
Thermal self-focusing of sawtooth waves 
0. V. Rudenko, M. M. Sagatov, and 0. A. Sapozhnikov 

Moscow State University 
(Submitted 26 January 1990; resubmitted 11 May 1990) 
Zh. Eksp. Teor. Fiz. 98,808-818 (September 1990) 

Thermal self-focusing and defocusing of sawtooth waves are investigated. The geometric 
approximation of acoustics and the assumption that there are no aberrations of the self-induced 
lens are employed. The characteristic temporal and spatial scales of the process, the wave 
amplitude, and beam width are calculated. The specific nature of the effect, as compared with the 
familiar thermal self-focusing of quasi-harmonic waves, is noted. 

As is well known, beams of intense waves can undergo 
self-focusing (defocusing). This effect, already predicted in 
1962 for light,' and later for sound,* has been studied in 
detail in nonlinear optics. The experimental observation of 
thermal self-focusing (TSF) of acoustic waves took place 
relatively r e ~ e n t l y . ~ . ~  The phenomenon of TSF comes about 
because of the dependence of the velocity of the wave on the 
temperature and of the nonuniform heating of the medium 
by the beam. At the present time, TSF has been well ana- 
lyzed for quasi-harmonic sound waves,596 where the analogy 
with optical TSF has been used effectively.' According to 
such an approach, the TSF is reduced upon a decrease in the 
coefficient of linear absorption of sound a, and it disappears 
as a + 0. The specifics of acoustics are such that this conclu- 
sion is not always valid. 

Actually, because of the absence of dispersion, the 
shape of intense sound waves undergoes strong nonlinear 
distortion and, as the wave propagates, "discontinuities" are 
formed-weak shock waves. In this case, even if the absorp- 
tion coefficient a is small, an effective nonlinear dissipation 
of the energy of the wave takes place, and the medium is 
heated, i.e., thermal self-focusing occurs. The corresponding 
change in the sound velocity has been observed experimen- 

Therefore, the acoustic beams should undergo self- 
focusing even in a medium with small a. 

An experiment has been described in Ref. 10 on obser- 
vation of TSF due to nonlinear absorption of ultrasonic 
waves. A beam of 20-W power, width 30 mm and frequency 
2 MHz propagates through acetone, which has a small linear 
absorption coefficient. It turned out that the intensity of the 
wave on the axis of the beam increased significantly (by a 
factor of about 1.5), which was not explained by linear 
sound absorption, and was due to the effect of nonlinear 
quadratic effects. We note that the role of nonlinear absorp- 
tion increases with increase in the amplitude of the wave, so 
that linear absorption can prove to be unimportant in the 
TSF of powerful nondispersive waves. 

It is well known that the shape of a powerful sound 
wave transforms from sinusoidal into sawtooth as it propa- 
gates. In this case, the absorption of the wave becomes pure- 
ly nonlinear and does not depend on the viscosity and ther- 
mal conductivity of the medium. The task of the present 
article is the description of thermal self-focusing of such 
waves. We note that most of the features of TSF of sound are 
intrinsic to the self-focusing of nondispersive waves of any 
sort, for example, ion-acoustic and magneto-acoustic waves 
in a plasma, or waves in particle flows. Therefore, a number 
of results of the developed theory extend beyond the frame- 

work of problems of acoustics and are applicable to a broad 
class of nonlinear problems. 

1. DERIVATION OFTHE EQUATIONS 

In the propagation of acoustic waves in ordinary li- 
quids, three modes of excitation arise: acoustic, entropic and 
hydrodynamic. The effect of TSF is the result of the interac- 
tion of the first two modes. However, hydrodynamic modes 
can also play a large role in TSF: the development of "acous- 
tic wind" leads to defo~using;~ the "wind" and convective 
flows agitate the liquid strongly, which weakens the 
TSF."S '~ It is assumed below that the hydrodynamic mode 
is not excited (the medium is at rest. 

For a description of the acoustic beam, we used a modi- 
fied equation of the Khokhlov-Zabolotskaya-Kuznetsov 
type5,I2 

where p is the acoustic pressure, T the temperature of the 
medium averaged over the period of the wave, 
S = c, ' (dc/dT), is the temperature coefficient of the 
sound velocity c, c,, p, are the unperturbed sound velocity 
and density of the medium, ~ , b  are the parameters of nonlin- 
earity and dissipation,13 x is the coordinate along the axis of 
the beam, T = t - x/c,, t is the time, A, = r - Id /dr(ra /dr) 
is Laplace's operator with respect to the transverse coordi- 
nate r. 

We shall calculate the temperature field with the help of 
the inhomogeneous equation of heat conduction 

The expression on the right-hand side, where the superior 
bar indicates averaging over the period of the acoustic wave, 
describes the transformation of the acoustic energy into 
thermal energy via absorption. In Eq. (2)  x and C, are the 
coefficient of thermal conductivity and the heat capacity of 
the system, respectively. 

The set of equations ( I ) ,  along with the initial and 
boundary conditions, can be used in the calculation of the 
interaction of acoustic and entropy modes in the sound 
beam. However, Eq. ( 1 ) can only be solved numerically, 
even upon neglect of the thermal self-action (6 - 0).  In what 
follows, its simplification is possible in situations when the 
acoustic wavelength A is much less than the characteristic 
scale of the temperature inhomogeneity L. For this purpose, 
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we set 

P=P (x, r, 0=.t-$ (x, r) lc,) 

in ( 1 ). Here $ (x,r) is the shift in the wave front because of 
heating of the medium. Transforming to the approximation 
of geometric acoustics A /L  +O, we get from ( 1 ) 

Equation (3) has the structure of the Burgers equation, 
which is used for the description of plane nonlinear waves,I3 
but differs from it by the the last two terms, which take into 
account the change in the cross section of the ray tubes. 
Equation (4)  is the eikonal equation, which characterizes 
the curvature of the rays because of the increase in the tem- 
perature of the medium T. 

We note that diffraction must be insignificant over the 
scale of self-focusing xf for the possibility of application of 
the approximation of geometric acoustics. The diffraction 
length x, can be estimated at x, -ra2//2, where a, /2 are the 
characteristic transverse dimensions of the beam and the 
wavelength. As will be seen from what follows, the length xf 
decreases rapidly with increase in the wave amplitude. Ther- 
fore, xf < x, for sufficiently powerful beams, i.e., the diffrac- 
tion can be neglected. 

Let us specify the form of the wave. If, for example, we 
represent it as harmonic, i.e., 

p=A (x, r)sin o0, 

then we get from (3)  the same equation for the amplitude A 
as in the description of the optical TSF.7 We are interested in 
sawtooth waves. The harmonic wave becomes sawtooth over 
a distance 

where A, is the wave amplitude at the entrance to the medi- 
um. In propagation of megahertz acoustic waves with ampli- 
tudes of several atmospheres, xp amounts to several centi- 
meters. Therefore, the sawtooth waves are the usual ones for 
experiment in the region of nonlinear acoustics. For the de- 
scription of such waves, we use the representation of Khokh- 
lov for the shape of the wave over a single period: 

p (x, r, 0) =A (x, r) -- 
b 9 

Here A is the wave amplitude and, 2r/w is its period. The 
expression (5)  is the exact solution of the Burgers equa- 
tionI3 and as 6 - 0  it takes on a sawtooth profile. The limit 
b  - 0 corrsponds to the approximation of large values of the 
acoustic Reynolds number (b  4 2mA /w ), which is typical 
for powerful sound waves. Equations (3)  and (2)  here yield 

aA em 
- f -  a$ all  AL$ A2+--+-A=O, 
ax npoc," dr dr 2 

The resultant set of equations (6), (7),  and (4)  describe the 
thermal self-action of sawtooth waves. It is seen from (6)  
that the absorption of the wave is purely nonlinear; in the 
linear case, in place of the second term we would have had 
aA. The form of the right-hand side of (7)  is also connected 
with this feature: the heat release power is proportional to 
the cube of the amplitude (in the linear case it is proportion- 
al to the square). 

A substantial simplification of Eqs. (4)  and (6)  for the 
amplitude and phase of the waves is possible on the basis of 
the aberration-free appr~ximation.~ We assume that the 
wave front is always spherical, with only its curvature B 
changing: 

where q, is the shift of the front on the axis of the beam. This 
assumption is validated in the case a parabolic transverse 
distribution of temperature T. Substituting $ in this form in 
(61, we get 

Then the amplitude A can be expressed exactly in terms of 
the curvature of the wavefront 8. Actually, introducing the 
auxiliary function 

2 

we find from ( 8) 
2 

Herep, = A(x = 0,r = 0)  is the wave amplitude on the axis 
of the beam at the entrance to the medium. The function 
@(c) describes the transverse distribution of the wave am- 
plitude at the entrance: A(x = O,r)/p, = @(r/a), for exam- 
ple, for Gaussian beams, @({) = exp( - { 2); a is the initial 
radius of the beam, x, = r p o c ~ / ( ~ w p o  ) is the scale of non- 
linear absorption of the wave. With application of Eq. (9) ,  
the problem of finding the structure of A(x,r,t) is consider- 
ably simplified, since it is reduced to finding a function of 
two variables, f(x,t). As follows from (4),  f is described by 
the equation 

where T2 (x,t) is the coefficient of r in the expansion of the 
temperature T in the transverse coordinate: 
T =  To - T2r2/2 + ... We denote by to =poCpa2/(127c) 
the characteristic time of establishment of the temperature. 
Generally speaking, for calculation of T2 we must solve (7)  
relative to T. However, there are two cases of practical im- 
portance in which it is not necessary to find T in  order to 
determine T, : 1 ) for t) to (stationary TSF) and 2)  for t 4 to 
(initial stage of TSF). We now consider these two cases. 

2. STATIONARY TSF 

The established regime corresponds to the condition 
dT/at = 0 in Eq. (7).  Expanding Tin a series in the trans- 
verse coordinate rand taking (9)  into account, we obtain an 
expression for T, : 
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From this and from ( 10) follows an equation for f (x) .  For 
convenience we normalize the longitudinal coordinate: 
z = X/X, , where 

xo=3t21 S lpocO5/ ( 3 ~ 8 ~ 0 ~ )  

is the characteristic length, which does not depend on the 
amplitude of the wave p,.  With account of the boundary 
conditions, the following problem arises for finding the func- 
tion f(x): 

Here II = x, /x, = p, /P is the dimensionless wave ampli- 
tude at the entrance to the medium, 

is the characteristic pressure, K = x,/R is the dimension- 
less curvature of the wavefront at the entrance to the medi- 
um, R = B ' (x  = 0)  is the radius of curvature. Thus, find- 
ing the amplitudeA (x,r) of the wave in the case of stationary 
TSF reduces to the calculation off from ( 1 1 ) and ( 12) and 
use of the functional relation (9) .  

The solution of the problem ( 1 1 ), ( 12) depends on two 
parameters-the dimensionless amplitude II and the curva- 
ture of the wavefront K. Moreover, it follows from ( 11 ) that 
the behavior of the function f(z) [and, it would appear, 
A (x,r) also] changes qualitatively upon change in the sign of 
S. In the case S > 0, defocusing takes place, for 6 < 0, focus- 
ing. 

Figure 1 shows the results of a numerical calculation of 
the function A(x,r) from Eqs. (9)-(12) in a medium with 
S < 0 at II = 0.1 and 1. It has been assumed that the beam is 
Gaussian at the entrance to the medium, i.e., 

with a plane wavefront (K = 0).  It is seen that with increase 
in the distance z the amplitude A initially decreases and then 
increases, and a focus is formed at a certain distance, where 
A- w .  

Near the focus, the analysis that has been carried out is 
incorrect, since the initial approximations of geometric 
acoustics and a sawtooth shape of the profile are invalid. It is 
seen from a comparison of Figs. l a  and lb  how the structure 
of the beam changes with increase in the amplitude II. At 
II = 0.1, the amplitude of the wave falls off significantly be- 
cause of the nonlinear absorption as it progresses into the 
medium, in spite of the self-focusing (Fig, l a ) .  As a conse- 
quence of the nonlinear character of the absorption, the 
transverse profile of the beam changes from Gaussian into a 
more uniform one (the effect of isotropization of the 
beam" ). At large amplitudes of the wave (11 = 1 in Fig. lb)  
the nonlinear absorption and the isotropization are not pres- 
ent to any extent, since the focus is formed at smaller dis- 
tances. 

A 

FIG. 1 .  Distribution of wave amplitude in self-focusing ( A  = A/p , , ,  
i = z/z,, r  = r / a ) :  a-II = 0.1, z, = 203; &I1 = 1, z, = 2.36. 

We shall further characterize the beam by the ampli- 
tude of the wave on the axis A, and the transverse radius of 
the beam a, at the level e I: 

It follows from Eq. (9)  that 

A0 (4 dz' -' -=f-t[l+II j-] , 
P o  0 f 

Figure 2 shows these dependences for different II at K = 0, 
S < 0. The effects of nonlinear absorption and isotropization 
are clearly seen, especially for small 11: A, decreases initially 
while a, increases. We note that the length of self-focusing zf 
decreases rapidly with increase in the amplitude of the wave 
n. This is clearly seen from the Table, in which the results of 
calculation of the value of z,. are given for different values of 
n .  

The asymptote of the function f(z) can be obtained 
from ( 1 1 ) in the case of large and small amplitudes of the 
wave II. As is seen from Fig. 2, the nonlinear absorption 
becomes weaker and weaker with increase in II. This means 
that the integral on the right-hand side of ( 11) plays an ever 
decreasing role. If we neglect it, the we obtain the equation 

which has an analytic solution. If the defocusing medium 
(6  > 0),  this solution can be described in the form 
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FIG. 2. Dependence of the beam characteristics on the distance z for 
various wave amplitudes II: a-ii, = a,/a is the dimensionless radius of 
the beam; &A = A, /p ,  is the dimensionless amplitude of the wave on 
the axis. 

where y = K 2/(2113) + 1. In the focusing region (6 < 0) the 
form of the solution is obtained differently, depending on the 
sign of the quantity r = K ~ / ( ~ I I ~ )  - 1 :  

* (211~) '~z=~ /~r -"{  [ 2 r f + 1 ) ~ - 1 1 ' ~ -  [ ( 2r+1 )~ -1 ]  
-In [2rf+1+((2rf+1)2-1)'h]+ln [2I'+1+ ( (2r  

+1)2-1)'"] ) for D O ,  

t ~ = " ~ ( f ' " - l )  for r=0 ,  

It follows from the last expression that a beam with a 
plane wavefront ( K  = 0, r = - 1 ) "collapses" at a distance 
zf* = 7 ~ ( 2 n )  - 3'2. The Table gives the values of zf* for differ- 
ent II. It is seen that the approximation to the exact focus is 
quite satisfactory for 11 2 5. 

Upon decrease in II, the focal distance increases. The 
fact that in this case the effect of nonlinear absorption in- 
creases (Fig. 2 )  means that at small II the energy of the wave 

is essentially dissipated at distances that are much less than 
the focal distance. This allows us to apply the6'thin lens" 
approximation. We note that the quantity rJ is the distance 
from the axis of the beam to the acoustic ray passing through 
the circumference ( x  = 0, r = r,). In the considered ap- 
proximation, in the region of strong acoustic absorption, 
where bending of the rays also occurs, the distance from 
these rays to the axis decreases insignificantly. Setting fz 1 
in ( 1 1 ) in correspondence with this approximation, we ob- 
tain 

Then, with account of ( 12) ,  

dfldz=K+ sgn(6) (112/2) [I- ( I+lTz) -2] . 
After passage by the wave of the region of strong acoustic 
absorption, when IIz = x /x ,  ) 1 ,  we have 

f=1, df/dz=K+ sgn (6) lT2/2, dZf/dz2=0. 

Neglecting the thickness of the lens, we obtain 

At K = 0 and S<O we have for the focal distance 
zf** = 211 - 2. In the Table, we give the values of zf* for dif- 
ferent I I .  From a comparison with the results of numerical 
calculation of the quantity zf it is seen that the "thin lens" 
approximation is perfectly valid at II 5 2. 

There is practical interest in the effect of self-focusing 
on the focusing of a beam. The thermal self-action in this 
case hinders the focusing. Figure 3 shows the results of a 
calculation of the radius of the beam a, ( z )  at II = 10, S > 0 
for different values of the initial curvature of the wavefront 
K. It is seen that even for strong focusing, a nonlinear con- 
striction of finite dimensions takes place. We recall that in 
the absence of self-action the radius of the constriction a, is 
equal to zero by virtue of the neglect of diffraction. The 
quantity a, can easily be estimated upon neglect of the non- 
linear absorption: a,/a=: y '. As II -0, we obtain a, = 0, as 
it should be in the linear case. Upon increase in the ampli- 
tude of the wave II the quantity a, increases, i.e., the quality 
of the focusing deteriorates because of the self-action. More- 
over, the constriction moves away from the point of linear 
focus: 

We note that the effects mentioned do not require extremely 

TABLE I. 
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FIG. 3. Dependence of the dimensionless radius of the beam 6, = a,/aon 
the coordinate z at I1 = 10 and for various curvatures of the wavefront K. 
The medium is defocusing: 6 > 0. The dashed lines are the corresponding 
dependences in the absence of self-action ( n - 0). 

large values of the wave amplitude. As an example, let a 
focused beam of sawtooth waves be created in water, and 
measures taken to prevent the onset of flow. We use the fol- 
lowing beam parameters: amplitude of the wave p, = 1.3 
atm frequency w / 2 a  = 4 MHz, radius of the beam a  = 3 cm, 
radius of curvature of the wave front R = - 9.4 cm. In this 
case, calculation gives IIz 10, K z  - 100, which corre- 
sponds to the parameters of the lower curve in Fig. 3. Conse- 
quently, the constriction moves relative to the geometric fo- 
cus through a distance Ax = 0.15R -- 1.4 cm, while the 
radius of the constriction amounts to a, ~ 0 . 1 2 ~  z 3.6. In the 
absence of self-action and with account of diffraction, 
a, z R c , / a a f z  0.36 mm, i.e., the self-defocusing broadens 
the constriction, increasing a, by an order of magnitude. 

Equation ( 1 1  ) has the exact solution f  = exp( - z), 
corresponding to the case K = - 1 ,  rI = 1. The constriction 
is then at infinity and the amplitude of the wave on the axis 
does not change: A, ( z ) / p ,  - 1 .  This exact solution has been 
used as a test in carrying out the numerical calculation of Eq. 
( 1 1 ) on the computer. 

3. INITIAL STAGE OF TSF 

For some time after the onset of radiation, the processes 
of thermal conductivity are unimportant. We can discard 
the second term on the left-hand side of Eq. (7): 

In order to find T, for Eq. ( l o ) ,  we expand the terms of Eq. 
( 1 5 )  in a series in the transverse coordinate r  and separate 
the components a r  '. Here we use (9) ,  assuming that 
d 2Q/df 2 ,  =, = - 2; this latter condition can be satisfied 
by an appropriate choice of the quantity a-for example, this 
is the case for a Gaussian beam, @ (6  = r / a )  = exp ( - 6 2). 

After elementary calculations, we obtain a closed equation 
relative to f ( x , t ) .  With account of the boundary and initial 

FIG. 4. Dependence-of the beam c_harcteristics on the distancez at succes- 
sive instants of time 9 for the case K = 0,6 < 0; a-2, = a,/a is the dimen- 
sionless beam radius. b--A, = A,/p,, is the dimensionless amplitude of 
the wave on the axis. 

conditions, we obtain 

Here we mean by 8 = t  / to  the current time, normalized to 
the charcteristic time of thermal conductivity to ,  and for the 
rest we use the same notation as in the relations ( 1 1 )  and 
( 12).  From the sense of the approximation considered, we 
assume that 8 5 1. 

It is, however, more convenient to carry out the calcula- 
tion in another normalization, which depends on the ampli- 
tude p, of the wave, of - the time and coordinate, 
i = IIz  = x / x , ,  0 = II8 = t / t o ,  where 

Here we remove the parameter Il in Eq. ( 16), and the prob- 
lem then becomes a single-parameter one with the parameter 
K = K/I l  = x p / R ,  which has the meaning of a dimension- 
less curvature of the wavefront. After calculation of the 
functionA the amplitude distribution in the beam A (x ,r , t )  is 
determined from Eq. ( 9 ) .  The transverse radius of the beam, 
a, (i), and the amplitude of the wave on the axis A, ( 5 )  are 

FIG. 5. Coordinate of the point of  collapse^ 2, as a function of the time 8. 
The dashed curve is the corresponding zT(8)  dependence from the solu- 
tion of the approximate self-~imilar equation. 
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FIG. 6. Self-similar solution f = q(6) for the case 6 < 0. 

found from formulas ( 13) and ( 14). Figure 4 shows the 
results of the numerical calculation of the a, (2) and A(Z)  
dependences for successive moments of time 8 in a medium 
with S < 0. The wavefront at the entrance to the medium is 
assumed to be planar (k = 0). It is seen that, at the initial 
instant of time, the beam broadens with increase in Z because 
of isotropization, while the amplitude on the axis decreases 
because of the nonlinear absorption. With the passage of 
time, the medium heats up, and the focus is shifted toward 
the source. The solid curve in Fig. 5 represents the depen- 
dence of the coordinate point of the "collapse" (focus) ZJon 
the time 8. We note that the velocity of the focus decreases 
with the passage of time. 

In the case in which the scale of the absorption is large 
in comparison with the scale of the self-focusing, it suffices 
to write Eq. ( 16) in the following approximation 

d(ld't)= sgn (6) F 
ae f az2 P 

The convenience of this approximation lies in the fact that at 
K = 0 (plane wavefront at z = 0) the problem ( 16'), ( 17) 
has a self-similar solution f(z, 8) = q,(C), where 
(= l13/*z8 'I2. Actually, substituting f = p(<) in the given 
formula, we obtain 

Thus the problem is reduced to the solution of the ordinary 
differential equation relative to the function q,((). Figure 6 
shows the results of the calculation of q, at S < 0. It is seen 
that the beam "collapses" at C--, 1.5. The corresponding de- 
pendence of the coordinate of the focus on the time 2/* 
= 1.58 - 'I2 is given in Fig. 5 by the dashed curve. At 8 2 3, 

the value of is less than zf* by a factor of two, i.e., the approxi- 
mate self-similar solution at 82 3 is entirely satisfactory. 
The corresponding approximation of the dependences of 
(13) and (14) has t h e f ~ r m A , / ~ , z f  - ' ,a , /azJ  
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