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We propose a spin-dependent mechanism for hopping magnetoresistance in insulators with 
complex magnetic structures. The mechanism is based on spin splitting of impurity states in the 
molecular field, which leads to a difference in hopping probabilities with and without spin flip. 
This causes the resistance to depend on the magnitude and mutual orientation of the molecular 
fields acting on the impurity spins, where these molecular fields and their mutual orientations are 
controlled by an external magnetic field. This mechanism can be the source of nontrivial behavior 
of the magnetoresistance; in particular, the latter can be negative and undergo jumps or kinks at 
magnetic phase transitions. We develop this theory in detail for La2Cu04, and construct its 
magnetic phase diagram. The results of the experiments of Thio et ~ 1 . ' ~ ~  can be explained on the 
basis of the following assumptions. First, the symmetry of the impurity state admits only a 
molecular field originating from the antisymmetric part of the exchange. Specific models are 
investigated which satisfy this condition (e.g., holes localized on a single oxygen site). Second, a 
local enhancement of the rhombohedra1 character of the lattice arises near a localized hole, i.e., a 
polaron effect. In our view, the data of Refs. 1,2 can be regarded as indirect confirmation of such 
an effect in La2Cu04; the existence of this effect is important in understanding the nature of the 
current carriers and superconductivity. 

1. INTRODUCTION 

The work reported here was initiated by experiments1-3 
on the hopping conductivity of La2Cu04 in a magnetic field. 
In these experiments, a negative magnetoresistance was ob- 
served, having singularities at temperatures where reorien- 
tation magnetic phase transitions induced by external fields 
occur (Fig. 1). 

It is clear that the usual  mechanism^,^ which are related 
to the compression of impurity wave functions in a magnetic 
field and which lead to an exponential positive magnetoresis- 
tance, cannot explain such behavior. 

In this paper we propose a different mechanism for the 
magnetoresistance, which is related to spin. It is based on the 
following picture: localized impurity states possess a non- 
zero spin, which interacts with the molecular fields arising 
from the magnetic environment, causing the impurity level 
to split. The molecular fields are oriented differently for dif- 
ferent impurities. The total probability for a carrier to hop 
between two impurities is the sum of the probabilities for 
transitions between various components of their spin multi- 
plets (Fig. 2). 

At low temperatures the dominant transition is between 
the lowest sublevels; this transition is especially important in 
the presence of the polaron effect. If the orientations of the 
molecular fields at two impurities are parallel, then the hop- 
ping transition takes place with conservation of spin. Con- 
versely, for antiparallel molecular fields it is necessary for 
the spin to flip during the transition. Obviously, the proba- 
bility of a transition with spin flip is considerably smaller 
than without it; thus, it follows that the total probability of a 
transition depends strongly on the mutual orientations of the 
molecular fields. The role of the external magnetic field re- 
duces to regulating these orientations; this is the only way 

that the magnetic field can affect the probability of the tran- 
sitions and, consequently, the resistivity of the sample. If the 
reorientation takes place discontinuously (at a certain criti- 
cal field), then the resistance also may undergo a discontin- 
uity. Let us note that the effect of magnetic order on the 
probability of hopping in the absence of an external field has 
been studied previously within the context of polaron trans- 
port theory (see Ref. 5) .  The effect of the interaction of the 
carrier spins on the hopping conductivity in normal (non- 
magnetic) semiconductors was discussed in Ref. 6. 

What requirements should a material satisfy in order 
for it to support a spin mechanism for its magnetoresistance? 

First of all, the material should be a ferromagnet of the 
type that permits a significant amount of reorientation of the 
sublattice moments in experimentally attainable fields (for 
example, a layered antiferromagnet). 

Secondly, this material should be an insulator with im- 

FIG. 1.  Experimental data on the magnetoresistance of LazCuO,. a- 
dependence of the resistance (curve I )  and total magnetic moment (curve 
2) on a field Hl/b; b--the function R ( H )  in a field Hllc; c-curve 1- 
temperature dependence of the total variation of the resistance 
[R(O) - R(cD)] /R(co)  for H / J b ( A )  and H J J c  (0); curve2-antiferro- 
magnetic order parameter M (  T ) .  
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FIG. 2. Scheme for transitions between spin sublevels of acceptors i and j. 
The transitions with spin flip are shown by dashed lines, without spin flip 
by solid lines. The transition that dominates for T 4 A  is identified with 
boldface lines, a-the case A, = A,, b--A, = - A,. 

purity hopping conductivity and localized states whose radi- 
us is small enough that the normal positive magnetoresis- 
tance should be small. This implies that the impurity state 
should be rather deep. 

In addition to La2Cu04, which we will discuss below, 
there are other candidates for observing a nontrivial magne- 
toresistance, e.g., very pure single crystals of other complex 
magnets, in particular layered perovskites. 

As far as we know, nontrivial behavior of the magneto- 
resistance in the hopping regime (Fig. 1 ) has been observed 
to date only in single-crystal La2Cu04. In addition, this ma- 
terial has been closely studied by investigators because it is 
one of the simplest of the high-temperature superconductors 
with regard to ~tructure.',~ Therefore, we will attempt to tie 
our theory of spin magnetoresistance to the specific proper- 
ties of La2Cu04. 

Pure La2Cu04 (i.e., containing no more than 2-3% im- 
purities) is a layered antiferromagnetic insulator.' A dis- 
tinctive feature of its magnetic order is the fact that superim- 
posed on the antiferromagnetically-ordered spins of the 
Cu2 + ions in the CuO, planes is a rotation of all the spins in 
a given plane by a rather small angle 9 ~ 3 . 1 0 - ' .  This 
causes the planes to possess rather small ferromagnetic mo- 
ments, which are ordered antiferromagnetically in the direc- 
tion perpendicular to the planes.'39-'2 The rotation of the 
spins is caused by the vector anisotropy of the Dzyaloshins- 
kii-Moriya exchange interact i~n,I~- '~ which in turn arises 
from a rhombohedral distortion of the lattice. Because the 
interplanar antiferromagnetic exchange is small, a transition 
occurs to a weakly ferromagnetic state in which the mo- 
ments of the planes are parallel when even a weak field ( -4 
T)  is applied perpendicular to the layers (i.e., Hllb, where a, 
b, and c are unit vectors in the rhombohedral system of 
axes).' 

The insulator La,Cu04 is found to possess a resistance 
with Mott-like characteristics: R ( T) a exp [ ( T,,/T) ] 
(Ref. 15). In the purest samples, this dependence is replaced 
by a simple activated dependence at high temperatures, but 
the Mott law continues to hold for T <  50 K.I6 This implies 
that we are seeing three-dimensional variable-range hopping 
conductivity .I7 From this it follows that the charge carriers 
(holes in the CuO, planes) are localized within the impurity 
potential and the hopping takes place averwhelmingly 
between states on different planes. 

Since the mechanism we are proposing for the magne- 
toresistance involves spin, it is very important to model the 
spin of the impurity state and the character of the molecular 

field acting on it. Let us first discuss the assumptions we will 
use in this paper regarding the structure of the impurity 
state. 

1. The space group of symmetries of the impurity local- 
ized states contains an element which coincides with the op- 
erator that exchanges the magnetic copper sublattices in the 
CuO, planes. 

This implies, first of all, that the spin S of the impurity 
state must be half-integral (for all the examples discussed in 
Sec. 3 S = 1/2 holds). Secondly, it implies that the molecu- 
lar field equals zero within the isotropic-exchange approxi- 
mation (i.e., it is forbidden by symmetry), and can be non- 
zero only by virtue of the rhombohedral symmetry which 
arises from the Dzyaloshinskii-Moriya interaction; if this is 
the case, then it is proportional to the magnitude of the 
rhombohedral distortion. Note that assumption number 1 is 
extremely important; in reality, if an exchange contribution 
were present in the molecular field, this field would be di- 
rected randomly (because of the random positions of the 
impurities relative to the sublattices). Therefore, reorienta- 
tion of these fields could not change the resistance. 

2. Localized holes cause a strong polaron effect which 
gives rise to a local enhancement of the rhombohedral dis- 
tortion. 

We argued in Ref. 18 that this effect should be present. 
It is important that in this case the rhombohedral distortion 
apparently must consist of two components: an enhance- 
ment of the weak uniform rhombohedral rotation around 
the a axis, which extends throughout the whole volume of 
the crystal, and a localized rotation around the c axis. Ran- 
dom fields acting between impurities and kinetic effects can 
lead to various types of order (or disorder) of this c-compo- 
nent of the rhombohedral distortion. In this paper, we will 
discuss certain types of ordering in purely phenomenologi- 
cal terms without addressing the question of their physical 
origin from the standpoint of studying their effect on the 
hopping conductivity. From our viewpoint, assumption 
number 2 is necessary to explain the observed magnitude of 
the effect. Actually, if we assume that the rhombohedral dis- 
tortion near an impurity is less than the rhombohedral dis- 
tortion in the volume, then the jump in the resistivity is 
AR /R cc 9 -- 10 - 5 ,  which does not agree at all with the ex- 
periments, in which this jump is found to be - 1 (Figs. la, 
lb) .  Note that the specific energy dependence of the transi- 
tion probability which is inherent in polaron hopping also 
favors the spin mechanism for the magnetoresistance be- 
cause it leads to a special role for transitions between low- 
lying sublevels of the spin multiplets. 

In 'addition to the distortion of the lattice around a 
bound hole (i.e., a normal polaron) spin polarons, i.e., re- 
gions in which the magnetic order is disrupted, should ap- 
pear in antiferromagnets. In the case of the CuO, planes, 
however, these polarons are not ferromagnetic Nagaoka po- 
larons,I9 and do not tend to develop high spins (see Refs. 20, 
21 ) . These magnetic polarons do not affect the temperature 
and field dependences of the resistance, nor do they give rise 
to magnetic effects in tunneling (see Section 4) ,  because the 
exchange is much larger than the temperatures and charac- 
teristic phonon frequencies. 

The contents of this paper are organized as follows. In 
Sec. 2, we study the spin Hamiltonian of La2Cu04 in a mag- 
netic field within the framework of mean-field theory, and 
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describe the possible magnetic phases and the sequence of 
phase transitions between them as the field increases (as a 
function of the parameters of the microscopic Hamilto- 
nian). In Sec. 3 we discuss a specific model of impurity 
states. Sec. 4 is devoted to computing resistances that enter 
into a Miller-Abrahams network; the unusual percolation 
problem which arises in this case is solved in Sec. 5. In Sec. 6 
we present the final expressions for the magnetoresistance 
and compare them with the experimental data.'-3 In addi- 
tion, we will discuss the possibility of experimental investi- 
gation of the structure of the impurity states. 

2. MAGNETIC STRUCTURE OF La,CuOl IN AN EXTERNAL 
FIELD 

The interaction of two neighboring copper spins lying 
in the same CuO, plane has the form' 

where J is the isotropic antiferromagnetic exchange, and 
o,lla is the vector part of the anisotropic exchange, i.e., the 
Dzyaloshinskii-Moriya interaction,I3.l4 which is a conse- 
quence of the rhombohedral distortion. The quantity 
w,- (Ag/g) Q J, where Q,=.0.05 is the angle of rotation of 
the oxygen octahedra in the rhombohedral phase, 
Ag/gzO.l (see Ref. 1).  In the vector product, a spin that 
belongs to one of the two individual sublattices must always 
stand in the first position. The third term describes the easy- 
plane type of anisotropy (A > 0) .  

A primitive cell of La,Cu04 contains four copper 
atoms, therefore, it is a four-sublattice magnet. The averages 
ofthe sublattice moments we denote by S,  + ,, and S,  + ,, for 
the other. In this paper we will assume from now on that the 
S, are classical vectors ( IS, I = 1/2) and find the configura- 
tion of these vectors which corresponds to minimum energy: 

where z = 4, z' = 2 are the coordination numbers and H is 
the magnetic field. The interplanar exchange constants J,, 
and J,, differ with the amount of rhombohedral distortion, 
and their difference Jll - J,, = J, - Q:J,, is the effective 
interplanar antiferromagnetic exchange. 

Following Refs. 1 and 2, we introduce the vectors 
F, = SUE + S,,, which are the ferromagnetic moments, 
and M, = S,, - S,, , which are the antiferromagnetism 
vectors (i.e., staggered magnetizations) of the planes. Mini- 
mizing expression (2)  with respect to the ferromagnetic mo- 
ments F, , we obtain (to within a constant term): 

In Eq. (3 ) we have taken terms of first order in A and J 

and second order in w, and H. In this approximation we have 
IMa / = 1. In addition, we have neglected terms 
- (J,, w:/J2)M( + , M, - , which contain terms of higher 
order in the spin-orbit coupling (Ag/g)', compared to J, .  

In the absence of an external field we have 

M , + )  = -M,-)IIc  while F ( + )  = - F ( - )  
= (1/W) [w,M, - , ] Ilb. Thus, each plane has a weak mag- 
netic moment but the total moment is zero because the mo- 
ments of the planes alternate antiferromagnetically along 
the b axis (latent ferromagnetism). 

In a sufficiently strong magnetic field, the system enters 
a state for which the ferromagnetic moments F, are directed 
along the field for all the planes. On the way to this state the 
system can pass through a number of intermediate magnetic 
phases, depending on the parameters entering into Eq. (3) '  
which correspond to various extrema of the energy. Those 
that are of interest to us are listed in the table, where we have 
used the spherical coordinates M = cos <, sin #,, M i  
= sin la, and M T, = cos 6, cos 4, ,and we have introduced 

the dimensionless parameters 

We refer to the state that minimizes the energy for 
H = 0 (see Fig. 3a) as "antiferromagnetic." For Hlla this 
state remains the ground state for any value of field. The 
ferromagnetic vectors Fa contain a contribution which is 
linear in the field [the second term in Eq. (4)  1,  correspond- 
ing to a susceptibility x = 1/24 phase transitions are absent 
in this orientation of the field. For the other orientations 
(Hllb or Hllc), large fields give rise to a "ferromagnetic" 
state F b  or F ' (Figs. 3c, 3d). The possible intermediate 
phases are illustrated in Figs. 3b, 3e, 3f, 3g, 3h. We can ob- 
serve two types of spin-flop phase SF, and SF,. For Hllc 
these phases were found in Ref. 11 from symmetry consider- 
ations. In the phases SF?' there is a net loss in the Dzyalo- 
shinskii invariant (compared to the phases SF ?'and SF ?'I; 
however, there is a gain in the magnetic energy which is 
larger than it is in SF?'. 

Figure 4 shows the succession of magnetic transitions as 
the field increases as a function of the parameters I and D. 
The transition from the SF phase to the F phase is always 
continuous (i.e., without a jump in the magnetization). Nat- 
urally, the SF; phase (Fig. 3h) coincides with the original 
AF phase (Fig. 3a) for H = 0. The remaining transitions 
take place with jumps in the magnetization. 

In Ref. 2, the phase transition sequences AF b+ F for 
Hllb and SF; -+SF f - F c  for Hllc were studied using Eq. 
(2).  According to the estimates of Ref. 2 we have I = 0.5, 
D = 1.5 f 1 (see Fig. 4) ;  these numbers imply that the point 
on the phase diagram corresponding to the samples investi- 
gated in Refs. 1,2 is in fact located in the correct region for 
these sequences of transitions. In later sections, we will in- 
vestigate only these specific sequences. It is noteworthy, 
however, that according to the data of Ref. 2 there is no jump 
in the magnetization for the transition SF; - S F ; ,  while 
jumps corresponding to the transition AF F * are clearly 
visible over a wide range of temperatures.' The absence of a 
jump for the transition SF; -SF; contradicts the predic- 
tions of theory. It is possible that the transition could corre- 
spond to the continuous transition SF; - F c  instead; how- 
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TABLE I. 

ever, if this is the case, as the field Hllc increases only one 
phase transition should be observed (Fig. 4b). Additional 
experimental investigations to resolve this contradiction 
would be desirable. 

Furthermore, the effective values of I and D (i.e., the 
position of the point on the phase diagram) ought to depend 
on the temperature and concentration of impurities (for ex- 
ample, in Ref. 12, which dealt with strongly-doped crystals, 
a jump was observed in the magnetization for Hllc which 
was not observed for Hllb). Therefore, generally speaking, 
we should expect to observe different sequences of phase 
transitions in various experiments. 

I H ll b I = llc 

3. IMPURITY STATES, VlBRONlC EFFECTS AND 
MOLECULAR FIELDS 

AF 

SF1 

The experiments described in Refs. 1, 2,9,  16 were car- 
ried out using single crystal La,CuO, with a rather small 
oxygen excess (i.e., y > 0). In Ref. 16 arguments were ad- 
vanced to suggest that phase separation (i.e., an inhomogen- 
eous distribution of the oxygen excess) occurs for y >  1- 
1.5%, while fory < 1-1.5% the distribution of oxygen is uni- 
form. The Ntel temperature T, fails rapidly as y in- 
~reases . '~ .*~  The high values of TN for the samples whose 
magnetoresistance was measured in Refs. 1, 2 allow us to 

FIG. 3. Configuration of the antiferromagnetism vectors M, + , , M, , in 
neighboring planes which correspond to extrema of the energy (3)  in a 
field Hllb (a,c,e,g) and in a field Hllc (b,d,f,h). 

E ( + )  = f (-) = 0. 
'P(+) = 0, 9(-) = n, 

& = - z - - h a  

f(+) = E(-) = 0 
cos v(+) = h l ( 2 1 -  I ) ,  

'P(-) =: - 'P(t). 
21 

e =  l - Z - h 2 -  2 1 -  1 

cos E(+) = h i ( 2 1 -  D  - hZ),  
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T(+) = T(-) = 09 
e = D - I - h a  

sin E(+, = - hl (21- t  D  - I ) ,  

E(-) == E(+) 9 

q(+) -- n / 2 ,  q(-) - - n / 2 ,  
21 + D 

e =  1 - I - h 2  2 1 + D - 1  

sin f(+) = - h / ( 2 1 +  D  -ha), 
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T(+) = 0, 'P(-) = n ,  

e = - I - h 2 / ( 2 1  + D - h 2 )  

E(+) = E(-) =- n / 2 ,  
'P(+) = 'P(-) = 0, 

& = I + D - h 2 - 2 h  

I 
f(-) = - f(+) ? 

'P(+) = 'P(-) = 07 
& = D - I - h 2 / ( 2 1 - D - h 2 )  

F 
E ( + )  = E(-) = 01 

'P(+) = 'P(-) - 0, 
& = I - h 2 - 2 h  



FIG. 4. Phase diagram in the I-D parameter plane [see Eq. (5) 1. Shown 
here is the succession of magnetic phase changes as the field increases. a- 
Hllb, b--Hllc. * is the point corresponding to the parameters of Ref. 2. 

assert that in these samples the corresponding values of y 
were small and that the distribution of oxygen was homoge- 
neous. The signs of the Hall coefficient and the thermoelec- 
tric power indicate that the additional oxygen atoms play the 
role of acceptors. The location of the additional oxygen in 
the lattice has not been established unambiguously. Possi- 
bly, the oxygen atoms are grouped as molecular 0; ions.23 

At low temperatures ( T S  50 K)  the holes are bound to 
their acceptors, as indicated by the hopping nature of the 
cond~ct iv i ty . '~~ '~  According to various the 
radius of the bound state ( - 10 A)  is comparable to the 
lattice period. In this intermediate situation, determination 
of the structure of the impurity state is not possible. How- 
ever, a model of the deep impurity in which a hole is local- 
ized on the minimum number of oxygen sites among the 
nearest neighbors of the impurity is apparently a good ap- 
proximation. 18*20925 

In what follows, we will classify the possible types of 
deep neutral acceptors and identify one of them that satisfies 
requirements 1 and 2 formulated in the introduction. 

If we assume that the motion of holes along the CuO, 
planes satisfies the Emery model26 with a large Coulomb 
repulsion at the copper sites, then the Hamiltonian for the 
system of holes in the impurity potential V, and Cu spins has 
the form 

where Zs = X U Z U  [see Eq. ( 1 ) and Refs. 2 1, 271, and 

h 

where a: and a, are hole operators and P 'is the Dirac oper- 
ator which interchanges the position of a hole spin and the 
spin of the i-th copper atom. The subscript I labels the oxy- 
gen atoms while i labels the copper atoms; (ill ') is a triplet 
made up of the ith copper and the two neighboring oxygen 
atoms (I  # I  '); t is the amplitude of a process in which a hole 
first passes from the copper atom i to oxygen atom I', fol- 
lowed by a hole hopping from oxygen atom I to copper atom 
i; T is the same amplitude for the case I = I '  (we have T < t 
because of the Coulomb repulsion at the oxygen site). In the 
deep impurity model ( V, - V21 & t, where V,,, are potentials 
at oxygen sites that are nearest neighbors (i.e., belonging to 
the first shell) and next-nearest-neighbors to the impurity; 
this implies that the motion of a hole will be limited to the 
first shell. Possible geometries of these localized states are 
shown in Fig. 5. The amplitudes satisfy t ,  T& J (see Refs. 21, 
27); therefore, the spins of the Cu2 + ions adjacent to the 
first shell interact with the hole much more strongly than 
they do with the spins of the magnetic subsystem. This al- 
lows us to isolate a cluster made up of a finite number of 
copper and oxygen atoms and find the spectrum of states of 
this cluster exactly. 

In the simplest case, there is only one oxygen site close 
to the acceptor. The first shell consists of this site alone, and 
the cluster is shown in Fig. 5a. The ground state of the clus- 
ter corresponds to a total spin S = 1/2 (Ref. 20). 

The cluster that corresponds to two oxygen sites neigh- 
boring the acceptor is shown in Fig. 3b. The spin of its 
ground state is S = 0; it is easy to verify this by direct calcu- 
lation. We note that this result also follows from a rigorous 
theorem of Lieb and mat ti^,^' because the cluster in Fig. 5b 
is one-dimensional. There exists two situations in which 
there are four oxygen sites neighboring the acceptor. The 
cluster (Fig. 5c) was studied in Ref. 25; its ground state has 
spin S = 0. The cluster (Fig. 5d) was studied in Refs. 18,25 
(in an investigation of the structure of the ground state of a 
hole bound to the impurity ion Sr2 + ). The ground state has 
spin S = 1/2 and is doubly orbitally degenerate, because it 
transforms according to the E representation of the point 
symmetry group C,, . The clusters (Figs. 5b, 5c) do not sat- 
isfy requirement 1; therefore, in what follows they will not be 
considered. 

We note that in all the cluster calculations (at least 
those for which t = T) the spin of the system ground state 
(i.e., hole + copper spins) was found to be as small as possi- 
ble; zero for an odd number of copper ions in the cluster, and 
1/2 for an even number. In this regard, the Emery model 
differs in an important way from the magnetic semiconduc- 
tor29 and the HubbardI9 models, in which a magnetic po- 
laron forms with maximum spin. We believe that within the 
Emery model (for which ct = T holds) the assertion that the 
spin is a minimum is valid for any cluster. For an infinite 
cluster this hypothesis was formulated in Ref. 21. A rigorous 
proof of this has not been carried out up to now; it has only 
been shown that the magnetic polaron is unsaturated in all 
cases. 

Up to now we have considered methods of localizing a 
hole within one plane. However, it is possible to have an 
acceptor positioned symmetrically between two neighboring 
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planes (see Fig. 5b), in which the first shell consists of two 
oxygen sites from the neighboring planes. Because this clus- 
ter contains an even number of copper ions (4), the spin of 
the ground state is half-integral, i.e., S #O. 

The classification described above of the states of the 
system applies to a rigid lattice. However, in the perovskites, 
to which class La,CuO, belongs, it often turns out that the 
vibronic interaction is important, leading to polaron ef- 
f e c t ~ . ~ ~  In La,CuO, the rhombohedral 8, mode, which is 
responsible for the structural phase transition, remains soft 
over a wide interval of temperatures.8.31 This is a doubly- 
degenerate mode ( Q,, Q,), corresponding to alternating ro- 
tations of the oxygen octahedra relative to the a and c axes, 
respectively. Apparently, it is this mode in particular that is 
of primary importance in creating the local deformation 
near the impurity. 

Let us first assume the hole is localized on a single site 
(Fig. 5a). In this case there are two local normal modes of 
type Q, + Q,, which are constructed out of the soft rhombo- 
hedral mode. Both of these are odd relative to reflection in 
the CuO, plane and are coupled to the hole by the squared 
vibronic interaction. Only one of the normal modes couples 
the oxygen atom on which the hole is localized to the distor- 
tion. The vibronic interaction with this mode can be strong 
and cause a local deformation of the lattice. 

Vibronic effects for the case of an acceptor whose sym- 
metry corresponds to the cluster (Fig. 5d) were investigated 
in detail in Ref. 18. A degenerate local mode of type Q ,,, 
mixes the ground and lowest excited states (the pseudo- 
Jahn-Teller effect). In this case two configurations are pos- 
sible: either a "two-component" configuration, in which the 
energy minimum corresponds to 1 Q, / = / Q, / # 0, or a "sin- 
gle-component" configuration with Q, #O, Q, = 0. In the 
first case, the hole is primarily found on one oxygen site; in 
the second case, it is primarily found on two. 

It is also possible to have a local enhancement of the 
rhombohedral distortion in the two-plane configuration 
(Fig. 5e). In this case, the symmetry between planes can be 
spontaneously broken as a consequence of the pseudo-Jahn- 
Teller effect if the tunneling integral t ' is not too large (i.e., if 
it does not exceed the polaron shift). This situation corre- 
sponds once more to the single-oxygen case (Fig. 5a). If, 

FIG. 5. Various types of localization of holes, 0,. are 
copper ions (the large circles) belonging to the different 
magnetic sublattices, @ are oxygen sites (the small cir- 
cles) from the first shell, 0 are the remaining oxygen sites, 
Bare the La3 + ions, and @ is the impurity ion. The clus- 
ter is bounded by the solid lines; a-d are configurations 
embedded in a single CuO, plane, e is a two-plane configu- 
ration. 

however, t ' is large, then the symmetry between the planes 
can be preserved. 

If the vibronic interaction is very strong, then a small- 
radius polaron forms, i.e., the hole is localized on a single 
site. Then all the other cases (Figs. 5b, 5c, 5d, 5e) become 
effectively equivalent to Fig. 5a. Furthermore, when the po- 
laron effect is strong, the position of the acceptor in the lat- 
tice (i.e., the impurity potential) is actually not very impor- 
tant; its primary function is to determine the site at which the 
polaron is localized. 

Therefore, in all the cases treated here, the vibronic in- 
teraction can enhance the rhombohedral distortion local- 
ly," while the small overall rhombohedral distortion acts to 
stabilize the sign of the Q,-component of the local distortion. 
In the case of a hole localized on a single site, the sign of the 
Q,-component is strictly correlated with the sign of Q,, al- 
though it also depends on the position of the cluster in the 
lattice. For localization on a plaquette (Fig. 5d), the sign of 
Q, is not stabilized by the uniform rhombohedral distortion 
in the two-component configuration. 

We have shown that for the deep-impurity case (but 
even for the case of a shallow impurity when the polaron 
effect is strong) there exists a well-defined cluster made up 
of a certain number of copper spins that interact with the 
hole, which is localized within the first shell. The strong 
interaction of the copper spins with the hole forms a state of 
the cluster characterized by a total spin S. The influence of 
the antiferromagnetic neighborhood on the cluster is rela- 
tively weak, so that the internal structure of the latter is not 
disrupted and the interaction reduces to a coupling of the 
lattice with the total spin. This implies that singlet clusters 
(Figs. 5b, 5c) do not interact with the environment (for this 
reason we have not discussed them here), while for clusters 
withS = 1/2 (Figs. 5a, 5d) the symmetry admits only inter- 
actions of the form 

%i=S<AI, (8)  

A~=J<ni+[n<wil, ( 9 )  

where ni is the antiferromagnetism vector near the i-th ac- 
ceptor. In general, the molecular field A, contains two con- 
tributions. The first is the usual exchange contribution 
(Ji -J) ,  while the second arises from the Dzyaloshinskii- 
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Moriya interaction. For an undeformed cluster (Figs. 5a, 
5d), the exchange contribution is absent because there exists 
an element of the spatial symmetry of the copper lattice 
which is equivalent to interchanging the magnetic sublat- 
tices, i.e., it satisfies requirement 1. For the case of localiza- 
tion at a single oxygen site this symmetry is preserved even in 
the presence of vibronic effects, and again the exchange field 
does not appear. All this is true for the two-component local- 
ization configuration on a plaquette as well (Fig. 5d). In the 
single-component configuration the vibronic effect breaks 
the symmetry relative to the interchange of sublattices, lead- 
ing to the appearance of an exchange field. 

In Eq. (9) oi is the vector of the local rhombohedral 
distortion; hence 

The quantity wi may differ significantly from the uniform 
rhombohedral distortion w,, if the local enhancement makes 
Qi $ Q0=.0.05; in this case wi reaches a value - 100-200 for 
Qi -1. 

Thus, in the most important cases (Fig. 5d for the two- 
component configuration, and Figs. 5a, 5e), assertions 1 and 
2 concerning the structure of acceptors are fulfilled (i.e., the 
polaron effect is strong). Therefore, a hole localized on these 
acceptors forms a "magnetic impurity" with spin S = 1/2, 
which is subject to a molecular field arising from the antifer- 
romagnetic host of the form 

This field does not contain the exchange contribution, and 

where vi = k 1. For the configuration shown in Fig. 5e, see 
Eq. (12). 

For the case of localization at a single site, each accep- 
tor is characterized by a definite value of vi, which does not 
fluctuate with time; this quantity depends on the position of 
a given oxygen site in the lattice (i.e., on whether it is found 
on a horizontal or a vertical bond, see Fig. 5a). If the distri- 
bution of acceptors on the bonds is random, then the value of 
vi is also random. We will refer to this situation as "frozen-in 
disorder." Another situation may present itself, in which the 
values of vi are strongly correlated because of certain coop- 
erative effects. For example, if all the acceptors are located 
on the horizontal (vertical) bonds, then we have vi = 1 
(v, = - 1 ). This case we will refer to as "uniform order." 
Also possible are orderings of the type vi = ai ("alternating 
order" ) . 

For the case of localization on a plaquette, in addition to 
the possibilities listed above (i.e., order and frozen-in disor- 
der), a situation can arise in which vi for each acceptor fluc- 
tuates rapidly with time. In this latter case we will speak of 
"dynamic disorder." 

For the two-plane configuration (Fig. 5e), the ex- 
change contribution to the molecular field is again absent, 
and Eq. ( 10) converts to the form 

where n( * ' are the antiferromagnetism vectors above and 
below the i-th acceptor, respectively. The two-plane configu- 
ration will not be treated in detail here because it is highly 

unlikely that an enhancement of the rhombohedral distor- 
tion will not be accompanied by breaking of the symmetry 
between the planes; furthermore, as we will show in Section 
6,  this configuration would correspond to an incorrect vari- 
ation of the resistance in the field Hllb. 

4. THE MILLER-ABRAHAMS RESISTIVE NETWORK 

The theory of hopping conductivity given in Ref. 4 is 
based on a representation consisting of a network of random 
resistors 

Here Tii is the average number of transitions between accep- 
tors i and j: 

wherep, is the occupation number and Wii is the hole transi- 
tion probability from an occupied acceptor i to an empty one 
1. 

In carrying out the time average in Eq. ( 13), we use a 
hierarchy of characteristic time scales. Estimates show that 

where r0 is the exponentially-large lifetime of a hole on an 
acceptor; within this time a Fermi function distribution 
( p i )  = f ( ~ ~ )  is established; E, is the hole energy on the i-th 
acceptor measured from the chemical potential; T, is a char- 
acteristic fluctuation time of vi (7, < cu only in the case of 
dynamic disorder); T" - 10 - sec is a characteristic fluctu- 
ation time for the antiferromagnetism vector n; .r, - 10- l 3  

sec is the relaxation time of the impurity spin. The right- 
hand inequality ( 14) allows us to write Eq. ( 13) in the form 

At the same time, theleft side ( 14) allows us to introduce the 
instantaneous quasiequilibrium distribution function of the 
impurity spin 

where we have written A, = /A, I, and oi = k 112 are the 
projections of the impurity spin S ,  onto the instantaneous 
direction of the molecular field Ai . Then we obtain for the 
transition probability 

Xcos2 (xi1/2) + WijO ( ~ 2 ' ~ )  sin2 (xij/2)]), ( 17.) 

where xii is the angle between Ai and A,; the energy differ- 
ence 

while W', W0 are the probabilities for transitions with and 
without spin flip. Equation ( 17) is obviously valid if we as- 
sume that the hole does not interact with the antiferromag- 
netic matrix along the tunneling path. However, it also re- 
mains valid when the interaction [of the form (7)  ] with a 
magnetic subsystem is strong, if we assume the quantity n is 
constant along the tunneling path. The dependence of W0 
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and W '  on the mutual positions of the acceptors is the same; 
in the exponential approximation it has the form 

This factor is the overlap integral of the hole wave functions 
at impurities i and j. If the motion of the hole through the 
barrier can be described within the framework of effective 
mass theory (i.e., t /V% 1, or a shallow impurity), then 

(see, e.g., Ref. 4). For a deep impurity 

The quantities a,, and a, are effective radii of the localized 
state in the CuO, planes and perpendicular to it. The interac- 
tion of a hole with the antiferromagnetic background during 
the hopping process does not change the functional depen- 
dence of (r ) .  Thus, in the case of a deep impurity, a hole 
retains the character of a virtual "string" of broken antifer- 
romagnetic bonds which are re-established by the exchange 
interaction. The corresponding matrix elements depend ex- 
ponentially on the length of the string, leading to renormal- 
ization (i.e., a decrease) of the radius of the state. 

The local enhancement of the rhombohedra1 distortion 
gives the hopping a polaronic character. Because the rhom- 
bohedral distortion is locally enhanced near an occupied ac- 
ceptor, while an empty acceptor causes no enhancement, 
standard calculation schemes can be leading to 

transition with spin flip requires participation of an addi- 
tional real magnon, which carries an uncompensated spin. It 
is easy to show that the energy of this magnon is fin, -max 
(fin,T). Because we have fin, < J, the magnon turns out to 
be long-wavelength, and the corresponding phase volume is 
small; this means is small with respect to the parameter of 
fin, /J. 

Thus, by substituting Eqs. ( 16), (18), ( 19), (20), (22) 
into Eq. ( 17), we obtain 

Wij (A, A,) =wO exp {-f " p  (rij) 

- (h(e j -~ i I+~j -~ i )  /2T} @ (Ai, Aj), (23) 

whereilii = A sign (E, - E~ ) and W 0  is the coefficient multi- 
plying the exponential. In deriving Eq. (24) we have as- 
sumed that the molecular field A ( - 100 K )  is smaller than 
the width of the Mott band. This is valid for T> 10 K. 

Our next step ought to be averaging Eq. (24) with re- 
spect to n. Let us do this within mean-field theory, substitut- 
ing into Eq. (10) the average antiferromagnetism vector 
M,. In this approximation the averaging over n reduces to 
replacing the fluctuating molecular field Ai in Eq. (24) by 

an energy dependence of the probability for polaron hopping (Ai)=o [Ma, (afvtc) I ,  
of the form 

where 

here Q is the frequency of the local mode (fin - 100 K, see 
Ref. 18 ), We is the polaron shift, and the quantity A equals 
the characteristic width of the Mott The probabili- 
ties W 0  and W,  have an overall exponential dependence. At 
the same time, as we will show in what follows, the effect is 
connected with the fact that W 0  and W '  are different; the 
magnetoresistance is negative for 

The difference between W 0  and W '  is due to the fact that a 

where ai is the parity of the layer in which the ith impurity is 
found. We will assume that the anisotropy parameter (D) 
and the interplanar exchange (I) correspond to those pre- 
sented in Ref. 2; this implies that we should consider the 
following magnetic phases: AF ', F ', SF', , SF;,  and Fc (see 
Fig. 3 of Sec. 2).  By direct calculation it is easy to verify that 
for these phases 1 (Ai ) 1 = A does not depend either on vi or 
on ai, i.e., it is the same for all acceptors: 

where 6 = f ,  + , = (( - , (see the table and Fig. 6).  Then we 
have 

A 
(0 (A,, Aj) >mf = ch-I ($) {(l+q)cb[ (I+h) 

FIG. 6. a-dependence of the angle (which determines the direc- 
tion of the vector M on the dimensionless magnetic field 
h = gp,H/wi  (seeRef. 2) ,  andHllc. The kinkat thepoint h ,  corre- 
sponds to the transition SF; - S F ; ,  the kink at h, is for SF; - F C .  b 
shows the dependence of the magnitude of the molecular field on h 
for Hllc. 
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This implies that all the dependence of @ on ij is concen- 
trated in the angle cos xu = (AiA, )/A (here and in what 
follows we will omit the angle brackets for (A,)).  The 
expression for cosx,, in the various magnetic phases has the 
form 

(Fb) 
(AFb) 

I ( l+v iv j -a ia jv iv j )  sin2E+aiajviv1 
cos X i j  = 

1 + sin2 , , WIG) 

The case of the F phase is a limiting case of the SF; phase 
for sin2g = 1 and does not require a separate investigation. 

As a result, assembling Eqs. (27), (26), (23), and 
( 15), we obtain expressions for the resistance of the Miller- 
Abrahams network: 

Rij=B exp ( E i j )  , (28) 

where 

while the bond function is 

Eij=g:.?+ 6(aiaj ,  V ( V ~ ) ,  (30) 

g!jo)= E(" ( r i ,  E i ;  rj, E , )  = E S P  (rij) + (h  1 e,-eil+ 1 ej 1 + 1 et 1 ) /2T 
(31) 

and 

f ( x ) =  In 
2 [ch (A/2T)  +q ch (hA/2T) ] 

~l+~+(1-s)z]ch(~~2~)+[1+q-(1-q)z]ch(~/2~) 

For the case HIlb, the anglexu does not depend on vi v, 
(because Ma Ilc) and, therefore, RV is insensitive to the or- 
dering characteristics of vi (see Section 3). For the I;*- 
phase, we have cos x,. = 1 and 

i.e., gV does not depend on aia, . For the AI;* phase 

For the case Hllc, the result depends on how the vi are 
ordered; we consider these types of order individually. 

For frozen-in disorder 

where6, = f(cosx, ) , p  = 1,2,3 and 

1 - sin2 g 3 sin2 ,-1 
cos  XI,^ = T cos ~2 = - 

I + sin2 ,' 1 + sin2 ,' (36) 

For the case when the v, are ordered, we have 

for uniform order, and 

for alternating order. For the case of dynamic disorder 
(7, <T, <rO), the average with respect to t in formula ( 15) 
implies that Eq. (26) for cos x u ,  which enters into (32), 
must be averaged with respect to vi and v, : 

sin2 E/ ( 1  + sin2 g) , 
(cos ~ i ~ ) ~  = 

SFto, 
[ ( I -a iaJ  sin2 t+ aiaj]/  (1  + sin2 E )  , SF,". 

(39) 

I 

As a result, the quantity 6 retains only its dependence on 
aiaj: 

for the SF; phase and 

for the SF; phase. 

5. GENERALIZED PERCOLATION THEORY 

In the preceding section we calculated the resistance of 
a Miller-Abrahams network whose nodes represent the ac- 
ceptors. For this problem, as in the problem of hopping con- 
ductivity in normal doped  semiconductor^,^ the scatter in 
resistance is exponentially large and the methods of percola- 
tion theory can be applied. However, for our problem this 
method must be modified because the bond functions gV [see 
Eq. (30) 1 depend not only on the continuously distributed 
random quantities ( r i  , E ~  ), but also on the discrete quantities 
(ai ,vi ). The resistive networks in question can be divided 
into three groups: 

1. gV does not depend on aiaj or vi y .  To this group 
belong the I;* phase for any type of ordering of the v and the 
dynamic disorder case for the SF f phase. 

2. gV depends on ai a, but not on vi vj : the A p  phase for 
any type of v ordering, the SF; phase for the case of dynamic 
disorder, and the SF; and SF 9 phases for the ordered cases 
(uniform or alternating) all belong to this group. 

3. gu depends both on ai a, and on Y,  v, : the SF; and 
SF; phases (frozen-in disorder) belong to this group. 

Let us consider these types of networks individually. 
1. For this case we can apply the standard percolation 

method. In order to determine the threshold for percolation 
gc, it is necessary to calculate the average number of sites in 
the four-dimensional space (r, ,ci ) that are linked to a given 
site based on the criterion for linking gV < gc. This number 
must then be set equal to a certain constant c of the dimen- 
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sionless percolation problem: 

where g is the density of states at the Fermi level. 
The constant c depends on the structure of the dimen- 

sionless percolation problem, i.e., on the value of A [see 
(21)] and the functional form of rP (r,). Including the 
temperature dependence of A in the theory of polaron hop- 
ping conduction leads to a weak deviation from the Mott 
law.33 Trials based on numerical calculations have shown 
that the form of the surface 6, = const in (ri  ,gi ) space has 
almost no effect on the constant c (see Ref. 4), and we will 
neglect this effect in what follows. 

From this we see that the percolation threshold satisfies 

Ee= (TOIT) '=go, (43) 

where To = 4c/gai a,. 
2. The sites are grouped into two different classes 

(a, = + ) and (ai = - ) (Fig. 7a), and sites belonging to 
each of the classes are randomly distributed in space. The 
linking function for sites from one class (a,aj = + ) is 6 F', 
while the linking function for sites in the other class 
(aia, = - ) is 6, + S. The percolation threshold 6, in this 
generalized percolation problem is a function of the quantity 
8: 6, = 6, (6) .  For 6 = 0, all the sites are equivalent (i.e., the 
classes merge) and the problem reduces to the previous one: 
(:O' = go. In order to determine 6, for finite S, we substitute 
into Eq. (42) the total number of sites (from both classes) 
that satisfy the criterion for linking to a given (arbitrarily 
chosen) site: 

'14(g/2) Tal,2al [E2+ (E,-6) 9 (E,-6) I =c, (44) 

where 8 ( x )  is the Heaviside function. Neglecting the depen- 
dence of c on the shape of the region, we rewrite Eq. (44) in 
the form 

from which the percolation threshold (see Fig. 7c) is 

For 6 > 21'440, a11 the bonds between sites belonging to 
different classes are broken: percolation takes place along 
each of the classes independently and the percolation thresh- 
old corresponds to the density of states being decreased by 
half. 

For S 46, we have 

3. All the sites of the network are divided into four equal 
classes: (ai = +, Y,  = +), ( +  - ) ,  ( -  +) ,  and 
( - - ). The structure of the links between classes is illus- 
trated in Fig. 7b. 

By reasoning analogous to that used previously, we are 
led to an equation for the percolation threshold 
lC = lC (S,,S,,S,): 

For the case that is of most interest to us, the solution to Eq. 
(48) has the form 

Taking up where we left off, we present expressions for 
the resistivity of a sample in the various magnetic phases (we 
will assume S <&,; however, in this case the condition 6 2 1 is 
allowed, because go- 10 for T- 100 K):  

R=B exp (E,) , Fb, 

R=B exp (1,+6/2), AFb 

for all types of ordering of v, and 

for the case of frozen-in disorder. In the SF T and SF phases 
the expressions for R are the same because of the symmetry 
of 6, (6, ) relative to the permutations 6, [see Eq. (48) 1. 
Finally, 

b FIG. 7. Schematic illustration of the generalized percolation 
problem. The circles show the classes of the sites; shown in 
the circles are the coupling functions within the classes. The 
connecting function between sites of different classes are 
written near the arrows that connect the corresponding 
classes: a-the case of two classes, b--the case of four classes, 
c-the dependence of the percolation threshold gc on the 
value of 6 for the case of two classes. 
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R=B exp (E0+6), SF,', (53) 

R=B exp [E0+'/2(8i+82) I ,  SF,' (54) 

for dynamic disorder, 

R=B exp (E0+B2/2), SF,', SF,' (55 

for uniform disorder, and 

R=B exp (Eo+6,/2), SF,", 

R=B exp (Eo+6,/2), SF2° 

for alternating order. 
The coefficient B in Eqs. (50)-(57) differs from that of 

Eq. (29) because of the preexponential factors of the theory 
of percolation. However, for S <<, this factor is the same for 
all the magnetic phases, independent of the magnetic field, 
and its role reduces to renormalizing the quantity B,. 

6. DISCUSSION AND COMPARISON WITH EXPERIMENT 

Here we will discuss effects that may be observable if 
the spin mechanism for magnetoresistance discussed in this 
paper is valid, and look for qualitative agreement between 
our results and the data of Refs. 1 and 2 concerning magne- 
toresistance in La,CuO,. 

In what follows we limit ourselves to the case T >  T*, 
for which A = 0. Allowing for A #O does not lead to qualita- 
tive changes at lower temperatures, and we will not evaluate 
the corresponding very involved expressions. In all cases the 
quantity T * [Eq. (2 1 ) 1 must be considerably smaller than 
50 K, because fin.- 100 K holds (see Ref. 18) while 
In( W/A) > 1. 

Let us begin with the case Hllb. The resistance in a field 
H < H ,  = J, J/gp,o,, i.e., in the A p  phase, does not de- 
pend on the field and equals 

where B,( T) = Bexp [ T/T,) 1. In agreement with the ex- 
perimental curve shown in Fig. la, the resistance undergoes 
a jump at the point H  = Hc and for H >  H c ,  i.e., in the P 
phase, it once again is independent of H: 

The magnitude of the relative jump in resistance is 

Near the Nkel temperature, where M( T )  ( 1, we have 

l-q 0' 
ARIR = -- 

1-t-q 16T2 
M2 (T) . 

The experimental curve (Fig. lc)  is qualitatively described 
by Eq. (60) for w- 100 K (with regard to the steep dropoff 
see below). The proportionality of AR /R and M ( T) pre- 
dicted by Eq. (61 ) is also in qualitative agreement with Fig. 
l c  near T, . 

In Ref. 3 the authors found a jump in the resistance that 

was considerably smaller than in Refs. 1 and 2 (on the order 
of 10%) and was strongly washed out; in addition, it was 
correlated with jumps in the total magnetic moment. Appar- 
ently this is explained by the large number of impurities and 
by the inhomogeneity of the samples investigated in Ref. 3. 

Comparing our results with the experimental data of 
Ref. 1 for Hllb allows us to exclude the configurations of 
acceptors of the form shown in Fig. 3e, because for these 
configurations all the xij vanish, and we have A = 0 for 
H  < Hc and A = 2wM( T) for H >  Hc . The magnetoresis- 
tance in this case should be determined only by the coeffi- 
cient factor B [Eq. (29) 1 and would be positive, not nega- 
tive. 

As for the various types of ordering of vi (i.e., the c 
component of the local rhombohedra1 distortion), the data 
of Ref. 1 do not allow us to choose between them because for 
Hllb the antiferromagnetic moments Mu are parallel to C. 

In a field Hlb the magnetoresistance depends strongly 
on the type of ordering of the v i  . However the latter is clearly 
determined by the quality of the crystal and the conditions 
under which it was annealed. Because the oxygen diffusion 
coefficient is large,I6 the type of ordering of the v, can be 
determined by the kinetics of this diffusion and possibly may 
change even from measurement to measurement, if the sam- 
ple is subject to heating between measurements. Therefore, 
in the previous sections we have developed a theory that is 
applicable to the various types of ordering of the vi : 

(a )  frozen-in disorder; 
(b)  uniform order; 
(c)  alternating order; 
( d )  dynamic disorder. 

In addition, in contrast to the case Hllb the magnetoresis- 
tance is sensitive to whether or not a-c domains are present 
in the sample. 

Let us discuss to what extent the theory proposed here 
can explain the results of the experiments of Ref. 2 in fields 
Hlla, c. We first turn our attention to three important quali- 
tative experimental facts: first of all, the magnetoresistance 
is always negative and is a monotonic function of field. Sec- 
ondly, for magnetic phase transitions the dependence of the 
resistance on field has kinks; however, it never has jumps. 
Thirdly, in certain cases, although not in all (see Ref. 2),  
the total change in the resistance AR /R = [R(O) 
- R ( cc ) ]/R ( cc ) is the same in magnitude and tempera- 

ture dependence for H((b and Hlb. 
Let us first consider field orientations Hllc. The magne- 

toresistance described by Eqs. (52)-(57) is negative for all 
the cases (a)-(d). Furthermore, the magnetoresistance has 
kinks in all cases but does not have a jump for 
H  = H ,  = 2(J, + A)J/gp,w, - w,/gp,, i.e., for SF;  - F C  
transitions, because this transition is second order and is not 
accompanied by jumps in the values of the antiferromagnetic 
moments M u .  

The situation is otherwise for the SF; -SF;  transition 
in a field H I  = w,/gp, , for which a discontinuous reorienta- 
tion of the Mu occurs from the bc plane to the ab plane. 
Associated with this transition is a reorientation of the mo- 
lecular fields Ai [see Eqs. ( lo) ,  ( 11 ) 1,  leading in general to 
a jump in the angle ,yij and consequently to a jump in the 
resistance. This jump does in fact occur for the (c)  and ( d )  
types of ordering of the vi ; however, it is absent for the cases 
(a )  and (b) .  The absence of a jump is due to the symmetries 
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of the classes of corresponding percolation problems with 
respect to a reflection which interchanges the planes ba and 
bc. If we assume that the jump in R (H)  at a field H, takes 
place anyway [i.e., cases (c)  or ( d l  are realized], but is 
smeared out because of some mechanism, then this same 
mechanism would clearly have to smear out the jump in the 
field H, as well for HIlb. Because this latter type of smearing 
is not observed experimentally, the absence of a jump in 
R (HI for H((c allows us to exclude the types of order (c)  and 
(d)  (at any rate, for the samples investigated in Ref. 2).  

In order to make a choice between the remaining types 
of ordering let us consider the quantity R ( a ) : 

for the types (a )  and (b) ,  respectively. For finite 7 both 
quantities differ from Eq. (59) for Hllb. However, the quan- 
tity 7 is most likely small (see Section 4) ,  and in this case Eq. 
(62b) coincides with Eq. (59), while Eq. (62a) differs from 
it as before (by roughly a factor of 6 ) .  From this we see that 
the overall change in resistance AR / R  is universal only for 
ordering of type (b)  and small 7. Therefore, we think that in 
those measurements which recorded identical changes in the 
resistance for Hllb and Hlb, the quantities vi were type-(b) 
orderings and the field was oriented along c. Then the depen- 
dence of the resistance on field (for 77 = 0 )  takes the form 

R=B, (T) (1 + sin2 t ) l b { 2  sin2 5 

where sin 6 is a function of magnetic field (see Fig. 6a and 
the table). 

The resistance calculated by using this formula agrees 
with the experimental curves in Fig. lb. In a field H, there is 
no jump in the resistance R,  and the only kink present is the 
one connected with the kink in 6. Above Hz the angle 6 is 
constant and R saturates. 

The results presented here are valid for a single-domain 
sample in a field Hllc. However, the majority of samples 
investigated in Ref. 2 were multidomain: a portion of the 
domains corresponded to the orientation Hllc while another 
portion corresponded to HJla. In the orientation Hlla the 
magnetoresistance must be absent, i.e., R (H) - R (0),  be- 
cause the antiferromagnetic moments are not sensitive to the 
field HJJa (see Section 2). From this we see that the resis- 
tance of a multidomain sample will be a certain average of 
the resistances Eq. (63) for domains with Hllc and R (0)  for 
domains with HJJa. The method of averaging depends on the 
specific geometry of the domains; in any case, the field de- 
pendence of the effective resistance will not be qualitatively 
different from Eq. (63). At the same time the total jump in 
AR / R  must decrease somewhat. On the other hand, in a field 
Hllb the multidomain character is not present; therefore, in 
our view, weshould not expect any universality in theoverall 
variation in the resistance of a multidomain sample. 

The results presented above were obtained in the mean- 
field approximation. Let us now discuss qualitatively how 
fluctuations in the antiferromagnetism vector n should af- 
fect the magnetoresistance. Strictly speaking, in taking into 
account fluctuations it is not really legitimate to use expres- 
sion ( 17) for the transition probability from the i-th to the j- 
th acceptor, because in this case the latter becomes a func- 
tion of n along all paths for tunneling. Nevertheless, in a 
number of cases (for example, for tunneling without spin- 
flip) Eq. (17) remains valid. We have assumed that taking 
into account fluctuations should in all cases lead to a de- 
crease in the magnetoresistance compared to the mean field 
result. The easiest way to verify this is to assume that fluctu- 
ations of ni and nj are uncorrelated. This condition is valid 
when the mean hopping length in the direction perpendicu- 
lar to the layers is larger than the magnetic correlation 
length in this same direction, and holds everywhere except 
within a narrow region around T, . 

In neutron scattering experimentsM (which, unfortu- 
nately, were not carried out on the samples used in Refs. 1 
and 2) a sharp drop in M( T) has been observed for T 5  25 K. 
It is possible that this sharp falloff is connected with the 
enhancement of the magnetic fluctuations at low tempera- 
ture caused by the effect of frustrating magnetic impuri- 
ties.35 In this case it is natural to assume that both of these 
falloffs are due to the same fluctuation mechanism. Phenom- 
enologically the falloff in AR / R  can be explained by the fall- 
off in M(T)  even within the mean-field framework. Thus, 
we can assume that the mean-field results presented above 
are qualitatively valid in practice over the entire temperature 
range. 

Thus, the spin mechanism allows us to explain qualita- 
tively all of the features of the magnetoresistance of insulat- 
ing La,Cu04 observed in the experiments of Refs. 1 and 2. 
However, a quantitative comparison is hindered by the fol- 
lowing facts. First of all, as shown in Refs. 2 and 16, the 
conductivity for T? 50 K is dominated by a mechanism 
which is not described by the Mott law; apparently, it is not a 
hopping mechanism and does not give any contribution to 
the magnetoresistance. Including this mechanism should 
lead to a decrease in the magnitude of AR / R  for T 2  50 K. 
For a quantitative comparison of theory with experiment it 
is necessary to be able to distinguish the hopping contribu- 
tion to R. Secondly, for Hlb the only data that is admissible 
for a direct comparison with theory is data obtained on sin- 
gle-domain samples. 

In conclusion, we will discuss the possibility of experi- 
mental verification of assumptions 1 and 2 concerning the 
structure of the acceptor state proposed in the Introduction. 
The identification of vibronic structure in the optical spec- 
tra"' is very difficult because, on one hand, it requires high- 
purity material and, on the other hand, detailed knowledge 
of the constants of the vibronic Hamiltonian. However, it is 
possible to identify transitions between spin sublevels of the 
acceptors because, according to our theory, their frequency 
equals the magnitude of the molecular field A and depends 
on the field H (see Fig. 6b) in agreement with Eq. (25) and 
the table. This dependence is detectable in the field HJJc (in 
the field Hllb we haveA(H) =A(O) - 100 K);  the frequency 
of the transition increases monotonically in a field H < H, 
and undergoes a kink in the fields H, and H,, and for H >  H, 
we have A(H) -A(H2) = ~ A ( O ) .  Optical observation of 

391 Sov. Phys. JETP 71 (2), August 1990 A. 0. Gogolin and A. S. loselevich 391 



such a magnetic-field-dependent transition would be proof 
of the two-component local enhancement of the rhombohe- 
dral distortion and would allow us to determine its magni- 
tude. In addition, this would permit an independent identifi- 
cation of the magnetic phase transitions for Hl(c. In 
multidomain samples, in addition to lines with frequency 
A (H) (from c-oriented domains), we should also observe a 
line with frequency A ( 0 )  (from the a-domains); this would 
appear as a splitting of the magnetic field line. 

Certain results of this paper touching only on the case 
H(lb were previously published in a brief comrn~nica t ion .~~  
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