as before (i.e., it is stable). The parameters of the 
orbit are determined from the equilibrium condition for the 
forces in the rest frame of the electron and the quantization 
condition for the component of the momentum:'' 

wherep = ( r  - z I ) " ~  and v is the electron velocity. Carry- 
ing out a scale transformation 

we change to reduced variables E,  F, and so on, which remain 

finite as n-+ co ("Rydberg limit"). Here m/n = + (1  + 
n- ' ) - + 1. Using Fig. 1 we see that (for simplicity we drop 
henceforth the tilde on I. and B ) :  

- r (  1 - F 'r 4, "*. Eliminating the where p = ( r  ' - z2)'I2 - 
velocity v we find the equation which determines the dis- 
tance r = ro (F,B) from the nucleus to the equilibrium elec- 
tron orbit: 

In the weak field region 
ro=1+2F~i/4B+19F4+'/iB4-4F2B2+. . . , (4) 

(for the notation see Fig. 1 ). The electric field thus increases 
the radius of the orbit and shifts it, and the magnetic field 
compresses the orbit; see also Eq. (A12) in Appendix A. We 
note that when there is no electric field Eq. ( 3 )  changes to 
the equation obtained in Ref. 12 and in the case B = 0 to Eq. 
(4)  of Ref. 11. In both these cases we can evaluate all coeffi- 
cients of the expansion of ro and of the reduced energy E in 
powers of F and B (see Appendix A) .  

The first term in the l/n expansion 

FIG. 1 .  Classical orbit of an electron corresponding to states with 
m = n - 1 > 1 (the nucleus is situated at the origin). We have indicated 
the forces acting upon the electron in the rest frame: F, = e 2 / r i ,  
F,, = u2/p,, P,, = ( e / c ) u R .  
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FIG. 2. Classical ionization threshold F, ( B )  in the presence of a magnet- 
ic field: 1: hydrogen atom, 2: resonance in a repulsive center. The asymp- 
totic behavior as B- m is indicated by the dashed curves; see Eqs. (9') 
and (12 ' ) .  

is equal to the energy of the electron in the equilibrium orbit, 
the second one ( & ( I ) )  is determined by the small oscillations 
around it: 

wheren, + n, + 1 = n - Iml = 1,2,3, ... ; ~ , > 0  are the os- 
cillatory quantum numbers and the frequencies w,  equal: 

ol,2={ro-S+i/zBz~ [9Fzr0-2+3F2B2r0 
+i/,B4] I") 'h ( 7 )  

(for details see Appendix B ) . Higher orders of the l/n ex- 
pansion (E '~ ' ,  k>2) take into account the anharmonicity in 
the effective potential U(r) and can be calculated using the 
Rayleigh-Schrodinger perturbation theory recurrence rela- 
tions for an anharmonic oscillator (compare Refs. 12-14). 

As in the Stark effect case, the effective potential U(r) 
given by Eq. (B3) has a minimum only for a sufficiently 
weak electric field, when F< F, (B). When F = F, the fre- 
quency 13, vanishes, which corresponds to the intersection 
of the two classical solutions; the equilibrium orbit consid- 
ered by us then loses it stability.,' Hence we get the equation 

which together with (3)  determines F* (B). We note that 
Eq. (8) also follows from the condition (dg, /dr) I .=. = 0 
corresponding to the merging of the two roots of Eq. (3)  
with their subsequent departure into the complex plane 
[here q, = q,(r;F,B) is the polynomial in the left-hand side of 
Eq. (3) ] .  Hence 

F.  (0) [ l+aBZ+O(B4) I ,  B+O, 
F. (B) = { (9)  

c,B+c2B'"+c3+0 (B-"), B+w, (9') 

where F, (0) = 212-3-9 = 0.2081, a = 312.2-19=:1.1014, 
C, = 3-3'2, c2 = &, and c, = 3-912.2-' [see (A13) in Ap- 
pendix A]. 

Following Ref. 3 we may call F, the classical ionization 
threshold. We show in Fig. 2 how F, depends on B. We note 
that when F, 20.5 the dependence is close to linear. We 
have drawn additionally in Fig. 2 the function F, (B) for a 
repulsive Coulomb center (curve 2; for details see 9 5 be- 
low). 

Using Eqs. (6)  and (A10) we get the expansion of the 
reduced energy E for any n: 

ea 

The coefficients of B and B differ from the corresponding 
coefficients in the expansion (22) in Ref. 16. For n = 1 we 
have 

which agree_s with the expansion of the ground state energy 
in the case fYIIX obtained by other means.3' 

We note that for the nonphysical values n = m 
+ 1 = - 1, - 2, - 3, ... the Schrodinger equation admits 

the solution: 

where 5 = r + z, 7 = r - z, and g, are parabolic coordinates. 
One easily finds for the coefficients cij recurrence relations 
which in the simplest case n = - 1 have the following form: 
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TABLE I. Coefficients E'" of the l /n expansion. 
- - - 

Nore. The E'" coefficients are complex for F> F, ( B )  where F, (0.1) = 0.2102 and 
F, ( 1.0) = 0.345. 

They determine the singular part of the wave function 

$5,"g =(E.q) -i(l+1/2E) (1+'/2q) e-2'v, 
+ - 

where E = - + for all $ and P (i.e., the shift in the "level" 
with n = - 1 vanishes). Hence it follows that in all terms of 
the expansion ( lo),  except the initial one, we can take a 
factor (n + 1 ) outside the brackets and this has been done in 
(10). 

Without being able to go into more details we indicate 
solely that the existence of exact solutions for n = - 1, 
- 2, ... is closely connected with the finite-dimensional non- 
unitary representations of the 0(2,1) group. 

When F> F, (B) the radius of the classical orbit and 
the coefficients E ( ' )  become complex. Such a solution loses 
its meaning in classical mechanics, but when we go over to 
quantum mechanics it reveals in fact the possibility to de- 
scribe (in the l/n expansion framework) not only the shift 
but also the width of the levels in a strong field. 

3. Results of the calculations. We give in Table I the 
first 11 coefficients dk' of the l/n expansion (when F <  F, 
all dk' are real, and when F> F* they are complex; 
F, (1) = 0.345 ) .  A typical behavior of the E ' ~ '  coefficients 
is: initially (up to k = 3-6) they decrease, and after that they 
increase. When k$1 the increase of (E"' I becomes factorial 
so that for the evaluation of the energy with a high accuracy 
it is necessary to use the methods for summing divergent 
series (see Refs. 3, 14, 18, and 19 in that connection). 

The results of the summation of the l/n expansion for 
the reduced energy E,  are given in Table 11. When F >  F, we 

used Pad6 approximants (PA) [L /MI, and for F <  F, qua- 
dratic Padt-Hermite approximants (PHA) [L,M,N] . We 
have indicated only those decimal places which were stabi- 
lized for the [4/5] and [5/5] PA or for the [3,3,2] and 
[3,3,3] PHA. Even in the least favorable case (ground state, 
expansion parameter l/n = 1) the accuracy of the deter- 
mined energy was - and increases rapidly with in- 
creasing n. The results of the summation agree for n = 1 
with the results of a numerical integration of the Schro- 
dinger equation.,' 

Some of the results are shown in Figs. 3 and 4 (for node- 
less states: n, = n, = 0, m = n - 1, n = 3 and 5; see also 
Ref. 10). The solid lines are the real ( E L  = 2n2ReEn ) and 
the imaginary (E:  = n2Tn ) parts of the reduced energy as 
functions of the electric field F for a few fixed values of B 
(the gaps in the EL curves correspond to that range of F 
values close to F, where the l/n expansion converges poor- 
ly). For comparison the dashed curves show the real and 
imaginary parts of the classical energy E"'. It is clear that 
Re E"' shows already qualitatively the field-dependence of 
the energy; as to Im E"', it is a rather rough approximation 
(see Fig. 3b), i.e., here we cannot avoid the summation of 
the series (5).  On the whole it is clear that the l/n expansion 
is an altogether efficient calculation method, especially for 
Rydberg states. 

4. We make a few additional remarks. 
a. The calculations show that the energy of a level in- 

creases with increasing B (see Figs. 3a and 4a). This is ex- 
plained by the classical-orbit compression that brings the 

TABLE 11. Reduced energies of states with rn = n - 1 in parallel 2 and 9 fields. 

Note. We give in the table the values of F,, for F= n 4 0  = 1.0 and various B. 
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FIG. 3. Real ( a )  and imaginary ( b )  parts of the energy 
E, = 2n2E,, - E;, - i~:; for states with m = n - 1 
( n  = 3 ) .  The solid curves are obtained by summing 
the l/n expansion using the PA method, the dashed 
curves give the classical approximation E"'. The val- 
ues of B are indicated at the curves. 

electron closer to the nucleus. As B- w and for fixed F we 
have [see Eq. (A  1 1 ) 1 

where 0 = (B /2) -0. AS to the width T, (i.e., the 
probability for the decay of the atomic level under the action 
of the electric field), it is reduced by a magnetic field and 
increased by an electric field (see Fig. 3). We must note that 
in the F> F* region the F dependence of the width T, is 
nearly linear, as in the case of the Stark effect.I2 

b. The results given in 8 3 refer to states with n = m + 1 
which go over in the limit as n- w into the ground state 
(n, = n, = 0) of the two-dimensional oscillator. However, 
the method considered can be generalized also to excited 
states and this does not meet with any difficulties of princi- 
ple. The first term E'"' in (5)  and also the values of w ,  , a,, 
andp, are then unchanged, the term E'" reduces to ( 6 )  and 
the subsequent coefficients E ' ~ ' ,  although becoming more 
~ornplex,~'  can be evaluated using recurrence relations. 
Such a generalization is of interest for states with n ,  ,n, &m. 
We show the results of the calculations for the state 12,0,0) 
in Fig. 5. 

The convergence of the l/n expansion for states with 
different quantum numbers is illustrated_in Tabie 111. 

c. For a hydrogen atom in parallel 8 and ,Y fields one 
used earlier perturbation theory5:$ and semiclassical meth- 
ods' for states with n - 30 and im 1 = 0,l (apart from the 
reference given above we mention the review in Ref. 2 and 
the literature cited there). The results of the calculations for 
states with m -n are n5w. 

5. In parallel %' and 2Y fields electron resonances ap- 
pear not only in an attractive Coulomb center (proton), but 
also in a repulsive center (antiproton). Up to now ( p e )  re- 
sonances have not been observed experimentally and not 
been studied theoretically. At the same time they may occur 
when electrons are scattered by antiprotons (or positrons by 
protons) in regions where %' and 2? fields operate, and a 
theory of such resonances can be obtained by a simple gener- 
alization of the corresponding theory for the hydrogen atom. 

A magnetic field stabilizes resonances in a repulsive 
center. In the classical limit, as n - W ,  such states corre- 
spond for large 2Y to an electron orbit with a small radius 
p, = ( 2 m / Z )  'I2 located on the cathode side of the antipro- 
ton at a distance z, = 8 '/, 

For a repulsive center Eqs. (2 ) ,  (31, (5)-(8), and 
( B  1 ) -(B4) of the l/n expansion are valid as before if we 
replace in them rby - r. In Eq. (A13) which defines F, ( B )  

FIG. 4. The same as Fig. 3 for the state with n = 5 ( m  = 4) .  
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FIG. 5. Effect of a magnetic field on the position and the width of a Stark 
level (for the state 12,0,0), n = 3 ) .  The curves are obtained by summing 
the l / n  expansion (for B = 0 they refer to the normal Stark effect in a 
hydrogen atom). 

we must put 1 < r<3; the corresponding asymptotic for- 
mulae have the form 

where a' = 5.3 '/3. 216/9 - -11.9, while c, , c,, and c, are the 
same coefficients as in (9'). If we change to the field 
strengths %' and Z ,  in a weak field, n3Z(1.5. we 
have g, z (2?/21~/~, independently of n. For instance, a 
field Z = 100 G corresponds for n 47 to 8, = 0.30 V/cm. 

As 2?+ co the electron motion becomes essentially 
one-dimensional and the energy equal to E = + n Z  + E,, 
where Ez ~ 2 8 " ~  is the energy in the one-dimensional po- 
tential - l/z + 8z .  The coefficients dk' can be expanded in 
powers of B - I :  

As %' -0 we have do' +B, and d k )  +O(k> 1); the electron 
moves away from the antiproton and goes over into a Lan- 
dau level with energy e = B. 

The F dependence of the ground state energy is for 
B = 1 shown in Fig. 6. The solid curves are the results of the 
summation of the l/n expansion and the dashed curves the 
classical energy do'. It turned out that the level width in- 
creases very slowly even beyond the classical ionization 
threshold [when F> F, (1) = 0.141. 

6. For a single-electron atom the l/n expansion coin- 
cides with that in powers of l/nl for the ground state 
(n' = ( N -  1)/2), but in a space of dimensionality N, 1 
(Ref. 9) .' For a two-electron atom this is no longer the case, 
but the I/nf expansion is applicable as before. Putting n' = 1 
we can thus calculate the ground state of real three-dimen- 
sional atom. 

Carrying out a scale transformation similar to ( 1 ) , but 
with the substitution n +nf, we find a Schrodinger equation 
with an effective potential 

in which l/nl enters (in front of the second derivatives) in 
the same way as the Planck constant fi  (see also Ref. 9).  In 
( 14) Z is the charge of the nucleus and U, the centrifugal 
p~ten t ia l ,~)  

where the hi are the altitudes of a triangle with sides p ,  , p,, 
andp,, drawn to thes idesp , ;~ ,  = ( r ~ - ~ ~ ) " ~ ( i =  1,2), 

In the limit as n'- C.O the energy is given by the mini- 
mum of the effective potential: 

In the harmonic-oscillator approximation 

TABLE 111. Convergence of the l / n  expansion for various states when F = B = 1. 

Note. For each state we have given in the table the oscillator approximation E,,, = c"' + ~ " ' n  ' 
and three Pad6 approximants [ L / M ] .  When F = B = 1 for all states 
E"' = - 1.16248-0.49863i. 
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FIG. 6. Quasistationary state in a repulsive center (Z = -- 1 ) for B = 1. 
Here E = 2E = E' - i ~ " ,  F =  $. The solid curves are the results of sum- 
ming the I/n expansion, the dashed curves give the classical energy do'. 

We calculated also the anharmonic correction ~ ' ~ ' / n ' ~ ,  but 
the formula for this is very cumbersome and we do not give it 
here. 

Because of exchange symmetry, the potential U,, can 
have symmetric minima (pi0' = and ziO' = z?') or two- 
fold asymmetric ones, which are typical of states with weak- 
ly bound electrons ( r  $'' ) r 1'' ). The calculations were car- 
ried out only for the simplest case of a symmetric minimum. 

When F = 0 a symmetric minimum exists for Z )  1.228 
for any B, and when Z = 1 only when B20.26 (see Fig. 7 ) .  
The results of summing three terms of the l /n '  expansion 
( P A  [ 1 / 1 ] )  forthegroundstate ( n  = 1 )  ofHPandHe ina  
magnetic field are given in Table IV. P A  [ 1 / 1 ]  agree with 
variational calculations2' within + 0.03. An exception is 
the case B = 2 for helium. The bad accuracy for X = B = 2 
can be explained by the closeness of the pole in the P A  [ 1/11 
at B = 2.1. In that case the P A  [ 2 / 0 ]  = - 2.287 will be 
more accurate. Using the PA [ 1 / 1 ]  we obtained a value 
which was 86% of the value of the diamagnetic susceptibility 
for He and 90% for Li + . 

We show in Fig. 7 the ground-state energy of two-elec- 
tron atoms in a magnetic field. Using the variables E / Z 2  
and B / Z  enables us to cover in a single figure all nuclear 
charge values 2. We note that the curve with Z = 1 breaks 

FIG. 7. Ground state energy of two-electron atoms in a magnetic field. 

off at B = 0.26 (for smaller values ofB we must carry out the 
calculations for the asymmetric minimum of U,,). This re- 
striction is not present in the case 2 2 2  and the curves start at 
B = 0 .  

When B = 0 the symmetric minimum of the potential 
U,, exists only in sufficiently weak fields F<F, ( F ,  = 0.795 
for He and 3.720 for Li t  ). The sum of three terms of the 
I /nf  expansion gives 94% of the dielectric constant for He 
and 99% for Li + . 

We give a characteristic example of the summation of 
the 1/n1 expansion for helium in parallel fields $ = 0.5 and 
X =  1 :  

whence 

7. At the present time the l / n  expansion (in its various 
variants differing in the choice of the expansion parameter 
l / n )  is widely applied in quantum mechanics and field theo- 
ry. However, in most papers only the case of a discrete spec- 
trum is considered. Apparently, Ref. 15 was the first to show 
that this method is applicable also to calculating energies 
and widths (E = Re E - fir) of quasistationary levels if 
we take classical orbits into consideration which satisfy 
equations of motion but have complex coordinate values. 
This made it possible to use the l / n  expansion in the theory 

TABLE IV. Ground state energy of two-electron atoms in a magnetic field. The first row gives 
the results of summing the l/n expansion and the second row that of a variational cal~ulation.~'  
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An expansion similar to (A7) was given in Ref. 16 [Eq. 
(24) ] but with errors in the coefficients of B and B 6 .  

3) I fB=O,wehavea=2,  b = 4 , A =  F2,and 

of the Stark effect in a strong field3," which turned out to be 
especially useful in the case of Rydberg states. 

In the present paper we used the l/n expansion to solve 
the problem of a hydrogen atom in parallel 8 and X fields. 
The main results are Eq. ( 10) and the recurrence relations 
which enable us to calculate in principle any term of the l/n 
expansion. The summation of this expansion enabled us to 
evaluate the position and width of various states in strong 
fields, which are comparable to atomic fields. We also ( 5  6) 
considered the l/n expansion for a two-electron atom. 

The authors are grateful to V. D. Mur, N. L. Manakov, 
L. P. Rapoport, and A. I. Sherstyuk for discussing this paper 
and useful remarks. 

(the convergence range is: IF I < 0.208 1, see Refs. 3 and 1 1 ) . 
We note that in a magnetic field the perturbation theory 
series are alternating whereas in the case of an electric field 
the coefficients of the expansion retain their sign. This is 
directly connected with the position of the closest singular- 
ity i n B 2  ( o r F 2 ) .  

4) We give the first terms of the perturbation theory 
series for the coefficients of the l/n expansion ( 5 ) : 

APPENDIX A. PERTURBATION THEORY SERIES AND OTHER 
EXPANSIONS 

1. We denote by xo(A) that root of the equation 

which tends to unity as A +O. Applying Lagrange's theorem 
(see Ref. 22, p. 149) gives for any index v 

where 

(in particular, c ,  = - 1, c, = a + (v  - 1)/2, and so on). 
Here T(x)  is the gamma function. 

We note that through the substitution x = t -" the 
equation 

(the next coefficients E ' ~ '  no longer contain terms F'Bjwith 
i + j24) .  Hence the expansion ( 10) follows immediately 
[terms proportional to F 6 ,  F 4~ 2, F 2B 4, and B in ( 10) are 
found similarly 1. Equations (A10) were found on a comput- 
er using recurrence relations similar to the ones described in 
detail in Ref. 16 for the Stark effect. In view of the complex- 
ity of these relations we do not give them here. We note that 
the expansions (A7) and (A9) were used to control the nu- 
merical calculation. 

5) It is convenient to carry out in (3)  the substitution 
ro = Ps"~, whereP = (B /2) - -0 in the strong magnetic 
field region. We get 

s + ~ s " ' - ~ ~ ~ F ~ s + O  ( p a )  = I .  (A1 1)  

reduces to the previous one. In that case in (A2) 

ck=a-lr ( k ( a + b ) +  )/ ( kb+:+ ) , (A4) 
a  

k!  r 

The expansions obtained converge for sufficiently small A; 
for instance, the latter one for 

2. Equation (3) reduces for F = 0 to (A3) with the 
parameters a = 1, b = 3, and A = - +F2, whence 

OD 

Hence follows Eq. ( 1 1 ) and also 

Using also the fact that in this case 

we easily find that 

The orbit is then strongly compressed, the classical energy 
E"' is mainly determined by the magnetic field, and the elec- 
tric field leads only to small corrections. 

6. The classical ionization threshold F, (B) is deter- 
mined by the set (3)  and (8) .  Putting (these series converge when (B I < 33/2/8 = 0.6495 ) . 

476 Sov. Phys. JETP 71 (3), September 1990 



we find P, r ]  as functions of T: 

We can write the B dependence of F* in parametric form: 

(f (7 < 1 ). Here T = f corresponds to the absence of a mag- 
netic field: F,(O) = 2I2.3V9, r, = %  and for F = O  Eqs. 
(3) and (8)  are incompatible (this corresponds to the fact 
that when there is no electric field present bound states do 
not remain quasistationary for any values of Z ) .  From 
(A13) we easily find Eqs. (9) in the two limiting cases T++ 

andr-1).  

APPENDIX B 

We briefly give an account of the more standard method 
of deriving the l/n expansion. Using the axial symmetry of 
the problem we write the Schrodinger equation in cylindri- 
cal coordinates: 

where r = (p2 + z2) the wave function 

$ ( r )  =p- ' ' l e im~~ (p, Z )  

and (as in 4 2) we have dropped the paramagnetic term 
+ Z ( L ,  + 2Sz ); its contribution to the energy is trivial. 
After scaling ( 1 ) we find an equation in which l /n plays the 
role of Planck's constant f i :  

where p = n - m and t (p,Z)  = X (  n2,5,n2Z). In the limit as 
n + cc the effective potential in (B2) is 

It has a minimum in the point (,5,,Zo ) determined by Eq. 
(3).  The frequencies of the small oscillations of the electron 
around the equilibrium point are determined by diagonaliz- 
ing the matrix ( d  'U/6'xidx, )0 : 

co1,~= (a*b) '", 
(B4) 

a='/, (Up,+U,,) ,  b='12[ ( U p p - U , , ) 2 + 4 U p ~ l  *, 

where 

I Hence follows Eq. (7).  
When w, = 0 the two [stable (p,,Z0 ) and unstable] 

equilibrium points in the potential (B3) merge after which 
these points enter the complex plane. As in other prob- 
l e m ~ ' ' * ' ~ , ' ~  such a situation is of special interest in quantum 
mechanics as it enables us to evaluate (using the l/n expan- 
sion) the width of quasistationary states. 

"We use in what follows atomic units f i  = m, = e = 1. The unit of the 
electric field strength is Oo = mzes/ti4 = 5.142X lo9 V/cm, and that of 
the magnetic field strength R0 = m3e3c/+? = 2.350X 109 G. 

"This situation is a common one and occurred, for instance, for the calcu- 
lation of E'" for Yukawa or Hulthtn potentials.lS 

3' See Qfs. 4-6 and also Ref. 7 for the case of an arbitrary angle between 3 
and 8 (one should note that the expansion coefficients given in Ref. 6 
contain errors; see Refs. 7 and 17 in that connection). 

4 '  Compare Eq. (2.5) in Ref. 9 for the case of potentials with spherical 
symmetry. 
It is similar to the termp - 2/2 in Eq. (B2) for the hydrogen atom arising 
after splitting off the angular variable p. 
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